2013年高考数学理科全国卷1及答案
- 格式:doc
- 大小:600.00 KB
- 文档页数:11
盐津二中卓余网2013年普通高等学校招生全国统一考试(1卷)数 学(理科)参考公式:如果事件互斥,那么 球的表面积公式()()()P AB P A P B24SR如果事件相互独立,那么 其中R 表示球的半径()()()P A B P A P B球的体积公式如果事件A 在一次试验中发生的概率是p ,那么343VR 在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k k n k n n P k C p p kn …第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
盐津二中卓余网一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i-=( )A 、1B 、1-C 、iD 、i - 3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于0 4、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( ) ABCD5、函数1(0,1)x y a a a a=->≠的图象可能是( )盐津二中卓余网6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b = 8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
故选A.故选A.综上可知:[,0]2a ∈-.(步骤4)【提示】由1n n a a +=可知n n n A B C △的边n n B C 为定值1a ,由111112(2)2n n n n b c a b c a +++=+--及1112b c a +=得12n n b c a +=,则在n n n A B C △中边长1n n B C a =为定值,另两边n n n n A C A B 、的长度之和12n n b c a +=为定值,由此可知顶点n A 在以n n B C 、为焦点的椭圆上,根据111()2n n n n b c b c ++=---,得1111()2n n n b c b c -⎛⎫=- ⎪⎝⎭-,可知n →+∞时n n b c →,据此可判断n n n A B C △的边n n B C 的高n h 随着n 的增大而增大,再由三角形面积公式可得到答案.51111得1AB AC ⊥; (Ⅱ)易证OA ,1OA ,OC 两两垂直.以O 为坐标原点,OA u u u r的方向为x 轴的正向,||OA u u u r 为单位长,建立r u u u r【提示】(Ⅰ)设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得1212()()|+|+++4PM PN R r r R r r ==-=||,而||2NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(Ⅱ)设曲线C 上任意一点,()P x y ,由于||2222PM PN R ≤|-|=-,所以2R ≤,当且仅当圆P 的圆心为所以可设l :4)+(y k x =,与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出. 【考点】圆的标准方程及其性质,椭圆的的定义及其几何性质,直线与双曲线的位置关系. 21.【答案】(Ⅰ)4a =2b = 2c = 2d =(Ⅱ)2[1,]e【解析】(Ⅰ)由已知得(0)2f =,(0)2g =,(0)4f '=,(0)4g '=.(步骤1)而+()2f x x a =',((+))+xg x e cx d c '=,故2b =,2d =,4a =,+4d c =.(步骤2)从而4a =,2b =,2c =,2d =.(步骤3)(Ⅱ)由(Ⅰ)知,2()+4+2f x x x =,()21)+(x g x e x =.设函数2()()()2()+142x F x kg x f x ke x x x =-=---,则()2+()2242+1(2())x x F x ke x x x ke '=--=-.由题设可得(0)0F ≥,即1k ≥(步骤4)令()0F x '=得1ln x k =-,22x -=.(步骤5)①若21k e ≤<,则120x <≤-.从而当12(),x x ∈-时,()0F x '<;当1(),+x x ∈∞时,()0F x '>.即()F x 在1()2,x -单调递减,在1(),+x ∞单调递增.故()F x 在[)2,+-∞的最小值为1()F x .(步骤6)而1111211()2+24+0)22(F x x x x x x =--=-≥-.故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤7)②若2k e =,则2222+()()()2x F e x e e x -'=-.从而当2x >-时,)0(F x '>,即F (x )在()2,+-∞单调递增.而()20F -=,故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤8)③若2k e >,则22222+220()()F ke e k e ---=-=-<-.从而当2x ≥-时,()()f kg x x ≤不可能恒成立.综上,k 的取值范围是2[1,]e .(步骤9)【提示】(Ⅰ)对()f x ,()g x 进行求导,已知在交点处有相同的切线及曲线()y f x =和曲线()y g x =都过点(0,2)P ,从而解出a ,b ,c ,d 的值;(Ⅱ)由(Ⅰ)得出()f x ,()g x 的解析式,再求出()F x 及它的导函数,通过对k 的讨论,判断出()F x 的【提示】(Ⅰ)对于曲线1C 利用三角函数的平方关系式22sin cos 1t t +=即可得到圆1C 的普通方程;再利用极坐标与直角坐标的互化公式即可得到1C 的极坐标方程;(Ⅱ)先求出曲线2C 的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标3⎝⎦21||23|2|x x y x +-=---,画出函数y 的图象,数形结合可得结论.。
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
直线l满足l ⊥m,l ⊥n,l β,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A)1+ + +…+(B )1++ +…+(C )1+ + +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是x ≥1, x+y ≤3, y ≥a(x-3). {(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
2013年理科数学全国卷Ⅰ答案与解析一、选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合{}{2|20,|A x x x B x x =->=<,则 ( ) A.A∩B=∅ B.A ∪B=R C.B ⊆AD.A ⊆B考点 :集合的运算 解析:A=(-,0)∪(2,+), ∴A ∪B=R.答案:B2.若复数z 满足(34)|43|i z i -=+,则z 的虚部为()A .4-B .45-C .4D .45考点 :复数的运算 解析:由题知===,故z 的虚部为.答案:D3.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ()A .简单随机抽样B .按性别分层抽样C.按学段分层抽样D.系统抽样考点 :抽样的方法解析:因该地区小学.初中.高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样.答案:C 4.已知双曲线:()的离心率为,则的渐近线方程为A.B.C.12y x =±D.考点 :双曲线的性质解析:由题知,,即==,∴=,∴=,∴的渐近线方程为.答案:C5.运行如下程序框图,如果输入的,则输出s 属于A.[3,4]- B .[5,2]- C.[4,3]- D.[2,5]- 考点 :程序框图 解析:有题意知,当时,,当时,,∴输出s 属于[-3,4]. 答案:A6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A .35003cm π B .38663cm π C. 313723cm π D. 320483cm π 考点 :球的体积的求法解析:设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则,解得R=5,∴球的体积为35003cm π=. 答案:A7.设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( ) A .3B .4C.5D.6考点 :等差数列解析:有题意知==0,∴=-=-(-)=-2,= -=3,∴公差=-=1,∴3==-,∴=5.答案:C8.某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+ 考点 :三视图解析:由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为=.答案:A 9.设m 为正整数,展开式的二项式系数的最大值为,展开式的二项式系数的最大值为,若137a b =,则m = ( )A .5B.6C.7D.8考点 :二项式的展开式 解析:由题知=,=,∴13=7,即=,解得=6.答案:B10.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点。
2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ). A .A ∩B = B .A ∪B =R C .B ⊆A D .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n 项和2133n n S a =+,则{an}的通项公式是an =_______.15.(2013课标全国Ⅰ,理15)设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax +b)的图像关于直线x =-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠ABC =90°,ABBC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. 21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y =f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x +a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±.5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上, ∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1.15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=- 则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ), 所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2)上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∴f (-2=[1-(-22][(-22+8(-2)+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2)=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA . (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan α=4,即tan ∠PBA =4. 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-1,0),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,2013 全国新课标卷1理科数学 第11页 则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.x x y ⎧=⎪⎨-+=⎪⎩可取n =1,-1).故cos 〈n ,1AC 〉=11A CA C ⋅n n =5-. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为5. 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以 P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y=k (x +4).由l 与圆M , 解得k =当k y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x1,2=47-±.所以|AB|2118|7x x-=.当k=|AB|=187.综上,|AB|=|AB|=187.21.解:(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2,则F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0得x1=-ln k,x2=-2.①若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F′(x)<0;当x∈(x1,+∞)时,F′(x)>0.即F(x)在(-2,x1)单调递减,在(x1,+∞)单调递增.故F(x)在[-2,+∞)的最小值为F(x1).