分子克隆——主要步骤
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
分子克隆实验流程一、引物的稀释1、引物干粉冻存于-20℃,用前12000rpm离心1min;2、按引物管上的nmol数稀释,nmol=4.92,加49.2µL ddH2O至100µM;3、稀释至10µM(5µL引物F+5µL引物R+40µL ddH2O)二、目的基因的扩增实验前准备:生物安全柜紫外照射30min,模板DNA、水、引物、buffer,dNTP提前10min拿出解冻,用75%酒精擦拭移液器及台面。
扩增体系:Reagent 25µL 50µL10xbuffer (含Mg2+) 2.5µL 5µLdNTP (10mM) 0.5µL 1µLrT aq酶0.25μL0.5μLprimer (10μM) 1.25μL 2.5μLTemplate DNA 2μL4μLddH2O 18.5µL 37µL反应程序:(延伸时间按目的片段大小进行调整)95℃预变性3min(95℃变性30 s,60℃退火30s,72℃延伸45s)x3572℃后延伸7min4℃保持电泳:120V,加2µLloading buffer,上样5µL,1000bp marker 5µL小胶:2%,0.6g琼脂糖,30ml 1xTAE中胶:2%,1g琼脂糖,50ml 1xTAE大胶:2%,2g琼脂糖,100ml 1xTAE三、目的产物切胶回收(试剂盒)四、连接实验前准备:SolutionI在冰上融化连接体系:Reagent 10µL胶回收DNA(50ng/μL)4µLPDM-18T载体1µLSolution I 5µL反应条件:16℃,4h(PCR仪,热盖105℃)/ 4℃过夜五、转化实验前准备:开启42℃水浴锅实验步骤:样品+阴性对照(无质粒)+阳性对照(感受态带的质粒)1、把感受态细胞TOP10从-80℃冰箱拿出并放置于冰上解冻;2、每管分装30 - 50μL感受态细胞(冰浴);3、向感受态细胞中加入5μL连接产物,冰浴30min。
笔记3(分子克隆2——主要步骤)分子克隆可以分为以下几个步骤:分离制备待克隆的DNA片段————将靶DNA片段与载体在体外进行连接————重组DNA分子转入宿主细胞————筛选、鉴定阳性重组子————重组子的扩增。
1.带有目的基因的DNA片段的获得:可以用限制内切酶降解基因组DNA,再配合使用其他实验手段得到待定的DNA片段,可以用超速离心的方法分离出具有特定核苷酸组成的DNA片段,可以用mRNA做模板,用反转录酶合成互补DNA,即cDNA,也可以用化学合成的方法直接合成一段DNA。
2.重组DNA分子的构建:重组DNA分子中包括两部分,一部分是外源DNA,即目的DNA片段,另一部分是载体DNA。
用作载体的,有质粒、噬菌体或病毒DNA。
它们的基本特征是能够独立复制。
如果用同一种限制性内切酶切割这两种DNA,则它们的末端完全相同,由于有互补的单链末端序列存在,在连接酶的作用下,就可以形成重组DNA 分子。
在没有互补单链末端的情况下,也可以用酶学方法造成一个互补单链末端之后再进行连接。
3.重组DNA分子的转化和重组克隆的筛选:重组DNA分子必须进入宿主细胞中,才能得到扩增和表达.这个过程叫做转化。
大肠杆菌是目前使用最广泛的宿主细胞。
除此以外.其他细菌、酵母、哺乳动物细胞等也可作为宿主细胞,可以根据实验的需要加以选择。
在被转化的宿主细胞中,不同的单个细胞(在平板上表现为单个菌落,亦称克隆)中可能含有不同的重组质粒或非重组质粒,因此必须进行筛选,以便确定哪些是重组克隆。
筛选可以使用抗菌素抗性或其他方法,依载体的性质而定。
4.特定重组克隆的鉴别:由于重组克隆往往是较多的,而在某一克隆实验中,我们感兴趣的目的克隆只有一个或几个,所以需要进一步鉴别。
使用的方法主要有核酸杂交法和免疫化学法。
此外,找出了目的克隆之后,还需要根据实验的目的,进一步弄清目的克隆中外源DNA片段上的基因的结构和功能。
主要有酶切图谱的制定,基因在DNA 片段上的精确定位,确定是否有内含子,DNA序列分析,离体翻译实验,外源基因在某些宿主细胞中的表达及产物的提纯等。
分子克隆的五个步骤1 选择载体:在分子克隆的过程中,首先需要选择一种合适的载体来实现这一过程。
载体是要被克隆的DNA片段,生物体中的某种大分子结构,可以为克隆提供容器。
一般来说,载体选择最好是含有可重复使用的重组信息,如使用多种重组酶克隆更为容易和可靠,能在实验室之间转移。
该步骤需要考虑选择对于试验类型最合理、在实验中表现最佳的载体,与之相符的必要条件是有可操作和稳定的复制介质,以及品质可靠、价格相对划算的供应商。
2 将载体与要克隆的DNA片段连接:接下来需要将载体与要克隆的DNA片段连接。
这样一来,DNA片段就会受到载体中的重组酶以及其余细菌特有的信息影响,从而生存,复制,得以分离,克隆出多个相同的DNA断片。
连接DNA片段和载体的技术有各种方法,最常见的方法为用复制酶切割载体的方法,这种技术利用重组酶将DNA片段片段插入载体结构中,实现载体与DNA片段的融合。
3 转化:经过第二步的操作,则可以将融合的载体片段转入细菌,进行转化,实现将载体片段覆盖到细菌细胞中,形成细菌外源DNA的转基因,从而使细菌体系内发生变化,从而开始转化过程。