而F(x1)=2x1+2-21x-4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.2013 全国新课标卷1理科数学第12页2013 全国新课标卷1理科数学 第13页 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |x ,则( ).A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B 答案:B解析:∵x (x -2)>0,∴x <0或x >2. ∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .45答案:D解析:∵(3-4i)z =|4+3i|,∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D.3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样 答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2C 的渐近线方程为( ).A .y =14x ± B .y =13x ±C .y =12x ± D .y =±x答案:C解析:∵2c e a ==,∴22222254c a b e a a +===.∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±.5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5] 答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3). 若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4]. 综上可知,输出的s ∈[-3,4].故选A.6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm 3 B .866π3cm 3C .1372π3cm 3D .2048π3cm 3答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R , 由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .6 答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3. ∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π 答案:A 解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 答案:B解析:由题意可知,a =2C m m ,b =21C mm +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得m =6.故选B. 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D. 11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0] 答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C. ②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x . 故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立. 当x <0时,不等式等价于x -2≤a . ∵x -2<-2,∴a ≥-2. 综上可知:a ∈[-2,0]. 12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ). A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =__________.答案:2解析:∵c =ta +(1-t )b , ∴b ·c =ta ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c , ∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.(2013课标全国Ⅰ,理14)若数列{a n }的前n 项和2133n n S a =+,则{a n }的通项公式是a n =__________. 答案:(-2)n -1解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.②①-②,得12233n n n a a a -=-,即1n n aa -=-2. ∵a 1=S 1=12133a +,∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1.15.(2013课标全国Ⅰ,理15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.答案: 解析:f (x )=sin x -2cos xx x ⎫⎪⎭,令cos α=sin α=-则f (x )=α+x ),当x =2k π+π2-α(k ∈Z)时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-16.(2013课标全国Ⅰ,理16)若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________.答案:16解析:∵函数f (x )的图像关于直线x =-2对称, ∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15. 由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∞)上为减函数.∴f (-2=[1-(-22][(-2-2+8(-2+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15] =-3(4-16+15) =-9.f (-2=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA . 解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA (2)设∠PBA =α,由已知得PB =sin α.在△PBAsin sin(30)αα=︒-,α=4sin α. 所以tan αtan ∠PBA18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. (1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB . 由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C . (2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA|为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(00),C (0,0,B (-1,0,0). 则BC =(1,0,1BB =1AA =(-10),1AC =(0,.设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩ n n即0,0.x x ⎧+=⎪⎨-=⎪⎩可取n =1,-1). 故cos 〈n ,1AC 〉=11AC AC ⋅ n n=. 所以A 1C 与平面BB 1C 1C19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2)=41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14.所以X 的分布列为EX =111400+500+80016164⨯⨯⨯=506.25. 20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3. 设圆P 的圆心为P(x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2. 所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q,则1||||QP RQM r=,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M ,解得k =当k=4时,将4y x =+22=143x y +, 并整理得7x 2+8x -8=0, 解得x 1,2=47-±. 所以|AB |2118|7x x -=. 当4k =-时,由图形的对称性可知|AB |=187. 综上,|AB |=|AB |=187.21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4. 而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1). 设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2, 则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1). 由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增. 而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.③若k >e 2,则F (-2)=-2k e -2+2=-2e -2(k -e 2)<0. 从而当x ≥-2时,f (x )≤kg (x )不可能恒成立. 综上,k 的取值范围是[1,e 2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(1)证明:DB =DC ;(2)设圆的半径为1,BC CE 交AB 于点F ,求△BCF 外接圆的半径. (1)证明:连结DE ,交BC 于点G . 由弦切角定理得,∠ABE =∠BCE .而∠ABE =∠CBE ,故∠CBE =∠BCE ,BE =CE . 又因为DB ⊥BE ,所以DE 为直径,∠DCE =90°, 由勾股定理可得DB =DC .(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线,所以BG 设DE 的中点为O ,连结BO ,则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°,所以CF ⊥BF ,故Rt △BCF . 23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0. 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )≤g (x ),求a 的取值范围. 解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a-≥a -2,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2013年全国Ⅰ,理1,5分】已知集合{}{2|20,|A x x x B x x =->=<,则( ) (A )A B =∅ (B )A B =R (C )B A ⊆ (D )A B ⊆ 【答案】B【解析】∵2()0x x ->,∴0x <或2x >.由图象可以看出A B =R ,故选B . (2)【2013年全国Ⅰ,理2,5分】若复数z 满足(34i)|43i |z -=+,则z 的虚部为( )(A )4- (B )45- (C )4 (D )45【答案】D【解析】∵(34i)|43i |z -=+,∴55(34i)34i 34i (34i)(34i)55z +===+--+.故z 的虚部为45,故选D . (3)【2013年全国Ⅰ,理3,5分】为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )(A )简单随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样 【答案】C【解析】因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样,故选C .(4)【2013年全国Ⅰ,理4,5分】已知双曲线C :()2222=10,0x y a b a b->>C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =± (D )y x =±【答案】C【解析】∵c e a ==,∴22222254c a b e a a +===.∴224a b =,1=2b a ±. ∴渐近线方程为12b y x x a =±±,故选C .(5)【2013年全国Ⅰ,理5,5分】执行下面的程序框图,如果输入的[]1,3t ∈-,则输出的s 属于( ) (A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]- 【答案】D【解析】若[)1,1t ∈-,则执行3s t =,故[)3,3s ∈-.若[]1,3t ∈,则执行24s t t =-,其对称轴为2t =.故当2t =时,s 取得最大值4.当1t =或3时,s 取得最小值3,则[]3,4s ∈. 综上可知,输出的[]3,4s ∈-,故选D .(6)【2013年全国Ⅰ,理6,5分】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm , 将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚 度,则球的体积为( )(A )35003cm π (B )38663cm π (C )313723cm π(D )320483cm π【答案】B【解析】设球半径为R ,由题可知R ,2R -,正方体棱长一半可构成直角三角形,即OBA ∆为直角三角形,如图,2BC =,4BA =,2OB R =-,OA R =,由()22224R R =-+,得5R =,所以球的体积为34500533ππ=(cm 3),故选B .