4 筛选:经过第三步的转化,载体就可以移植到细菌体内,从而形成转基因细菌,这时候就可以采用测试细胞以及一些标记物质来进行筛选,将转基因细菌与其他细菌相区分开来,根据一些指定条件进行筛选,从而得到被克隆的特异性DNA片段,实现分子克隆的目的。
5 收集:经过第四步的筛选,就可以将特异性的DNA断片收集起来,被收集的DNA断裂片段就是分子克隆的结果,可以得到被克隆的特异性DNA 断片,将其用于进一步的研究。
最后,分子克隆是一种复杂的实验过程,需要经过以上5个步骤,才能实现分子克隆的目的,如正确选择载体、把该DNA片段片段插入载体结构、将融合的载体片段转入细菌、用测试细胞以及一些标记物质对转基因细菌进行筛选,从而得到被克隆DNA片段,最终收集被克隆的DNA断片,这样就可以实现分子克隆的目的,得出满意的实验结果。
分⼦克隆实验标准步骤分⼦克隆实验标准步骤⼀、常规分⼦克隆实验流程:⼆、分⼦克隆实验标准步骤(含实验编号):1. PCR 扩增⽬的基因(编号Clone SOP-1)以本实验室常⽤酶KOD-Plus-Neo (TOYOBO )为例体系(50ul ):10×KOD buf 5uldNTP(2mM) 5ulMg 2+ 3ulPrimer1 1ulPrimer2 1ulTemplate50-200ngKOD0.5ulddH 2O up to 50ul程序:95℃2min98℃10s58℃30s 35cycle68℃2kb/min68℃7min12℃∞2.PCR产物的琼脂糖凝胶电泳琼脂糖凝胶的制备(编号Clone SOP-2)琼脂糖溶液的制备:称取琼脂糖,置于三⾓瓶中,按1%-1.5%的浓度加⼊相应体积的TBE或TAE缓液,将该三⾓瓶置于微波炉加热⾄琼脂糖溶解。
胶板的制备:①取有机玻璃内槽,洗净、晾⼲;②将有机玻璃内槽置于⼀⽔平位置模具上,安好挡板,放好梳⼦。
在距离底板上放置梳⼦,以便加⼊琼脂糖后可以形成完好的加样孔。
③将温热琼脂糖溶液倒⼊胶膜中,使胶液缓慢地展开,直到在整个有机玻璃板表⾯形成均匀的胶层。
④室温下静置30min左右,待凝固完全后,轻轻拔出梳⼦,在胶板上即形成相互隔开的上样孔。
制好胶后将铺胶的有机玻璃内槽放在含有0.5~1×TAE(Tris-⼄酸)或TBE(Tris-硼酸)⼯作液的电泳槽中使⽤,没过胶⾯1mm以上。
3.试剂盒回收DNA⽚段(编号Clone SOP-3)以本实验室常⽤DNA凝胶回收试剂盒(天根)为例使⽤前请先在漂洗液PW中加⼊⽆⽔⼄醇,加⼊体积请参照瓶上的标签。
①柱平衡步骤:向吸附柱CA2中(吸附柱放⼊收集管中)加⼊500µl平衡液BL,12,000rpm(~13,400×g)离⼼1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。
(请使⽤当天处理过的柱⼦)②将单⼀的⽬的DNA条带从琼脂糖凝胶中切下(尽量切除多余部分)放⼊⼲净的离⼼管中,称取重量。
分子克隆的步骤及原理分子克隆是利用重组DNA技术复制特定的DNA片段并将其插入到另一个DNA分子中的过程。
它是许多生物学和医学研究中常用的技术,例如用于研究基因结构和功能、制备重组蛋白以及研发基因治疗等。
第一步是选择并提取目标DNA片段。
一般情况下,需要从生物体中提取DNA,例如通过PCR扩增或酶切来获取所需片段。
PCR是一种酶链反应技术,通过引物引导DNA的聚合酶在一系列温度循环中合成DNA。
酶切是利用限制性内切酶切割特定的DNA序列来获得目标DNA片段。
第二步是将目标DNA片段插入载体DNA中。
载体DNA是一段能够自主在细胞中复制的DNA分子。
常用的载体包括质粒和噬菌体。
目标DNA片段需要与载体DNA进行连接,形成重组DNA。
连接主要通过DNA连接酶的作用,与连接酶反应的连接体包括连接酶本身、大肠杆菌DNA连接酶I(T4 DNA连接酶由细菌染色体T4噬菌体中提取的)、T4 ligation buffer (限制性内切酶的缓冲液通用成分+乙醇和内切酶)。
连接后的重组DNA 可以通过转化作用导入到宿主细胞中。
第三步是将重组DNA导入宿主细胞。
转化是将外源的DNA片段导入到细胞中的过程。
常用的转化方法包括化学转化和电转化。
化学转化是通过改变细胞的物理状态和细菌细胞表面的荷电状态,使其能够非特异性地吸附DNA质粒。
电转化则是通过电场作用使DNA穿透细胞膜,进入细胞。
最后一步是筛选和分离重组的细胞。
由于重组细胞中带有插入的目标DNA片段,因此可以通过筛选技术来判断哪些细胞中含有目标DNA。
常用的筛选方法包括抗生素耐药筛选和荧光蛋白筛选。
在抗生素耐药筛选中,重组细胞会在含有特定抗生素的培养基中生长,而未转化的细胞则会被抑制。
在荧光蛋白筛选中,以荧光蛋白为报告基因,使转化的细胞能够呈现出荧光信号。
分子克隆的原理主要依赖于DNA的重组和复制。
DNA连接酶通过其黏末端连接酶活性,可以将目标DNA片段连接到载体DNA中形成重组DNA。
DNA分子克隆技术(也称基因克隆技术):在体外将DNA分子片段与载体DNA片段连接,转入细胞获得大量拷贝的过程中DNA分子克隆(或基因克隆)。
其基本步骤包括:制备目的基因→将目的基因与载体用限制性内切酶切割和连接,制成DNA重组→导入宿主细胞→筛选、鉴定→扩增和表达。
载体(vecors)在细胞内自我复制,并带动重组的分子片段共同增殖,从而产生大量的DNA分子片段。