(7)【2013年全国Ⅰ,理7,5分】设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )(A )3(B )4 (C )5 (D )6【答案】C 【解析】∵12m S -=-,0m S =,13m S +=,∴()1022m m m a S S -=-=--=,11303m m m a S S ++=-=-=.∴1321m m d a a +=-=-=.∵()11102m m m S ma -=+⨯=,∴112m a -=-. 又∵1113m a a m +=+⨯=,∴132m m --+=.∴5m =,故选C . (8)【2013年全国Ⅰ,理8,5分】某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ 【答案】A【解析】由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径2r =,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为24422816r ππ⨯⨯+⨯⨯=+,故选A .(9)【2013年全国Ⅰ,理9,5分】设m 为正整数,()2m x y +展开式的二项式系数的最大值为a , ()21m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )(A )5 (B )6 (C )7 (D )8 【答案】B【解析】由题意可知,2m m a C =,21mm b C +=,又∵137a b =,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得6m =,故选B .(10)【2013年全国Ⅰ,理10,5分】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( ) (A )2214536x y +=(B )2213627x y += (C )2212718x y += (D )221189x y +=【答案】D【解析】设11()A x y ,,22()B x y ,,∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①-②,得 1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为()1,1-,∴122y y +=-,122x x +=,而1212011=312AB y y k x x --(-)==--, ∴221=2b a .又∵229a b -=,∴218a =,29b =.∴椭圆E 的方程为22=1189x y +,故选D . (11)【2013年全国Ⅰ,理11,5分】已知函数()()220ln 10x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若()f x a x ≥|,则a 的取值范围是( ) (A )(],0-∞ (B )(],1-∞ (C )[2,1]- (D )[2,0]-【答案】D【解析】由()y f x =的图象知:①当0x >时,y ax =只有0a ≤时,才能满足()f x ax ≥,可排除B ,C .②当0x ≤时,()2222y f x x x x x ==-+=-.故由()f x ax ≥得 22x x ax -≥.当0x =时,不等式为00≥成立.当0x <时,不等式等价于2x a -≤.∵22x -<-,∴2a ≥-.综上可知:[]2,0a ∈-,故选D .(12)【2013年全国Ⅰ,理12,5分】设n n n A B C ∆的三边长分别为n a ,n b ,n c ,n n n A B C ∆的面积为n S ,1,2,3.n =⋯,若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )(A ){}n S 为递减数列 (B ){}n S 为递增数列(C ){}21n S -为递增数列,{}2n S 为递减数列 (D ){}21n S -为递减数列,{}2n S 为递增数列 【答案】B第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2013年全国Ⅰ,理13,5分】已知两个单位向量a ,b 的夹角为60°,()1t t =+-c a b .若·0=b c ,则t = . 【答案】2【解析】∵()1t t =+-c a b ,∴()2··1t t =+-bc ab b .又∵1==a b ,且a 与b 夹角为60°,⊥b c , ∴()0 601t cos t =︒+-a b ,1012t t =+-.∴2t =.(14)【2013年全国Ⅰ,理14,5分】若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a = .【答案】()12n --【解析】∵2133n n S a =+,① ∴当2n ≥时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-,即12n n aa -=-.∵1112133a S a ==+,∴11a =.∴{}n a 是以1为首项,-2为公比的等比数列,()12n n a -=-.(15)【2013年全国Ⅰ,理15,5分】设当x θ=时,函数()2f x sinx cosx =-取得最大值,则cos θ= .【答案】 【解析】()s 2x f x sinx cosx x ⎫⎪==⎭-,令cos α=,sin α=,则()()f x x α=+,当22()x k k ππα=+-∈Z 时,()sin x α+有最大值1,()f x,即22()k k πθπα=+-∈Z ,所以cos θ=πcos =cos 2π+cos sin 22k πθααα⎛⎫⎛⎫-=-=== ⎪ ⎪⎝⎭⎝⎭(16)【2013年全国Ⅰ,理16,5分】若函数()()()221f x x x ax b =-++的图像关于直线2x =-对称,则()f x 的最大值为 .【答案】16【解析】∵函数()f x 的图像关于直线2x =-对称,∴()f x 满足()()04f f =-,()()13f f -=-,即151640893b a b a b =-(-+)⎧⎨=-(-+)⎩,得815a b =⎧⎨=⎩∴()432814815f x x x x x =---++.由()324242880f x x x x '=---+=,得12x =-22x =-,32x =-.易知,()f x在(,2-∞-上为增函数,在()22--上为减函数,在(2,2--上为增函数,在()2-+-∞上为减函数.∴(((((222122821588806416f ⎡⎤⎡⎤-=---+-+=---=-=⎢⎥⎢⎥⎣⎦⎣⎦.()()()()()22212282153416915f ⎡⎤⎡-=---+⨯⎤==-⎣⎦⎣⎦-+--+(((((222122821588806416f ⎡⎤⎡⎤-=---++-++=-++=-=⎢⎥⎢⎥⎣⎦⎣⎦.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅰ,理17,12分】如图,在ABC ∆中,90ABC ∠=︒,AB =,1BC =,P为ABC ∆内一点,90BPC ∠=︒.(1)若12PB =,求PA ;(2)若150APB ∠=︒,求tan PBA ∠.解:(1)由已知得60PBC ∠=︒,30PBA ∴∠=︒.在PBA ∆中,由余弦定理得211732cos 30424PA =+-︒=.故PA =(2)设PBA α∠=,由已知得sin PB α=.在PBA ∆sin sin(30)αα=︒-,4sin αα=.所以tan α,即tan PBA ∠= (18)【2013年全国Ⅰ,理18,12分】如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=︒. (1)证明:1AB A C ⊥;(2)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.解:(1)取AB 的中点O ,连结OC ,1OA ,1A B .因为CA CB =,所以OC AB ⊥.由于1AB AA =,160BAA ∠=︒,故1AA B ∆为等边三角形,所以1OA AB ⊥.因为1OC OA O = ,所以AB ⊥平面1OA C . 又1A C 平面1OA C ,故1AB A C ⊥.(2)由(1)知OC AB ⊥,1OA AB ⊥.又平面ABC ⊥平面11AA B B ,交线为AB ,所以OC ⊥平面11AA B B ,故OA ,1OA ,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,OA为单位长,建立如图所示的空间直角坐标系O xyz -.由题设知()1,0,0A,1()0A ,(0,0C ,()1,0,0B -.则(1,03BC =,11()BB AA =-=,(10,A C = .设()n x y z =,,是平面11BB C C 的法向量,则100BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0x x ⎧=⎪⎨-=⎪⎩可取1)n =-.故111cos ,n AC n AC n AC ⋅==⋅ .所以1A C 与平面11BB C C. (19)【2013年全国Ⅰ,理19,12分】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件1A ,第一次取出的4件产品全是优质品为事件2A ,第二次取出的4件产品都是优质品为事件1B ,第二次取出的1件产品是优质品为事件2B ,这批产品通过检验为事件A ,依题意有()()1122A A B A B = ,且11A B 与22A B 互斥,所以 ()()()()()()()112211122241113||161616264P A P A B P A B P A P B A P A P B A ==⨯++⨯==+.(2)X 可能的取值为400,500,800,并且()41114001161616P X ==--=,()500116P X ==,()80140P X ==. 所以X 的分布列为()111400+500+800506.2516164E X =⨯⨯⨯=. (20)【2013年全国Ⅰ,理20,12分】已知圆()2211M x y ++=:,圆()2219N x y -+=:,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB . 解:由已知得圆M 的圆心为()1,0M -,半径11r =;圆N 的圆心为()1,0N ,半径23r =.设圆P 的圆心为(),P xy ,半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以()()12124PM PN R r r R r r +=++-=+=.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为()22=1243x y x +≠-.(2)对于曲线C 上任意一点()P x y ,,由于222PM PN R -=-≤,所以2R ≤,当且仅当圆P 的圆心为()2,0时,2R =.所以当圆P 的半径最长时,其方程为()2224x y -+=.若l 的倾斜角为90︒,则l 与y 轴重 合,可得AB =l 的倾斜角不为90︒,由1r R ≠知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得()4,0Q -,所以可设()4l y k x =+:.由l 与圆M ,解得k =. 当k =时,将y =+22=13x y +,并整理得27880x x +-=,解得1,2x =. 2118|7AB x x =-=.当k =时,由图形对称性可知187AB =.综上,AB =187AB =. (21)【2013年全国Ⅰ,理21,12分】设函数()2f x x ax b =++,()()x g x e cx d =+.若曲线()y f x =和曲线()y g x =都过点()0,2P ,且在点P 处有相同的切线42y x =+.(1)求a ,b ,c ,d 的值;(2)若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:(1)由已知得()02f =,()02g =,()04f '=,()04g '=.而()2f x x a '=+,()()x g x e cx d c '=++, 故2b =,2d =,4a =,4d c +=.从而4a =,2b =,2c =,2d =. (2)由(1)知,()242f x x x =++,()()21x g x e x =+.设函数()()()()22142x F x kg x f x ke x x x =-=+---,()()()()2224221x x F x ke x x x ke '=+--=+-.()00F ≥ ,即1k ≥.令()0F x '=得1ln x k =-,22x =-. ①若21k e ≤<,则120x -<≤.从而当12()x x ∈-,时,()0F x '<;当1()x x ∈+∞,时,()0F x '>. 即()F x 在1(2)x -,单调递减,在1()x +∞,单调递增.故()F x 在[)2-+∞,的最小值为()1F x . 而()()11111224220F x x x x x =+---=-+≥.故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ②若2k e =,则()()()2222x F x e x e e -'=+-.∴当2x >-时,()0F x '>,即()F x 在()2-+∞,单调递增. 而()20F -=,故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ③若2k e >,则()()22222220F k eek e ---=-+=--<.从而当2x ≥-时,()()f x kg x ≤不可能恒成立.综上,k 的取值范围是2[1]e ,. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2013年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,直线AB为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆 于点D . (1)证明:DB DC =;(2)设圆的半径为1,BC =CE 交AB 于点F ,求BCF ∆外接圆的半径. 解:(1)连结DE ,交BC 于点G .由弦切角定理得,ABE BCE ∠=∠.而ABE CBE ∠=∠,故CBE BCE ∠=∠,BE CE =.又因为DB BE ⊥,所以DE 为直径,90DCE ∠=︒,DB DC =.(2)由(1)知,CDE BDE ∠=∠,DB DC =,故DG 是BC的中垂线,所以BG =设DE 的中点为O ,连结BO ,则60BOG ∠=︒.从而30ABE BCE CBE ∠=∠=∠=︒,所以CF BF ⊥,故Rt BCF ∆.(23)【2013年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤<).解:(1)将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程()()224525x y -+-=,即221810160C x y x y +--+=:.将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得28cos 10sin 160ρρθρθ--+=. 所以1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=.由222281016020x y x y x y y ⎧+--+=⎨+-=⎩,解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩, 所以1C 与2C交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭.(24)【2013年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)已知函数()212f x x x a =-++,()3g x x =+.(1)当2a =-时,求不等式()()f x g x <的解集;(2)设1a >-,且当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围.解:(1)当2a =-时,()()f x g x <化为212230x x x -+---<.设函数21223y x x x =-+---,则y =15,212,1236,1x x y x x x x ⎧-<⎪⎪⎪=--≤≤⎨⎪->⎪⎪⎩,其图像如图所示.从图像可知,当且仅当()0,2x ∈时,0y <.所以原不等式的解集是{}2|0x x <<.(2)当1,22x a ⎡⎫-⎪⎢⎣⎭∈时,()1f x a =+.不等式()()f x g x ≤化为13a x +≤+.所以2x a ≥-,对1,22x a ⎡⎫-⎪⎢⎣⎭∈都成立.故22a a -≥-,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013年普通高等学校招生全国统一考试(课标全国卷Ⅰ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2-2x>0},B={x|-√5<x<√5},则( )A.A∩B=⌀B.A∪B=RC.B⊆AD.A⊆B2.若复数z满足(3-4i)z=|4+3i|,则z的虚部为( )A.-4B.-45C.4 D.453.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.已知双曲线C:x 2a2-y2b2=1(a>0,b>0)的离心率为√52,则C的渐近线方程为( )A.y=±1xB.y=±1xC.y=±1xD.y=±x5.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( )A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]6.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3cm 3D.2 048π3cm 37.设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m=( ) A.3B.4C.5D.68.某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π9.设m 为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=( ) A.5B.6C.7D.810.已知椭圆E:x 22+y 2b2=1(a>b>0)的右焦点为F(3,0),过点F 的直线交E 于A,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 11.已知函数f(x)={-x 2+2x ,x ≤0,ln (x +1),x >0.若|f(x)|≥ax,则a 的取值范围是( )A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]12.设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n+1=a n ,b n+1=c n +a n 2,c n+1=b n +a n2,则( )A.{S n }为递减数列B.{S n }为递增数列C.{S 2n-1}为递增数列,{S 2n }为递减数列D.{S 2n-1}为递减数列,{S 2n }为递增数列第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a,b 的夹角为60°,c=ta+(1-t)b.若b·c=0,则t= . 14.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n = . 15.设当x=θ时,函数f(x)=sin x-2cos x 取得最大值,则cos θ= .16.若函数f(x)=(1-x 2)(x 2+ax+b)的图象关于直线x=-2对称,则f(x)的最大值为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在△ABC 中,∠ABC=90°,AB=√3,BC=1,P 为△ABC 内一点,∠BPC=90°. (Ⅰ)若PB=12,求PA;(Ⅱ)若∠APB=150°,求tan∠PBA.18.(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB,AB=AA 1,∠BAA 1=60°. (Ⅰ)证明:AB⊥A 1C;(Ⅱ)若平面ABC⊥平面AA 1B 1B,AB=CB,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.,且各件产品假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P 处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥-2时, f(x)≤kg(x),求k的取值范围.请考生从第22、23、24三题中任选一题作答,多选、多答,按所选的首题进行评分;不选,按本选考题的首题进行评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=√3,延长CE交AB于点F,求△BCF外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为{x =4+5cost ,y =5+5sint (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3. (Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>-1,且当x∈[-a,1)时, f(x)≤g(x),求a 的取值范围.2013年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.B 化简A={x|x>2或x<0},而B={x|-√5<x<√5},所以A ∩B={x|-√5<x<0或2<x<√5},B 项错误;A ∪B=R ,B 项正确;A 与B 没有包含关系,C 项与D 项均错误.故选B.2.D ∵|4+3i|=√42+32=5,∴z=53-4i =5(3+4i)25=35+45i,虚部为45,故选D.3.C 因为男女视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选C.评析 本题考查了分层抽样,准确理解分层抽样的意义是解题关键. 4.C ∵ba =√e 2-1=√54-1=12,∴C 的渐近线方程为y=±12x.故选C.5.A 由框图知s 是关于t 的分段函数:s={3t,-1≤t <1,4t -t 2,1≤t ≤3,当t ∈[-1,1)时,s ∈[-3,3);当t ∈[1,3]时,s=4t-t 2=4-(t-2)2∈[3,4],故s ∈[-3,4],故选A.6.A 设球心为O,正方体上底面中心为A,上底面一边的中点为B,在Rt △OAB 中,|OA|=R-2(cm),|AB|=4(cm),|OB|=R(cm),由R 2=(R-2)2+42得R=5(cm),∴V 球=43πR 3=5003π(cm 3).故选A.评析 本题考查了正方体和球的组合体,考查了空间想象能力.利用勾股定理求出球半径R 是解题的关键.7.C 解法一:∵S m-1=-2,S m =0,S m+1=3,∴a m =S m -S m-1=2,a m+1=S m+1-S m =3,∴公差d=a m+1-a m =1,由S n =na 1+n(n -1)2d=na 1+n(n -1)2,得{ma 1+m(m -1)2=0, ①(m -1)a 1+(m -1)(m -2)2=-2.② 由①得a 1=1-m 2,代入②可得m=5.解法二:∵数列{a n }为等差数列,且前n 项和为S n ,∴数列{Sn n } 也为等差数列. ∴S m -1m -1+Sm+1m+1=2S m m,即-2m -1+3m+1=0,即m=5.故选C.评析 本题考查等差数列前n 项和的基本运算,若能掌握等差数列的性质,解决此题可简化运算.8.A 由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积为V=4×2×2+12π×22×4=16+8π.故选A.9.B 由题意得:a=C 2m m ,b=C 2m+1m ,所以13C 2m m =7C 2m+1m ,∴13·(2m)!m!·m!=7·(2m+1)!m!·(m+1)!,∴7(2m+1)m+1=13,解得m=6,选B.10.D 直线AB 的斜率k=0+13-1=12,设A(x 1,y 1),B(x 2,y 2),则{x 12a 2+y 12b 2=1, ①x 22a 2+y 22b2=1,② ①-②得y 1-y2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.即k=-b 2a 2×2-2,∴b 2a2=12. ③又a 2-b 2=c 2=9, ④由③④得a 2=18,b 2=9.所以椭圆方程为x 218+y 29=1,故选D.评析 本题考查了直线和椭圆的位置关系,考查了线段的中点问题.本题也可利用韦达定理解决中点问题.11.D 由题意作出y=|f(x)|的图象:由题意结合图象知,当a>0时,y=ax 与y=ln(x+1)在x>0时必有交点,所以a ≤0.当x ≥0时,|f(x)|≥ax 显然成立;当x<0时,|f(x)|=x 2-2x ≥ax,则a ≥x-2恒成立,又x-2<-2,∴a≥-2.综上,-2≤a ≤0,故选D.评析 本题考查了函数的综合应用,考查了数形结合的能力;借助基本初等函数的图象缩小参数范围是解题关键. 12.B 由b n+1=a n +c n2,c n+1=b n +a n2得b n+1+c n+1=a n +12(b n +c n ),①b n+1-c n+1=-12(b n -c n ),②由a n+1=a n 得a n =a 1,代入①得b n+1+c n+1=a 1+12(b n +c n ),∴b n+1+c n+1-2a 1=12(b n +c n -2a 1),∵b 1+c 1-2a 1=2a 1-2a 1=0,∴b n +c n =2a 1>|B n C n |=a 1,所以点A n 在以B n 、C n 为焦点且长轴长为2a 1的椭圆上(如图).由b 1>c 1得b 1-c 1>0,所以|b n+1-c n+1|=12(b n -c n ), 即|b n -c n |=(b 1-c 1)·(12)n -1,所以当n 增大时|b n -c n |变小,即点A n 向点A 处移动,即边B n C n 上的高增大,又|B n C n |=a n =a 1不变,所以{S n }为递增数列.二、填空题 13.答案 2解析 解法一:∵b ·c =0, ∴b [t a +(1-t)b ]=0, t a ·b +(1-t)·b 2=0, 又∵|a |=|b |=1,<a,b >=60°, ∴12t+1-t=0,t=2.解法二:由t+(1-t)=1知向量a 、b 、c 的终点A 、B 、C 共线,在平面直角坐标系中设a =(1,0),b =(12,√32),则c =(32,-√32). 把a 、b 、c 的坐标代入c =t a +(1-t)b ,得t=2.评析 本题考查了向量的运算,利用三点共线的条件得到c 的坐标是解题关键. 14.答案 (-2)n-1解析 由S n =23a n +13得:当n ≥2时,S n-1=23a n-1+13,∴当n ≥2时,a n =-2a n-1,又n=1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n-1. 15.答案 -2√55解析 由辅助角公式得:f(x)=√5(√55sinx -2√55cosx)=√5sin(x-φ),其中sin φ=2√55,cos φ=√55,由x=θ,f(x)取得最大值得:sin(θ-φ)=1,∴θ-φ=2kπ+π2,k ∈Z ,即θ=φ+π2+2kπ,∴cos θ=cos (φ+π2)=-sinφ=-2√55. 