主要目的是获得某一基因或NDA片段的大量拷贝,有了这些与亲本分子完全相同的分子克隆,就可以深入分析基因的结构与功能,随着引入的DNA片段不同,有两种DNA库,一种是基因组文库(genomic library),另一种是cDNA库。
载体所谓载体是指携带靶DNA片段进入宿主细胞进行扩增和表达的工具。
细菌质粒是一种细菌染色体外小型双链环状结构的DNA,分子大小为1-20kb,对细菌的某些代谢活动和抗药性表型具有一定的作用。
质粒载体是在天然质粒的基础上人工改造拼接而成。
最常用的质粒是pBR322。
基因库的建造含有某种生物体全部基历的随机片段的重组DNA克隆群体,其含有感光趣的基因片段的重组子,可以通过标记探针与基因库中的重组子杂交等方法而筛选出来,所得到的克隆经过纯化和扩增,可用于进一步的研。
其主步骤包括:(1)构建基因库迅速的载体;(2)DNA片段的制备;(3)DNA片段与载体DNA 的连接;(4)包装和接种。
cDNA库的建造是指克隆的DNA片段,是由逆转录酶自mRNA制备的cDNA。
cDNA库包括某特定细胞的全部cDNA克隆的文库,不含内含子。
特异基因的筛选常用的方法有:(1)克隆筛选即探针筛选法;(2)抗体检测法,检测其分泌蛋白质来筛选目的基因;(3)放射免疫筛选法,查出分泌特异抗原的基因;(4)免疫沉淀法,进行特异基因的筛选。
核酸序列测定DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。
分子克隆技术操作手册【最新版】目录1.分子克隆技术的概念2.分子克隆技术的操作步骤3.分子克隆技术的应用4.分子克隆技术的优缺点正文一、分子克隆技术的概念分子克隆技术是一种生物技术方法,用于在体外将各种来源的 DNA 片段进行拼接组合,形成新的 DNA 分子。
这种技术可以在短时间内大量复制特定 DNA 序列,为基因工程、生物制药等领域提供重要的研究手段。
二、分子克隆技术的操作步骤分子克隆技术主要包括以下几个操作步骤:1.提取 DNA:从实验材料中提取 DNA,并通过特定方法进行纯化。
2.切割 DNA:使用限制性内切酶将 DNA 切割成特定大小的片段。
3.链接 DNA:将切割好的 DNA 片段通过 DNA 连接酶进行拼接组合。
4.转化细胞:将拼接好的 DNA 分子转化到受体细胞中,让细胞表达新的 DNA 序列。
5.筛选克隆:通过特定筛选方法,选出含有目标 DNA 序列的克隆细胞。
三、分子克隆技术的应用分子克隆技术在生物领域有广泛的应用,主要包括:1.基因工程:通过分子克隆技术,可以对特定基因进行拼接组合,研究基因的功能和调控关系。
2.生物制药:利用分子克隆技术,可以大量生产具有特定功能的蛋白质,用于药物研发和生产。
3.基因诊断:通过分子克隆技术,可以制备特定基因片段作为诊断试剂,用于疾病的早期诊断。
4.基因治疗:将正常或功能性基因通过分子克隆技术导入患者细胞,以治疗遗传性疾病。
四、分子克隆技术的优缺点分子克隆技术的优点包括:操作简便、效率高、可大量制备特定 DNA 序列。
但其缺点是:可能产生非特异性拼接、克隆产物可能不稳定、需要使用有毒的化学试剂等。
总之,分子克隆技术是一种重要的生物技术手段,广泛应用于基因工程、生物制药等领域。
分子克隆技术操作手册摘要:一、分子克隆技术的概念与原理二、分子克隆技术的操作步骤1.提取目的基因2.构建基因表达载体3.将目的基因导入受体细胞4.目的基因的检测与表达三、分子克隆技术在科研和生产中的应用四、分子克隆技术的发展趋势正文:一、分子克隆技术的概念与原理分子克隆技术是指在体外将各种来源的遗传物质——DNA 片段,与适当的载体DNA 相结合,然后导入受体细胞,使这些DNA 片段在受体细胞内复制、表达的操作技术。
分子克隆技术的原理主要基于重组DNA 技术,通过切割、连接、导入等步骤,实现外源基因与载体DNA 的重组,从而形成一个新的基因表达载体,最终达到在受体细胞中表达目的基因的目的。
二、分子克隆技术的操作步骤1.提取目的基因提取目的基因是分子克隆技术的第一步,通常采用PCR 扩增或化学合成的方法获取目的基因。
PCR 扩增是一种常见的方法,通过设计特定的引物,从基因组DNA 中扩增出目的基因。
化学合成则是根据目的基因的序列,通过化学合成方法直接合成目的基因。
2.构建基因表达载体构建基因表达载体是分子克隆技术的核心步骤,主要包括以下几个方面:(1)选择合适的载体:常用的载体有大肠杆菌的质粒等,根据实验目的和受体细胞的类型选择合适的载体。
(2)切割载体:使用限制性内切酶切割载体,暴露出载体的粘性末端,便于与目的基因连接。
(3)连接目的基因:将提取到的目的基因与切割后的载体DNA 片段通过DNA 连接酶连接,形成重组载体。
(4)转化受体细胞:将重组载体导入受体细胞,使目的基因在受体细胞内表达。
3.将目的基因导入受体细胞将目的基因导入受体细胞是分子克隆技术的关键步骤,根据受体细胞的类型选择不同的导入方法。
常用的方法有转化、转染、显微注射等。
4.目的基因的检测与表达在将目的基因导入受体细胞后,需要对目的基因进行检测和表达。
检测方法包括PCR、Western blot、南方杂交等,表达方法包括实时荧光定量PCR、Western blot、酶联免疫吸附试验等。