评析 本题考查了辅助角公式的应用,准确掌握辅助角的含义是解题关键. 16.答案 16解析 由f(x)=(1-x 2)(x 2+ax+b)的图象关于直线x=-2对称,则有{f(0)=f(-4),f(1)=f(-5),即{b =-15(16-4a +b),0=-24(25-5a +b), 解得a=8,b=15,∴f(x)=(1-x 2)(x 2+8x+15)=(1-x 2)[(x+4)2-1],令x+2=t,则x=t-2,t ∈R . ∴y=f(t)=[1-(t-2)2][(t-2)2+8(t-2)+15] =(4t-t 2-3)(4t+t 2+3)=16t 2-(t 2+3)2=16t 2-t 4-6t 2-9=16-(t 2-5)2,∴当t 2=5时y max =16.三、解答题17.解析 (Ⅰ)由已知得,∠PBC=60°,所以∠PBA=30°.在△PBA 中,由余弦定理得PA 2=3+14-2×√3×12cos 30°=74.故PA=√72.(Ⅱ)设∠PBA=α,由已知得PB=sin α.在△PBA 中,由正弦定理得√3sin150°=sinαsin(30°-α), 化简得√3cos α=4sin α.所以tan α=√34,即tan ∠PBA=√34.评析 本题考查了利用正弦定理和余弦定理解三角形,考查了运算求解能力和分析、解决问题的能力.题目新颖且有一定的难度,通过PB 把△PBC 和△PAB 联系起来利用正弦定理是解题关键.18.解析 (Ⅰ)取AB 的中点O,连结OC,OA 1,A 1B.因为CA=CB,所以OC ⊥AB.由于AB=AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB.因为OC ∩OA 1=O,所以AB ⊥平面OA 1C.又A 1C ⊂平面OA 1C,故AB ⊥A 1C.(Ⅱ)由(Ⅰ)知OC ⊥AB,OA 1⊥AB.又平面ABC ⊥平面AA 1B 1B,交线为AB,所以OC ⊥平面AA 1B 1B,故OA,OA 1,OC 两两相互垂直.以O 为坐标原点,OA ⃗⃗⃗⃗⃗ 的方向为x 轴的正方向,|OA ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系O-xyz.由题设知A(1,0,0),A 1(0,√3,0),C(0,0,√3),B(-1,0,0).则BC ⃗⃗⃗⃗⃗ =(1,0,√3),BB ⃗⃗⃗⃗⃗ 1=AA ⃗⃗⃗⃗⃗ 1=(-1,√3,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,-√3,√3).设n =(x,y,z)是平面BB 1C 1C 的法向量,则{n ·BC ⃗⃗⃗⃗⃗ =0,n ·BB⃗⃗⃗⃗⃗ 1=0.即{x +√3z =0,-x +√3y =0.可取n =(√3,1,-1). 故cos<n ,A 1C ⃗⃗⃗⃗⃗⃗⃗ >=n ·A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ |n||A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ |=-√105. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为√105. 19.解析 (Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A,依题意有A=(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P(A)=P(A 1B 1)+P(A 2B 2)=P(A 1)P(B 1|A 1)+P(A 2)P(B 2|A 2)=416×116+116×12=364.(Ⅱ)X 可能的取值为400,500,800,并且P(X=400)=1-416-116=1116,P(X=500)=116,P(X=800)=14.所以X 的分布列为X400 500 800 P1116 116 14EX=400×1116+500×116+800×14=506.25.20.解析 由已知得圆M 的圆心为M(-1,0),半径r 1=1;圆N 的圆心为N(1,0),半径r 2=3.设圆P 的圆心为P(x,y),半径为R.(Ⅰ)因为圆P 与圆M 外切并且与圆N 内切,所以|PM|+|PN|=(R+r 1)+(r 2-R)=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M 、N 为左、右焦点,长半轴长为2,短半轴长为√3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).(Ⅱ)对于曲线C 上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R=2.所以当圆P 的半径最长时,其方程为(x-2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|=2√3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q,则|QP||QM|=R r 1,可求得Q(-4,0),所以可设l:y=k(x+4).由l 与圆M 相切得√1+k 2=1,解得k=±√24. 当k=√24时,将y=√24x+√2代入x 24+y 23=1,并整理得7x 2+8x-8=0,解得x 1,2=-4±6√27.所以|AB|=√1+k 2|x 2-x 1|=187. 当k=-√24时,由图形的对称性可知|AB|=187.综上,|AB|=2√3或|AB|=187. 评析 本题考查了直线和圆的位置关系,考查了椭圆的定义和方程,考查了分类讨论的方法和运算求解能力.利用数形结合的方法是解题的关键.在求曲线C 的方程时容易忽视对左顶点和直线倾斜角为90°时的讨论而造成失分.21.解析 (Ⅰ)由已知得f(0)=2,g(0)=2, f '(0)=4,g'(0)=4.而f '(x)=2x+a,g'(x)=e x (cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(Ⅱ)由(Ⅰ)知, f(x)=x 2+4x+2,g(x)=2e x (x+1).设函数F(x)=kg(x)-f(x)=2ke x (x+1)-x 2-4x-2,则 F'(x)=2ke x (x+2)-2x-4=2(x+2)(ke x -1).由题设可得F(0)≥0,即k≥1.令F'(x)=0,得x1=-ln k,x2=-2.(i)若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F'(x)<0;当x∈(x1,+∞)时,F'(x)>0.即F(x)在(-2,x1)上单调递减,在(x1,+∞)上单调递增.故F(x)在[-2,+∞)上的最小值为F(x1).而F(x1)=2x1+2-x12-4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.(ii)若k=e2,则F'(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F'(x)>0,即F(x)在(-2,+∞)上单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.(iii)若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0.从而当x≥-2时, f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].评析本题考查了导数的几何意义以及利用导数研究函数的单调性,考查了分类与整合、函数与方程的思想;结合特值限定参数的范围,可减少分类的情况,有利于提高效率,掌握利用两根大小作为讨论的分界点,是解题关键.22.解析(Ⅰ)连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,DB=DC,.故DG是BC的中垂线,所以BG=√32设DE 的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF ⊥BF,故Rt △BCF 外接圆的半径等于√32.23.解析 (Ⅰ)将{x =4+5cost,y =5+5sint消去参数t,化为普通方程(x-4)2+(y-5)2=25, 即C 1:x 2+y 2-8x-10y+16=0.将{x =ρcosθ,y =ρsinθ代入x 2+y 2-8x-10y+16=0得 ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(Ⅱ)C 2的普通方程为x 2+y 2-2y=0.由{x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得{x =1,y =1或{x =0,y =2. 所以C 1与C 2交点的极坐标分别为(√2,π4),(2,π2).24.解析 (Ⅰ)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y={ -5x, x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x ∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(Ⅱ)当x ∈[-a 2,12)时, f(x)=1+a. 不等式f(x)≤g(x)化为1+a ≤x+3.所以x ≥a-2对x ∈[-a 2,12)都成立.故-a 2≥a-2,即a ≤43.]. 从而a的取值范围是(-1,43。
2013年全国统一高考新课标版Ⅰ卷全国1卷理科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则( )A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为( )A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为( )A.y=B.y=C.y=±xD.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于( )A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为( )A. B. C. D.7.(5分)设等差数列{an }的前n项和为Sn,若Sm﹣1=﹣2,Sm=0,Sm+1=3,则m=( )A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=( )A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为( )A. B.C. D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是( )A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]12.(5分)设△An BnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3…若b1>c1,b1+c1=2a1,an+1=an,,,则( )A.{Sn}为递减数列B.{Sn}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{an }的前n项和为Sn=an+,则数列{an}的通项公式是an=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE 交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则( )A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为( )A.﹣4B.C.4D.【分析】由题意可得 z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为( )A.y=B.y=C.y=±xD.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案. 【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于( )A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式. 【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为( )A. B. C. D.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{an }的前n项和为Sn,若Sm﹣1=﹣2,Sm=0,Sm+1=3,则m=( )A.3B.4C.5D.6【分析】由an 与Sn的关系可求得am+1与am,进而得到公差d,由前n项和公式及Sm=0可求得a 1,再由通项公式及am=2可得m值.【解答】解:am =Sm﹣Sm﹣1=2,am+1=Sm+1﹣Sm=3,所以公差d=am+1﹣am=1,S m ==0,得a1=﹣2,所以am=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{an }的前n项和为Sn,即有数列{}成等差数列,则,,成等差数列, 可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+am﹣1)=﹣2,m(a1+am)=0,(m+1)(a1+am+1)=3,可得a1=﹣am,﹣2am+am+1+am+1=+=0,解得m=5. 故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项an 与Sn的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=( )A.5B.6C.7D.8【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m 的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即 13×=7×,即 13=7×,即 13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为( )A. B.C. D.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是( )A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y =ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l 为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△An BnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3…若b1>c1,b1+c1=2a1,an+1=an,,,则( )A.{Sn}为递减数列B.{Sn}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【分析】由an+1=an可知△AnBnCn的边BnCn为定值a1,由bn+1+cn+1﹣2a1=及b1+c1=2a1得bn+cn=2a1,则在△AnBnCn中边长BnCn=a1为定值,另两边AnCn、AnBn的长度之和bn+cn =2a1为定值,由此可知顶点An 在以Bn、Cn为焦点的椭圆上,根据bn+1﹣cn+1=,得bn﹣cn=,可知n→+∞时bn →cn,据此可判断△AnBnCn的边BnCn的高hn随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+an ,∴bn+1+cn+1﹣2an=(bn+cn﹣2an),∴bn +cn﹣2an=0,∴bn+cn=2an=2a1,∴bn+cn=2a1,由此可知顶点An 在以Bn、Cn为焦点的椭圆上,又由题意,bn+1﹣cn+1=,∴=a1﹣bn,∴bn+1﹣a1=,∴bn﹣a1=,∴,cn =2a1﹣bn=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t= 2 .【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{an }的前n项和为Sn=an+,则数列{an}的通项公式是an=(﹣2)n﹣1.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,an =Sn﹣Sn﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,an =Sn﹣Sn﹣1=()﹣()=,整理可得,即=﹣2,故数列{an}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,an=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣. 【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16 .【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°. 在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==, 又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R +1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,当且仅当⊙P 的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l 与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f(x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE 交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE =∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt △DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25, 即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,联立,解得或,∴C1与C2交点的极坐标为()和(2,).【点评】本题考查曲线极坐标方程的求法,考查两曲线交点的极坐标的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.【分析】(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x ﹣1|+|2x﹣2|﹣x﹣3,画出函数y的图象,数形结合可得结论.(Ⅱ)不等式化即 1+a≤x+3,故x≥a﹣2对x∈[﹣,]都成立,分析可得﹣≥a﹣2,由此解得a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则 y =,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)=1+a,不等式化为 1+a≤x+3,故 x≥a﹣2对x∈[﹣,]都成立.故﹣≥a﹣2,解得 a ≤,].故a的取值范围为(﹣1,【点评】本题考查绝对值不等式的解法与绝对值不等式的性质,关键是利用零点分段讨论法分析函数的解析式.第21页,共21页。
2013 年高考数学全国卷1(完整版试题 +答案 +解析 )2013 年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 6 页.考试时间120 分钟.满分150 分.答题前,考生务必用0.5 毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ 卷答题卡和第Ⅱ 卷答题纸规定的位置.参考公式:样本数据x1 , x2 ,x n的标准差( x1x) 2(x2x) 2( x n x)2s n其中 x 为样本平均数球的面积公式S 4 R2第Ⅰ卷(选择题共 60 分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数12i(i是虚数单位)的虚部是1 iA .31C.3 D .1 B.222. 已知R是实数集,M x 21 , N y y x 1 1 ,则N C R M xA.(1,2)B.0,2 C.D.1,23.现有 10 个数,其平均数是 4 ,且这 10 个数的平方和是 200 ,那么这个数组的标准差是A.1B.2C.3D.44.设 S n为等比数列 { a n } 的前 n 项和, 8a2a50,则S4 S2A.5B.8C.8D. 155.已知函数 f ( x)sin(2x) ,若存在a(0,) ,使得 f (x a) f (x a) 恒成立,则 a6的值是A .B .3C .4 D .626. 已知 m 、 n 表示直线, , , 表示平面,给出下列四个命题,其中真命题为( 1) m,n , nm, 则( 2) , m,n,则 nm( 3) m , m , 则 ∥( 4) m, n, mn,则A .( 1)、(2)B .(3)、( 4)C .(2)、( 3)D .(2)、( 4)7. 已知平面上不共线的四点O, A, B, C ,若 OA 3OB2OC,则| AB |等于|BC |A . 1B . 2C . 3D . 48. 已知三角形ABC 的三边长成公差为 2 的等差数列,且最大角的正弦值为3,则这个三2角形的周长是A . 18B . 21C . 24D . 159. 函数 f ( x)lg x1的零点所在的区间是xA . 0,1B . 1,10C . 10,100D . (100, )10. 过直线 yx 上一点 P 引圆 x 2y 26x 7 0 的切线,则切线长的最小值为23210 D . 2A .B .2C .2211. 已知函数 f ( x)x 2 ax 2b . 若 a,b 都是区间 0,4 内的数,则使 f (1)0 成立的概率是3B .13 5A .4C .D .48812. 已知双曲线的标准方程为x 2 y 2 1 ,F 为其右焦点, A 1 , A 2 是实轴的两端点, 设 P 为9 16双曲线上不同于A 1 , A 2 的任意一点, 直线 A 1 P, A 2 P 与直线 xa 分别交于两点 M , N , 若FM FN0 , 则 a 的值为16B .925 16A .5C .D .995第Ⅱ卷(非选择题共90分)注意事项:1.请用 0.5 毫米的黑色签字笔将每题的答案填写在第Ⅱ 卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2.不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.3.第Ⅱ 卷共包括填空题和解答题两道大题.二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.开始13. 如图所示的程序框图输出的结果为__________.a2, i 1 否14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为__________.i 10是1a1输出 aa111第14 题图i i1结束第13题图15. 地震的震级 R 与地震释放的能量 E 的关系为R 2(lg E 11.4).2011 年 3 月 11日,日3本东海岸发生了9.0 级特大地震, 2008 年中国汶川的地震级别为8.0 级,那么 2011年地震的能量是 2008年地震能量的倍.16.给出下列命题:①已知都是正数,且a1a,则a b;1bb②已知 f ( x) 是 f ( x) 的导函数,若x R , f (x) 0 ,则 f (1) f (2)一定成立;③命题“x R ,使得x2 2 x 1 0 ”的否定是真命题;④“ x1, 且 y 1 ”是“ x y 2 ”的充要条件.其中正确命题的序号是.(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共 74 分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分 12 分)已知向量 a(1, cos x ) 与 b ( 3 sin x cos x, y) 共线,且有函数 yf ( x) .2 2 2(Ⅰ)若 f ( x) 1,求 cos(22x) 的值;3(Ⅱ)在ABC 中,角 A, B, C ,的对边分别是 a, b, c ,且满足 2a cosC c 2b ,求函数f ( B) 的取值范围 .18.(本小题满分 12 分)已知等差数列a n的前 n 项和为n ,公差d 0,且3 5 1413 成等比数列.SS S50, a , a , a(Ⅰ)求数列a n 的通项公式;(Ⅱ)设b n 是首项为 1,公比为 3 的等比数列,求数列b n 的前 n 项和 T n .a n19.(本小题满分 12 分)已知四棱锥A BCDE ,其中AB BC AC,2,CD面ABC ,BE 1CD BE∥CD,F 为 AD的中点.D(Ⅰ)求证:EF ∥面 ABC ;(Ⅱ)求证:面ADE面ACD ;F( III)求四棱锥 A BCDE 的体积.EC AB20. (本小题满分 12 分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x之间对应的一组数据:时间 x (秒)51015203040深度 y (微米)61010131617现确定的研究方案是:先从这 6 组数据中选取 2 组,用剩下的 4 组数据求线性回归方程,再对被选取的 2 组数据进行检验.(Ⅰ)求选取的 2 组数据恰好不相邻的概率;(Ⅱ)若选取的是第 2 组和第 5 组数据,根据其它 4 组数据,求得y 关于x的线性回归方程 y?4 x 139,规定由线性回归方程得到的估计数据与所选出的检验数据的误1326差均不超过 2 微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.21.(本小题满分 12 分)已知函数ax b1, f ( 1)) 的切线方程为x y 3 0 .f (x)2在点 (x1(Ⅰ)求函数 f ( x) 的解析式;(Ⅱ)设 g ( x) ln x ,求证: g (x) f ( x) 在 x [1, ) 上恒成立.22. (本小题满分14 分)实轴长为 4 3 的椭圆的中心在原点,其焦点F1,, F2在x轴上.抛物线的顶点在原点O ,对称轴为 y 轴,两曲线在第一象限内相交于点 A ,且AF1AF2,△ AF1 F2的面积为3.(Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点 A 作直线 l 分别与抛物线和椭圆交于B,C ,若 AC 2 AB ,求直线l的斜率k.yAF1 B o F2xC参考答案及评分标准一.选择题(本大题共12 小题,每小题 5 分,共 60 分.)BDBADBBDBC CB二.填空题(本大题共4 小题,每小题 4 分,共 16 分.)313. 214.1915. 10216. ①③3三.解答题17.(本小题满分 12 分)解:(Ⅰ)∵ a 与 b 共线1cos x∴xy 23 sin x cos2 2y3 sin x cosxcos 2x3sin x1(1 cos x) sin( x) 1 ⋯⋯⋯⋯ 3 分22 2226 2∴ f ( x)sin( x ) 1 1 ,即 sin(x) 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分62 2 cos(26 12x) cos2( x) 2cos 2 ( x) 1 2sin 2 ( x ) 1 33 3 62⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分(Ⅱ)已知2a cosC c2b由正弦定理得:2sin A cosC sin C2sin B 2 sin( A C )2sin A cosC sin C2sin A cosC2 cos Asin C∴ cosA1 ,∴在ABC 中 ∠ A231f (B)sin(B)26 25 ∵∠ A∴ 0 B ,B3 3 666∴1sin(B) 1, 1 f ( B) 32623∴函数f (B) 的取值范围为 (1, ]⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分10 分12 分2013 年高考数学全国卷1(完整版试题 +答案 +解析 )18.