分子克隆实验步骤总结分子克隆实验步骤1.对目的片段进行pcr扩增:Pcr体系:(50μL)DNA Template:10-100ng10×PCR buffer:5μL50mM dNTPs:0.5μLPrimers:1μM eachWater:add to 49μLTaq Polymerase:1μL2.琼脂糖电泳,看有无目的条带3.对目的条带进行切胶回收4.对pcr产物加尾: 72℃,20min(如用高保真酶,则需加尾;Taq酶,则无需加尾)加尾体系:(10μL)胶回收DNA: 8μLBuffer: 1μLdNTPmix: 0.5μLTaq Polymerase:0.5μL5.T载体连接:室温,30min体系:(6μL)加尾后产物:4μLT载体:1μLSalt solution 1μL6.30-40μL感受态加入重组后的质粒。
7.放冰上30min。
8.42℃热击90s(放冰上冷:1-2min)9. 加SOC(200-250μL)10.37℃,300rpm,1h11.平板涂布:加氨苄的培养基,37℃培养箱倒置培养过夜12.挑单菌落:用牙签挑单菌落,放到含6mL液体培养基的试管中,37℃摇床培养过夜13.试剂盒提质粒14.酶切:37℃,2h体系:(20μL)Buffer2: 2μL酶:0.5μL模板:1μLBSA:0.2μLH2O:16.31μL15.琼脂糖凝胶电泳分析是否正确导入目的片段鉴定阳性克隆的另一个方法----菌落PCR从平板挑单菌落到含1ml LB(Amp+)的1.5drof管中,37℃摇床培养8小时左右,进行菌落PCR鉴定,引物可选用载体的通用引物,如T载体用M13F/R。
菌落PCR体系(20ul)10*taq buf 2uldNTPs(2.5mM)1.6ul Mg2+(25mM)1.6ul Primer F (10uM)0.5ul Primer R(10uM)0.5ul DNA 1 ul Ex taq 0.3 ul ddH2O 12.5ul程序:94度10min94度30sec56度30sec72度2:10 30cycle 72度10min4度forever。
分子克隆法
分子克隆法是一种分子生物学技术,用于在体外制备和复制DNA 分子,包括基因、DNA片段和整个染色体。
这种技术允许科学家复制和操纵DNA,以进行各种研究和应用,包括基因工程、药物开发和基因治疗。
下面是分子克隆法的主要步骤:
1.DNA提取:首先,需要从源材料(通常是细胞或组织样本)中
提取DNA。
这可以通过细胞裂解和蛋白质分离等方法来完成。
2.DNA切割:提取的DNA通常是大片段,需要将其切割成较小
的片段,以便后续克隆。
这一步通常使用限制性内切酶来实现,
这些酶可以在特定DNA序列上切割。
3.DNA连接:切割后的DNA片段可以通过DNA连接酶与载体
DNA(如质粒或病毒DNA)连接在一起,形成重组DNA分子。
这个过程称为DNA重组。
4.DNA转化:重组DNA可以被引入宿主细胞中,这个过程称为
DNA转化。
这可以通过热激冷却法、电穿孔法、化学法等方法
来实现。
5.宿主细胞培养:转化后的细胞被培养,以允许它们繁殖并扩增
重组DNA。
6.筛选与识别:在宿主细胞中,可以筛选出携带重组DNA的细
胞,通常使用抗生素抗性标记或荧光标记等方法来进行筛选。
7.DNA提取与纯化:从筛选出的细胞中提取和纯化重组DNA,
以便进一步的研究或应用。
8.分析与验证:最后,分析和验证克隆的DNA,确保它是所需的
目标DNA,并不包含错误或突变。
分子克隆法有许多应用,包括基因表达、基因编辑、蛋白质生产、疾病研究等。
它在生物学研究和生物工程领域发挥着关键作用,允许科学家操纵和研究DNA,以深入了解生命的分子机制。
分子克隆主要步骤分子克隆是一种常用的分子生物学技术,用于复制DNA分子。
下面是分子克隆的主要步骤:1.DNA提取:首先需要从一个已知的DNA源(例如细菌、动物组织等)中提取所需的DNA。
这可以通过使用不同的提取方法(如酚/氯仿提取、自动提取仪等)来实现。
2.限制性内切酶切割:将目标DNA切割成片段。
此步骤可以通过使用限制性内切酶来实现,这些酶可以识别特定的DNA序列,并在这些序列中切割DNA,形成切割产物。
3.DNA修饰:如果需要,在第2步切割的DNA片段末端添加修饰,以便后续步骤的操作。
例如,可以在DNA片段的末端添加磷酸基团(通过激酶酶和ATP)或羟基(通过糖转移酶和dTTP)。
4.连接DNA片段:将目标DNA片段与载体DNA(通常是质粒)连接起来。
这可以通过使用DNA连接酶,如DNA连接酶I或T4DNA连接酶,将DNA片段与载体DNA的末端连接。
5.转化:将连接好的DNA导入到宿主细胞中。
这可以通过转化(常见的转化宿主细胞包括大肠杆菌和酵母)来实现。
转化可以通过热冲击法、电转化或使用化学方法来进行。
6.筛选:在经过转化的细胞中筛选出带有目标DNA的细胞。
这可以通过将转化后的细胞接种到含有适当选择标记的培养基上来实现。
只有带有目标DNA的细胞才能生长并形成克隆。
7.复制:选取带有目标DNA的细胞进行培养,并使其进行大量复制。
这可以通过将细胞培养在含有适当培养基和条件的培养皿中来实现。
8.提取:从大量复制的细胞中提取含有目标DNA的质粒。
这可以通过使用质粒提取试剂盒来实现,其中包含了一系列的化学试剂和步骤,用于纯化和提取目标DNA。
9.鉴定:验证提取的DNA是否为目标DNA。
这可以通过进行限制性内切酶切割、PCR扩增或测序等方法来实现。
分子克隆是一种重要的实验技术,可用于构建重组DNA分子、研究基因功能、制备蛋白质等。