(本小题满分12 分)解:(Ⅰ)依题意得3a132d5a1455022d⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分( a13d ) 2a1 ( a112d )解得 a13,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分d2a n a1,即2n 1. 6 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( Ⅱ) bn3n1, bn a n3n1(2n 1) 3n 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分a nT n353732(2n 1) 3n 13T n 3 3 5327 33(2n 1) 3n 1(2n 1) 3n⋯⋯⋯⋯⋯⋯⋯⋯9分2T n 3 2 3 2 32 2 3n 1(2n1)3n32 3(13n 1 )( 2n 1)3n132n 3n∴ T n n 3n⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分19.(本小题满分12 分)解:(Ⅰ)取AC 中点 G,连结 FG、 BG,∵F,G分别是 AD,AC的中点D1∴FG∥ CD,且 FG= DC=1 .2∵ BE∥ CD ∴ FG 与 BE 平行且相等F∴ EF∥ BG.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分EEF 面 ABC, BG面 ABC GC ∴ EF ∥面 ABC A⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)∵△ ABC 为等边三角形∴ BG⊥ AC B 又∵ DC⊥面 ABC,BG面 ABC∴ DC⊥ BG2013 年高考数学全国卷1(完整版试题 +答案 +解析 )∴ BG 垂直于面 ADC 的两条相交直线AC,DC,∴ BG⊥面 ADC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵EF∥ BG∴EF⊥面 ADC∵ EF面 ADE,∴面 ADE⊥面 ADC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分(Ⅲ)连结 EC,该四棱锥分为两个三棱锥E-ABC和 E- ADC .V A BCDE V E ABC V E ACD131113333.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分34321264另法:取 BC 的中点为 O ,连结AO ,则 AO BC ,又 CD平面ABC ,∴CD AO, BC CD C , ∴AO平面,∴AO为V A BCDE的高,BCDEAO 3, S BCDE(12)1 3 ,V A BCDE1333.222322420.(本小题满分12 分)解:(Ⅰ)设 6 组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A,从 6组数据中选取 2 组数据共有15 种情况:( 1,2 )( 1,3 )(1,4 )( 1,5 )( 1,6 )( 2,3 )( 2,4 )( 2,5 )( 2,6 )( 3,4 )( 3,5 )( 3,6 )( 4,5)( 4,6)( 5,6),其中事件A包含的基本事件有10种.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分所以P( A)102.所以选取的 2 组数据恰好不相邻的概率是2.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分1533( Ⅱ )当 x10时, ?413921921910 |2;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分26261326当x30时, ?413937937916 |2;2626132612 分所以,该研究所得到的回归方程是可靠的.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21.(本小题满分12 分)解:(Ⅰ)将 x 1 代入切线方程得y2∴ f ( 1)b a2 ,化简得 b a 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分11f ( x)a( x21)(ax b) 2 x(1x 2 ) 22013 年高考数学全国卷1(完整版试题 +答案 +解析 )f ( 1)2a2(b a)2b b1 .442解得: a2, b2∴ f ( x)2x2x 2.12x2(Ⅱ)由已知得ln x在 [1,) 上恒成立x21化简得 ( x21) ln x2x2即 x2 ln x ln x 2 x20在 [1,) 上恒成立.设 h(x)x 2 ln x ln x 2x 2 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分6分8分h (x)2xln x x 12x1∵ x 1∴ 2x ln x0,2,即 h ( x) 0 .10 分x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯x∴ h(x) 在 [1,) 上单调递增, h( x)h(1) 0∴ g(x) f (x) 在 x[1,) 上恒成立.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分22.(本小题满分 14分)解( 1)设椭圆方程为x2y21 (a b 0) , AF1 m, AF2 n a2b2m 2n24c2由题意知m n 4 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分mn 6解得 c 29 ,∴ b 212 9 3 .∴椭圆的方程为x 2y2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分1213∵ y A c3,∴ y A1,代入椭圆的方程得x A 2 2 ,将点 A 坐标代入得抛物线方程为x 28 y .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分( 2)设直线l的方程为y 1 k ( x 2 2 ) , B(x1, y1 ), C (x2 , y2 )---2013 年高考数学全国卷1(完整版试题 +答案 +解析 )由 AC 2AB得 x22 22( x 2 2),1化简得 2x1x222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分联立直线与抛物线的方程y1k( x 2 2),x 28 y得 x28kx162k80∴ x1 2 28k ①⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分联立直线与椭圆的方程y1k( x2 2 )x 24y 212得2)2(8 1622)32216 28 0k x k x k kk∴ x2 2 2162k 28k②⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分14k2∴ 2x1x22(8k2 2 )162k 28k2 2 2 214k 2整理得: (16k42)(112k)0 4k 2∴ k2,所以直线 l的斜率为2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14 分44-11-/11。
2013年普通高等学校招生全国统一考试新课标I 卷(河北、河南、山西、陕西)理 科 数 学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的. (1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则(A )=B A ∅ (B )R =B A (C )A B ⊆ (D )B A ⊆ (2)若复数z 满足()i 34i 43+=-z(A )4- (B )54-(C )4 (D )54(3)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是 (A )简单的随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样(4)已知双曲线C :)0,0(12222>>=-b a by a x 的离心率为25,则C 的渐近线方程为(A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±= (5)执行右面的程序框图,如果输入的[]31t ,-∈,则输出的s 属于 (A )[]43,- (B )[]25,- (C )[]34,- (D )[]52,-(6)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π(7)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m(A )3 (B )4 (C )5 (D )6 (8)某几何体的三视图如图所示,则该几何体的体积为 (A )8π16+ (B )8π8+ (C )π6116+ (D )16π8+(9)设m 为正整数,()my x 2+展开式的二项式系数的最大值为a ,()12++m y x 展开式的二项式系数的最大值为b ,若b a 713=,则m = (A )5 (B )6 (C )7 (D )8(10)已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E于A 、B 两点。
2013年普通高等学校招生全国统一考试(全国卷一)(含答案)数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k k n k n n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x 的展开式中2x 的系数是( ) A 、42 B 、35 C 、28 D 、212、复数2(1)2i i -=( )A 、1B 、1-C 、iD 、i -3、函数29,3()3ln (2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( ) A 、不存在 B 、等于6 C 、等于3 D 、等于0 4、如图,正方形A B C D 的边长为1,延长B A 至E ,使1A E =,连接E C 、E D 则sin C E D ∠=( )A10 B10 C10 D155、函数1(0,1)x y a a a a =->≠的图象可能是( )6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a、b 都是非零向量,下列四个条件中,使||||a b a b =成立的充分条件是( ) A 、a b =-B 、//a bC 、2a b=D 、//a b 且||||a b = 8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2013 全国新课标卷1理科数学 第1页20131.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B. 2. 答案:D解析:∵(3-4i)z =|4+3i|,∴55(34i)34i 34i (34i)(34i)55z+===+--+故z 的虚部为45,选D.3.答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样. 4.答案:C解析:∵2c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±.∴渐近线方程为12b y x x a =±±.5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A. 6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图. BC =2,BA =4,OB =R -2,OA =R , 由R 2=(R -2)2+42,得R =5,所以球的体积为34500π5π33=(cm 3),故选A.7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3. ∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=.∴m =5.故选C. 8.答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A.9.答案:B解析:由题意可知,a =2C mm ,b =21C mm +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得m =6.故选B. 10. 答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax . 当x =0时,不等式为0≥0成立. 当x <0时,不等式等价于x -2≤a . ∵x -2<-2,∴a ≥-2. 综上可知:a ∈[-2,0]. 12. 答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题.二、填空题:本大题共4小题,每小题5分. 13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c , ∴0=t |a ||b |cos 60°+(1-t ), 0=12t +1-t .