虽然上述步骤描述了分子克隆的基本过程,但具体操作可能会因实验目的和需求而略有不同。
分子克隆详细步骤分子克隆是通过重组DNA分子来产生大量完全相同的DNA序列的技术。
在分子克隆工作中,我们主要进行克隆载体的构建、目标DNA的扩增、将目标DNA插入克隆载体中、转化和筛选等步骤。
下面将详细介绍这些步骤:1.克隆载体的构建:克隆载体是用于插入目标DNA的DNA分子。
常用的克隆载体包括质粒、噬菌体和人工染色体等。
在构建克隆载体时,我们首先需要选择适合的载体,并提取载体的DNA。
然后,利用酶切酶对载体进行酶切,生成线性的载体DNA。
接下来,将目标DNA插入克隆载体的相应位点上,形成重组的载体。
2.目标DNA的扩增:目标DNA可以通过PCR(聚合酶链反应)来扩增。
首先,设计引物,使其与目标DNA的两端末端相互互补。
然后,在PCR反应中,通过DNA聚合酶的扩增作用,使目标DNA得以扩增。
PCR反应通常包括模板DNA、引物、核苷酸和聚合酶等成分。
3.目标DNA的插入:将扩增后的目标DNA与酶切后的载体进行连接,利用DNA连接酶催化目标DNA与载体之间的连接反应,生成重组的克隆载体。
连接后的载体含有目标DNA的序列。
4.转化:将克隆载体引入宿主细胞中进行复制。
这一步骤通常称为转化。
转化可以通过电击、热激、化学方法等方式进行。
宿主细胞通常是大肠杆菌等细菌。
5.筛选:利用筛选方法来选择包含目标DNA的克隆。
常用的筛选方法包括抗生素筛选、报告基因筛选和限制性内切酶酶切筛选等。
抗生素筛选是将带有选择性抗生素耐受基因的克隆引入含有相应抗生素的培养基中,只有带有目标DNA的克隆才能生长。
报告基因筛选是通过将报告基因插入克隆载体中,使之与目标DNA一起被转录和翻译,从而表达报告基因的蛋白质,以此来筛选包含目标DNA的克隆。
限制性内切酶酶切筛选是通过限制性内切酶对重组载体和目标DNA进行酶切,并通过凝胶电泳的方法来分离并检测含有目标DNA的克隆。
以上就是分子克隆的详细步骤。
通过这些步骤,我们可以获得大量完全相同的DNA序列,并用于各类分子生物学研究和应用中。
分子克隆步骤:一、贴壁细胞总RNA提取:1、吸掉培养液,用PBS洗一遍?2、往培养皿中加入1ml,TRIzol,吹打几次(每10cm2面积,即3.5cm直径的培养板加1ml)3、移至1.5mlEP管,静置5分钟4、加入200ul三氯甲烷,震荡混匀,室温静置5分钟5、4度12000r/min,离心15分钟,取上清,约600ul6、加入500ul异丙醇,混匀后,静置30分钟?7、4度12000r/min,离心15分钟,弃上清8、加入1ml70%预冷酒精洗涤沉淀物9、4度7500r/min,离心5分钟10、弃上清,自然晾干11、加入50ulDEPC水溶解,测OD值*鼠尾基因组DNA粗提取:1、100ul lysis buffer for each tail,and 2ul 10mg/ml PK,55℃,overnight.2、Then,100℃ for 10min to denature the PK, use 0.5~1ul lysate as template to do PCR.Lysis buffer:(store at 4℃)KCl 0.5MTris 0.1MNP-40 1%Tween-20 1%二、RT-PCR:1、预变性体系12ul:Total RNA 2ulOligo(dT18)primer 1ulDH water 9ul65℃ 5min 速置冰上2、RT体系:20ul:预变性体系12ul5×buffer 4ulRNAase inhibiter 1ul10m dNTP 2ulMMLV 1ul42℃ 60min70℃ 5min12℃ forever3、PCR体系20ul:10×buffer 2ul10m dNTP 0.5ulPrimer(F+R) 1ul (0.5ul+0.5ul)稀释后cDNA(50ul)1ulPfu 0.2uldd water 15.3ul95℃3min、(95℃30s,55℃30s,72℃35s)×29cycle、72℃10min、12℃forever三、跑胶鉴定PCR产物:四、醇沉PCR产物:1、将PCR产物转移至1.5mlEP管中2、加入0.1倍体积预冷NaAC,3倍体积70%预冷乙醇,混匀3、—80℃静置30min4、4度14000r/min,10min离心弃上清,加1ml70%预冷乙醇洗涤沉淀5、4度14000r/min,10min离心弃上清,自然晾干6、加入25-20ul dd water 吹匀静置10-20min待溶解五、原始质粒/PCR醇沉产物双酶切体系50ul:Enzyme1 1ulEnzyme2 1ul10×Buffer 5ul (在体系中被稀释成1×)10×BSA 5ul (看需要)Template 1ugADD dd water to 50ul酶切过夜?六、单独鉴定质粒酶切产物:1、采用20ul体系:酶各0.5ul、buffer2ul、bsa0.5ul、template2ul)酶切2h2、跑胶鉴定七、电泳,切胶回收与纯化:使用DNA回收试剂盒(QIAquick Gel Extraction Kit Protocol)PCR酶切产物纯化:1.将PCR产物于需要的电压和电流下跑电泳2. 紫外灯下仔细切下含待回收DNA的凝胶,置1.5ml离心管中,称重。
分子克隆技术操作手册(实用版)目录1.分子克隆技术的概念与原理2.分子克隆技术的操作步骤3.分子克隆技术的应用领域4.分子克隆技术的优势与局限性正文一、分子克隆技术的概念与原理分子克隆技术是一种在生物体外将特定 DNA 片段复制并插入到载体DNA 中的技术。
这种技术可以使得新的 DNA 分子与载体 DNA 相结合,形成一个具有自我复制能力的 DNA 分子。
在实际应用中,分子克隆技术主要通过将目的基因与载体 DNA 连接,从而实现对目的基因的扩增和表达。
二、分子克隆技术的操作步骤分子克隆技术的操作步骤主要包括以下几个方面:1.提取目的基因:从待研究的生物体中提取需要克隆的 DNA 片段,通常使用 PCR 技术进行扩增。
2.构建载体:选择合适的载体 DNA,将其与目的基因连接,构建成一个完整的克隆载体。
3.转化受体细胞:将构建好的克隆载体转化到受体细胞中,让受体细胞表达出目的基因。
4.筛选克隆子:通过特定的筛选方法,从转化后的细胞中筛选出含有目的基因的克隆子。
5.鉴定克隆子:对筛选出的克隆子进行鉴定,确认其是否含有目的基因。
三、分子克隆技术的应用领域分子克隆技术在生物学研究中具有广泛的应用,主要包括以下几个方面:1.基因工程:通过分子克隆技术,可以将目的基因与载体 DNA 连接,实现对目的基因的扩增和表达。
2.蛋白质工程:通过分子克隆技术,可以研究蛋白质的结构和功能,为药物研发提供重要依据。
3.基因组学:通过分子克隆技术,可以对基因组 DNA 进行拼接和分析,揭示生物体的基因组结构。
4.转基因技术:通过分子克隆技术,可以将目的基因插入到载体 DNA 中,实现对转基因生物的研究和开发。
四、分子克隆技术的优势与局限性分子克隆技术在生物学研究中具有明显的优势,如操作简单、扩增效率高、可控性强等。
然而,分子克隆技术也存在一定的局限性,如克隆效率受载体 DNA 大小限制、克隆过程中可能出现突变等。
分子克隆实验指南分子克隆技术是一种常用的实验手段,常用于生物学和医学领域的研究中。
这种方法可以通过将DNA分子插入到载体DNA中来制备重组DNA分子,从而达到扩增特定的DNA序列或者表达生物活性分子的目的。
分子克隆技术的原理基于DNA的重组,重组的过程通常需要以下几个步骤:1、DNA的裂解和切割:要将DNA进行克隆,首先需要将待操作的DNA裂解并用酶切成适量的小片段。
2、载体的制备:载体是与待操作的DNA进行克隆的中介物,这种载体通常采用环状DNA分子质粒,也可以采用噬菌体等其它病毒。
3、DNA的连接:将切割后的DNA与载体对应的DNA片段通过酶的帮助连接起来,形成重组的DNA分子。
4、转化:将重组的DNA分子转化到细胞中。
5、筛选:对表达成功的细胞进行筛选,得到所需要的DNA片段。
下面是一份分子克隆实验指南,供研究人员参考:1、准备实验室条件:保持实验室的清洁和安全,坚持使用一次性的实验用品,保证环境的无菌。
2、准备所需材料:重组酶、DNA、载体、培养基、试剂、菌种等。
3、DNA的制备:使用DNA分离试剂盒将所需的DNA样本从细胞中提取出来,并通过酶的作用将其切割成适当的长度。
4、制备载体:将载体放入匀质的培养基中,通过质粒扩增技术制备大量的载体。
5、连接重组:使用重组酶将切割后的DNA与载体片段连接起来。
6、转化实验:将重组的DNA分子转化到感受态细胞中,如大肠杆菌,青霉素或氨苄青霉素选择性筛选能力。
7、筛选:将所需的表达目标转移到含有感光荧光素物质的培养基中,观察感光荧光,达到筛选的目的。
8、挑选合适的细胞:将所得的高荧光表达细胞进行挑选,进行康复培养。
9、提取所需重组蛋白:采取适当的提取方法对获得的细胞进行处理,得到所需的重组蛋白。
总之,分子克隆技术是一种非常重要的实验手段,该技术的应用范围很广,能够扩大DNA等分子,开启了生物医学研究的大门,为生命科学研究做出了重要的贡献。
笔记3(分子克隆2——主要步骤)分子克隆可以分为以下几个步骤:分离制备待克隆的DNA片段————将靶DNA片段与载体在体外进行连接————重组DNA分子转入宿主细胞————筛选、鉴定阳性重组子————重组子的扩增。
1.带有目的基因的DNA片段的获得:可以用限制内切酶降解基因组DNA,再配合使用其他实验手段得到待定的DNA片段,可以用超速离心的方法分离出具有特定核苷酸组成的DNA片段,可以用mRNA做模板,用反转录酶合成互补DNA,即cDNA,也可以用化学合成的方法直接合成一段DNA。
2.重组DNA分子的构建:重组DNA分子中包括两部分,一部分是外源DNA,即目的DNA片段,另一部分是载体DNA。
用作载体的,有质粒、噬菌体或病毒DNA。
它们的基本特征是能够独立复制。
如果用同一种限制性内切酶切割这两种DNA,则它们的末端完全相同,由于有互补的单链末端序列存在,在连接酶的作用下,就可以形成重组DNA 分子。
在没有互补单链末端的情况下,也可以用酶学方法造成一个互补单链末端之后再进行连接。
3.重组DNA分子的转化和重组克隆的筛选:重组DNA分子必须进入宿主细胞中,才能得到扩增和表达.这个过程叫做转化。
大肠杆菌是目前使用最广泛的宿主细胞。
除此以外.其他细菌、酵母、哺乳动物细胞等也可作为宿主细胞,可以根据实验的需要加以选择。
在被转化的宿主细胞中,不同的单个细胞(在平板上表现为单个菌落,亦称克隆)中可能含有不同的重组质粒或非重组质粒,因此必须进行筛选,以便确定哪些是重组克隆。