∴t =2. 14.答案:(-2)n -1解析:∵2133nn S a =+,①∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-,即1nn a a -=-2.∵a 1=S 1=12133a +,∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1. 15.答案:解析:f (x )=sin x -2cos xx x ⎫⎪⎭,令cos αsin α=则f(x)α+x),当x=2kπ+π2-α(k∈Z)时,sin(α+x)有最大值1,f(x)有最大即θ=2kπ+π2-α(k∈Z),所以cos θ=πcos2π+2kα⎛⎫-⎪⎝⎭=πcos2α⎛⎫-⎪⎝⎭=sin α=5=-16.答案:16解析:∵函数f(x)的图像关于直线x=-2对称,∴f(x)满足f(0)=f(-4),f(-1)=f(-3),即15164,0893,b a ba b=-(-+)⎧⎨=-(-+)⎩解得8,15.ab=⎧⎨=⎩∴f(x)=-x4-8x3-14x2+8x+15.由f′(x)=-4x3-24x2-28x+8=0,得x1=-2x2=-2,x3=-2+易知,f(x)在(-∞,-2上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2为减函数.∴f(-2-=[1-(-22][(-22+8(-2+15]=(-8--=80-64=16.f(-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f(-2+=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f(x)的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC=60°,所以∠PBA=30°.在△PBA中,由余弦定理得PA2=11732cos 30424+-︒=.故PA(2)设∠PBA=α,由已知得PB=sin α.在△PBAsinsin(30)αα=︒-,α=4sin α.所以tan α=4,即tan∠PBA=4.18(1)证明:取AB的中点O,连结OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C.(2)解:由(1)知OC⊥AB,OA1⊥AB.又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两相互垂直.以O为坐标原点,OA的方向为x轴的正方向,|OA|为单位长,建立如图所示的空间直角坐标系O-xyz.由题设知A(1,0,0),A1(0,3,0),C(0,0,B(-1,0,0).则BC=(1,0,1BB=1AA=(-10),1AC=(0,.设n=(x,y,z )是平面BB1C1C的法向量,则10,0,BCBB⎧⋅=⎪⎨⋅=⎪⎩nn即0,30.xx y⎧=⎪⎨-+=⎪⎩可取n=1,-1).故cos〈n,1AC〉=11ACAC⋅nn=.所以A1C与平面BB1C1C所成角的正弦值为5.19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=41113161616264⨯+⨯=.(2)X可能的取值为400,500,800,并且P(X=400)=41111161616--=,P(X=500)=116,P(X=800)=14.所以XEX=11400+500+80016164⨯⨯⨯=506.25.20.解:由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M,N为左右焦点,长半轴长为2,短(左顶点除外),其方程为22=143x y+(x≠-2).(2)对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2.2013 全国新课标卷1理科数学第2页2013 全国新课标卷1理科数学 第3页所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M=1, 解得k=4±. 当ky x =+22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=47-±.所以|AB |=2118|7x x -=.当k =时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187.21.解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x(cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x(x +1).设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2,则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x-1). 由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1). 而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增. 而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.③若k >e 2,则F (-2)=-2k e-2+2=-2e -2(k -e 2)<0.从而当x ≥-2时,f (x )≤kg (x )不可能恒成立.综上,k 的取值范围是[1,e 2].22.(1)证明:连结DE ,交BC 于点G . 由弦切角定理得,∠ABE =∠BCE .而∠ABE =∠CBE ,故∠CBE =∠BCE ,BE =CE .又因为DB ⊥BE ,所以DE 为直径,∠DCE =90°, 由勾股定理可得DB =DC .(2)解:由(1)知,∠CDE =∠BDE ,DB =DC , 故DG 是BC 的中垂线,所以BG设DE 的中点为O ,连结BO ,则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°,所以CF ⊥BF ,故Rt△BCF23.解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0. 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为 ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013年普通高等学校招生全国统一考试(1卷)
数 学(理科)
参考公式:
如果事件互斥,那么 球的表面积公式
()
()
()P A
B P A P B
24S
R
如果事件相互独立,那么 其中R 表示球的半径
()
()()P A B P A P B
球的体积公式
如果事件A 在一次试验中发生的概率是p ,那么
3
43
V
R 在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径
()
(1
)(0,1,2,,)k k n k n n P k C p p k
n …
第一部分 (选择题 共60分)
注意事项:
1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( )
A 、42
B 、35
C 、28
D 、21
2、复数2
(1)2i i
-=( )
A 、1
B 、1-
C 、i
D 、i - 3、函数
29
,3()3
ln(2),3x x f x x x x ⎧-<⎪
=-⎨⎪-≥⎩
在3x =处的极限是( )
A 、不存在
B 、等于6
C 、等于3
D 、等于0 4、如图,正方形ABCD 的边长为1,延长BA 至
E ,使1AE =,连接EC 、ED 则sin CED ∠=( ) A
B
C
D
5、函数1(0,1)x y a a a a
=->≠的图象可能是( )
6、下列命题正确的是( )
A 、若两条直线和同一个平面所成的角相等,则这两条直线平行
B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D 、若两个平面都垂直于第三个平面,则这两个平面平行 7、设a 、b 都是非零向量,下列四个条件中,使
||||
a b
a b =
成立的充分条件是( )
A 、a b =-
B 、//a b
C 、2a b =
D 、//a b 且||||a b = 8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
若点M 到该抛物线焦点的距离为3,则||OM =( ) A 、22 B 、2
3 C 、
4 D 、5
9、某公司生产甲、乙两种桶装产品。
已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。
每桶甲产品的利润是300元,每桶乙产品的利润是400元。
公司在生产这两种产品的计划中,要求每天消耗A 、
B 原料都不超过
12千克。
通过合理安排生产计划,从每天生产的甲、乙两种产品中,
公司共可获得的最大利润是( )
A 、1800元
B 、2400元
C 、2800元
D 、3100元 10、如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A 、P 两点间的球面距离为( )
A 、R
B 、4R π
C 、R
D 、3
R π
11、方程22ay b x c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )
A 、60条
B 、62条
C 、71条
D 、80条
12、设函数
()2cos f x x x =-,{}n a 是公差为
8
π的等差数列,
125()()()5f a f a f a π
++⋅⋅⋅+=,则
2313[()]f a a a -=(
)
A 、0
B 、2
116
π C 、218
π D 、21316
π
第二部分 (非选择题 共90分)
注意事项:
(1)必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚。
答在试题卷上无效。
(2)本部分共10个小题,共90分。
二、填空题(本大题共4个小题,每小题4分,共16分。
把答案填在答题纸的相应位置上。
)
13、设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则
()()U U A B =___________。
14、如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,
则异面直线1A M 与DN 所成角的大小是____________。
15、椭圆22
143
x y +=的左焦点为F ,直线x m =与椭圆相
交于点A 、B ,
当FAB ∆的周长最大时,FAB ∆的面积是____________。
16、记[]x 为不超过实数x 的最大整数,例如,[2]2=,[1.5]1=,[0.3]1-=-。
设a 为正整数,数列{}n x 满足1x a =,1[][
]()2n n
n a
x x x n N *++=∈,现有下列命题:
①当5a =时,数列{}n x 的前3项依次为5,3,2;
N
A 1
②对数列{}n x 都存在正整数k ,当n k ≥时总有n k x x =; ③当
1n ≥时,1n x ;
④对某个正整数
k ,若1k k x x +≥,则n x =。
其中的真命题有____________。
(写出所有真命题的编号)
三、解答题(本大题共6个小题,共74分。
解答应写出必要的文字说明,证明过程或演算步骤。
)
17、(本小题满分12分)
某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任
意时刻发生故障的概率分别为
1
10
和p 。
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950
,求p 的值;
(Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ。
18、(本小题满分12分)
函数2()6cos 33(0)2
x f x x ωωω=+
->在一个周期内的图象如图所示,A 为图象的最高
点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形。
(Ⅰ)求ω的值及函数()f x 的值域; (Ⅱ)若083()5
f x =,且0102(,)33
x ∈-,求0(1)f x +的值。
19、(本小题满分12分)
如图,在三棱锥P ABC -中,90APB ∠=,
60
PAB ∠=,
AB BC CA ==,平面PAB ⊥平面ABC 。
(Ⅰ)求直线PC 与平面ABC 所成角的大
小;
(Ⅱ)求二面角B AP C --的大小。
20、(本小题满分12分) 已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立。
(Ⅰ)求1a ,2a 的值; (Ⅱ)设10a >,数列1
10{lg }n
a a 的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值。
21、(本小题满分12分)
如图,动点M 到两定点(1,0)A -、(2,0)B 构
成
MAB
∆,且
2MBA MAB ∠=∠,设动点M 的轨迹为C 。
(Ⅰ)求轨迹C 的方程;
(Ⅱ)设直线2y x m =-+与y 轴交于点P ,
与轨迹C 相交于点
Q R 、,且||||PQ PR <,求||
||
PR PQ 的取值范围。
.
..
22、(本小题满分14分) 已知a 为正实数,n 为自然数,抛物线22n a y x =-+与x 轴正半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距。
(Ⅰ)用a 和n 表示()f n ; (Ⅱ)求对所有n 都有3
3()1()11f n n f n n -≥++成立的a 的最小值;
(Ⅲ)当01a <<时,比较11
()(2)n k f k f k =-∑与27(1)()4(0)(1)f f n f f --的大小,并说明理由。