筛选可以使用抗菌素抗性或其他方法,依载体的性质而定。
4.特定重组克隆的鉴别:由于重组克隆往往是较多的,而在某一克隆实验中,我们感兴趣的目的克隆只有一个或几个,所以需要进一步鉴别。
使用的方法主要有核酸杂交法和免疫化学法。
此外,找出了目的克隆之后,还需要根据实验的目的,进一步弄清目的克隆中外源DNA片段上的基因的结构和功能。
主要有酶切图谱的制定,基因在DNA 片段上的精确定位,确定是否有内含子,DNA序列分析,离体翻译实验,外源基因在某些宿主细胞中的表达及产物的提纯等。
分子克隆实验流程分子克隆是将DNA分子从一个生物体中复制并插入另一个生物体中的过程。
这种技术广泛应用于生物学研究和生物工程领域。
下面将详细介绍分子克隆的实验流程。
1.提取DNA首先,需要从源生物体中提取所需的DNA。
这可以通过不同的方法来完成,例如琼脂糖凝胶电泳、菌落PCR和基因组DNA提取试剂盒等。
提取的DNA需要是目标基因的完整、纯净的样本。
2.回收DNA片段将提取的DNA片段和载体(例如质粒)切割,以回收想要克隆的DNA 片段。
常用的酶剪切酶包括限制性内切酶和退火酶。
将酶切割后的DNA片段与载体的切割端黏合,形成重组DNA。
3.转化纯化将重组DNA转化到宿主细胞中。
通常使用大肠杆菌作为宿主细胞。
这可以通过脉冲电击、热激转化或化学转化来实现。
这一步的目的是将重组DNA导入到宿主细胞中,以便宿主细胞可以复制和表达克隆的DNA。
4.鉴定克隆细胞通常,我们通过选择性培养、荧光染色、PCR检测等方法来鉴定具有克隆DNA的细胞。
在选择性培养基上生长可以表明细胞成功地接受了重组DNA。
此外,如果重组DNA带有可观察的荧光标记,可以使用荧光显微镜进行观察。
PCR检测可以验证目标基因的存在。
5.扩增克隆细胞选取鉴定出的克隆细胞进行扩增。
这可以通过将克隆细胞培养在含有选择性抗生素的培养基上来实现。
只有带有插入DNA的细胞可以在这种培养条件下生存。
选择性培养的目的是增加克隆细胞的数量,以便后续的实验。
6.提取插入DNA从扩增的克隆细胞中提取含有插入DNA的重组质粒。
通常使用薄膜过滤法将细菌细胞去除,然后使用DNA提取试剂盒从细菌残渣中提取质粒。
提取的质粒可以通过琼脂糖凝胶电泳等方法进行纯化和鉴定。
7.鉴定插入DNA使用不同的试验方法来鉴定插入DNA的准确性和完整性。
这可能包括核酸测序、酶切鉴定、PCR扩增等。
通过这些方法可以验证克隆的DNA是否与目标基因的序列完全一致。
8.进一步应用得到插入DNA后,可以进行进一步的应用,例如重组蛋白表达、基因改良、产生转基因生物等。
分子克隆实验指南分子克隆是现代生物学领域的一项核心技术,也是基因研究、药物研发和农业开发过程中必不可少的手段之一。
在这篇指南中,我将会简要介绍如何进行分子克隆实验,以帮助初学者更好地理解、掌握这项技术。
同时,我也建议实验者在进行实验前,详细阅读当地的安全操作规程,并在合适的实验室环境中进行操作。
一、材料准备在进行分子克隆实验前,我们需要准备以下材料和试剂:1. DNA的扩增产物和载体DNA2. 限制性内切酶3. T4 DNA连接酶4. 细菌菌种5. 热激酶6. 磷酸缓冲液7. 离心管、PCR管、琼脂糖凝胶和电泳槽等相关实验器材。
二、实验步骤1. PCR扩增将目标DNA扩增出来,制备扩增产物。
同时,也需要提纯产物,将其溶于蒸馏水中,以备后续操作。
2. DNA限制性内切酶切割选择两种限制酶,将目标DNA和载体DNA分别切割。
切割产品应该能够被T4 DNA连接酶形成连接。
在T4 DNA连接酶形成连接的基础上,我们需要将其转化到大肠杆菌等细菌中进行培养。
3. DNA连接将切割后的DNA和载体DNA混合,加入T4DNA连接酶,进行DNA连接。
连接成功后,进行质粒的转化操作。
4. 质粒转化将DNA与转化者(例如大肠杆菌)一起培养几个小时,使其在培养基中繁殖生长。
之后,分离转化菌落,进行鉴定。
5. 鉴定正式的及相关标签元素为了确保成功的分子克隆,在选取符合需要的转化菌落后,除了进行相关的鉴定,还需要使用相关的标签元素。
这些标签元素可以用于识别有效的重组表达载体,并进行大规模的表达。
三、实验注意事项1. 选取嵌合体目标和载体的选择应按照相关配对的要求进行。
在酶切反应中,应注意酶的用量。
同时,也需要注意处理过程中不要将酶污染。
2. 进行DNA限制性内切酶切割时,应注意温度和反应时间。
3. 在进行DNA连接后,将混合物放置于水浴中,沸腾数分钟,以便DNA连接的更加稳定。
在连接DNAs之前,应该对酶进行热灭活。
4. 质粒转化后,为了鉴定高效的表达,需要进行多次筛选和鉴定。
分子克隆技术操作手册摘要:一、分子克隆技术简介二、分子克隆实验材料与设备三、分子克隆实验步骤1.设计引物2.合成目的基因3.构建表达载体4.转化受体细胞5.筛选转化子6.鉴定目的基因四、分子克隆实验注意事项五、实验结果分析与应用正文:一、分子克隆技术简介分子克隆技术是一种生物技术方法,通过复制特定DNA序列,将目的基因在受体细胞中稳定表达。
该技术在基因工程、生物科学等领域具有广泛应用,有助于研究基因功能、蛋白质表达及药物筛选等。
二、分子克隆实验材料与设备1.实验材料:DNA模板、引物、dNTPs、DNA聚合酶、缓冲液等。
2.实验设备:PCR仪、离心机、电泳仪、凝胶成像系统等。
三、分子克隆实验步骤1.设计引物根据目的基因序列,设计一对互补的引物。
引物应具备一定的特异性,避免非特异性扩增。
2.合成目的基因利用PCR技术,以DNA模板为基础,通过引物扩增目的基因。
反应条件需根据所使用DNA聚合酶的要求进行优化。
3.构建表达载体将目的基因与载体DNA连接,形成表达载体。
常用的载体有质粒、噬菌体等。
4.转化受体细胞将构建好的表达载体转化到受体细胞中,如大肠杆菌、酵母等。
转化方法有化学法、电转化法等。
5.筛选转化子转化后的受体细胞在含相应抗生素的培养基上生长,筛选出含有目的基因的转化子。
6.鉴定目的基因对筛选出的转化子进行进一步鉴定,如DNA测序、基因表达分析等。
四、分子克隆实验注意事项1.实验过程中要保持无菌操作,避免污染。
2.选择合适的引物长度和退火温度,以提高扩增特异性。
3.转化受体细胞时,注意操作力度,避免细胞损伤。
4.筛选转化子时,严格控制抗生素浓度,避免过度筛选。
五、实验结果分析与应用1.分析PCR产物,判断目的基因是否成功克隆。
2.鉴定目的基因的表达水平,评估实验效果。
3.将成功克隆的目的基因应用于基因敲除、基因表达等研究。
通过以上步骤,您可以顺利完成分子克隆实验。
实验过程中需严格操作,确保实验结果的准确性。
分子克隆技术步骤第一步:选取目标DNA在开始分子克隆之前,需要从一个生物体中选择一个含有所需DNA序列的样本。
这可以是任何生物体的DNA,例如人类、动物、植物或微生物。
第二步:DNA提取从所选生物体提取DNA。
这可以通过使用一系列化学和物理方法来完成,例如细胞裂解、蛋白酶处理、DNA沉淀和洗涤等。
第三步:选择一个合适的载体载体是一种DNA分子,可以容纳目标DNA序列并将其复制。
在分子克隆中最常使用的载体是质粒。
质粒是圆形的双链DNA分子,存在于许多细菌和酵母种类中,并被广泛用于分子生物学研究。
第四步:限制性内切酶切割将目标DNA和载体同时使用限制性内切酶(Restriction Enzymes)酶切。
限制性内切酶是一种可以识别和切割特定DNA序列的酶。
通过在目标DNA和载体的特定位置上切割,可以为将两者连接提供互补的末端。
第五步:DNA连接将目标DNA和载体连接在一起。
将目标DNA和载体的DNA片段混合,并在其末端形成互补碱基,然后使用DNA连接酶将两者连接在一起。
连接后的DNA分子被称为重组质粒。
第六步:转化将重组质粒引入细菌或酵母等微生物细胞中,这个过程称为转化。
这可以通过将细菌细胞暴露在低温高压胁迫下来实现,使得细胞膜变得更加渗透性,可以将质粒引入细胞内。
第七步:筛选和鉴定筛选出含有重组质粒的细菌或酵母细胞。
一种常用的筛选方法是将细菌培养在含有抗生素的培养基上,只有携带重组质粒的细菌才能在含有抗生素的环境下存活。
此外,还可以使用标记基因和特定染色剂等方法来鉴定重组质粒。
第八步:扩增和纯化用培养液扩增含有重组质粒的细菌或酵母细胞。
随着细菌或酵母细胞的生长,它们会复制重组质粒并将其传递给后代细胞。
然后使用一系列纯化步骤,如离心、洗涤和电泳等手段,将其中的重组质粒提取纯化。
总结:分子克隆技术的主要步骤包括选取目标DNA、DNA提取、选择合适的载体、限制性内切酶切割、DNA连接、转化、筛选和鉴定,以及扩增和纯化。
笔记3(分子克隆2——主要步骤)
分子克隆可以分为以下几个步骤:
分离制备待克隆的DNA片段————将靶DNA片段与载体在体外进行连接————重组DNA分子转入宿主细胞————筛选、鉴定阳性重组子————重组子的扩增。
1.带有目的基因的DNA片段的获得:
可以用限制内切酶降解基因组DNA,再配合使用其他实验手段得到待定的DNA片段,可以用超速离心的方法分离出具有特定核苷酸组成的DNA片段,可以用mRNA做模板,用反转录酶合成互补DNA,即cDNA,也可以用化学合成的方法直接合成一段DNA。
2.重组DNA分子的构建:
重组DNA分子中包括两部分,一部分是外源DNA,即目的DNA片段,另一部分是载体DNA。
用作载体的,有质粒、噬菌体或病毒DNA。
它们的基本特征是能够独立复制。
如果用同一种限制性内切酶切割这两种DNA,则它们的末端完全相同,由于有互补的单链末端序列存在,在连接酶的作用下,就可以形成重组DNA 分子。
在没有互补单链末端的情况下,也可以用酶学方法造成一个互补单链末端之后再进行连接。
3.重组DNA分子的转化和重组克隆的筛选:
重组DNA分子必须进入宿主细胞中,才能得到扩增和表达.这个过程叫做转化。
大肠杆菌是目前使用最广泛的宿主细胞。
除此以外.其他细菌、酵母、哺乳动物细胞等也可作为宿主细胞,可以根据实验的需要加以选择。
在被转化的宿主细胞中,不同的单个细胞(在平板上表现为单个菌落,亦称克隆)中可能含有不同的重组质粒或非重组质粒,因此必须进行筛选,以便确定哪些是重组克隆。
筛选可以使用抗菌素抗性或其他方法,依载体的性质而定。
4.特定重组克隆的鉴别:
由于重组克隆往往是较多的,而在某一克隆实验中,我们感兴趣的目的克隆只有一个或几个,所以需要进一步鉴别。
使用的方法主要有核酸杂交法和免疫化学法。
此外,找出了目的克隆之后,还需要根据实验的目的,进一步弄清目的克隆中外源DNA片段上的基因的结构和功能。
主要有酶切图谱的制定,基因在DNA 片段上的精确定位,确定是否有内含子,DNA序列分析,离体翻译实验,外源基因在某些宿主细胞中的表达及产物的提纯等。