数学必修1专题1:抽象函数的单调性
- 格式:doc
- 大小:409.06 KB
- 文档页数:3
抽象函数的单调性抽象函数的含义:没有解析式的函数,在考试中抽象函数始终作为一大难点出现在考生面前。
思路:添项法。
类型:一次函数型,幂函数型,指数函数型,对数函数型。
函数满足:或例1、 ()f x 对任意,x y R ∈都有:()()()f x y f x f y +=+,当0,()0x f x ><时,判断()f x 在R 上的单调性。
例2、f(x)对任意实数x 与y 都有()()()2f x f y f x y -=--,当x>0时,f(x)>2(1)求证:f(x)在R 上是增函数; (2)若f(1)=5/2,解不等式f(2a-3) < 3【专练】:1、已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集。
2、定义在R 上的函数f(x)满足:对任意x ,y ∈R 都有()()()f x y f x f y -=-,且当0,()0x f x <<时(1)求证f(x)为奇函数; (2)若f(k ·3x )+f(3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.或例1、f(x)是定义在x>0的函数,且f(xy) = f(x) + f(y);当x>1时有f(x)<0;f(3) = -1.(1)求f(1)和f(1/9)的值;(2)证明f(x)在x>0上是减函数;(3)解不等式f(x) + f(2-x)< 2。
例2、定义在(0,)+∞上函数()y f x =对任意的正数,a b 均有:()()()a f f a f b b=-,且当1x <时,()0f x >,(I )求(1)f 的值;(II )判断()f x 的单调性,【专练】:1、定义在(0,)+∞上的函数f(x)对任意的正实数,x y 有)()()(y f x f yx f -=且当01x <<时,()0f x <. 求:(1))1(f 的值. (2)若1)6(=f ,解不等式2)1()3(<-+xf x f ; 2、 函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有1212()()()f x x f x f x ⋅=+,且当1x >时()0,(2)1f x f >=又, (1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数(3)解不等式2(21)2f x -<3、设()f x 是定义在(0,)+∞上的函数,对任意,(0,)x y ∈+∞,满足()()()f xy f x f y =+且当1x >时,()0f x >。
高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解【典型例题】例1、(2023·广东·高三统考学业考试)已知函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+成立.有以下结论:①()00f =;②()f x 是R 上的偶函数;③若()22f =,则()11f =;④当0x >时,恒有()0f x <,则函数()f x 在R 上单调递增.则上述所有正确结论的编号是________【答案】①③【解析】对于①令0x y ==,则()()()0000f f f +=+,解得()00f =,①正确;对于②令y x =−,则()()()00f f x f x =+−=,∴()()f x f x −=−,∴()f x 是R 上的奇函数,②错误;对于③令1x y ==,则()()()()211212f f f f =+==,∴()11f =,③正确;对于④设12x x >,则120x x −>,∴()()()12120f x x f x f x −=+−<,则()()()122f x f x f x <−−=,∴()f x 在R 上单调递减,④错误.故答案为:①③.例2、(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤−−<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为( ) A .()3,1−B .()()3,11,1−−−C .()(),11,1−∞−− D .()(),31,−∞−⋃+∞ 【答案】B【解析】由()()121221()[]0f x f x x x x x −−<,得()()11221212()[]0x f x x f x x x x x −−<, 因为121200x x x x −>>,,所以()()11220x f x x f x −<,即()()1122x f x x f x <,设()()g x xf x =,则()g x 在()0,∞+上单调递减,而()()()()()1114222g x x f x f g +=++>==,则012x <+<,解得:11x −<<;因为()f x 为R 上的奇函数,所以()()()()g x xf x xf x g x −=−−==,则()g x 为R 上的偶函数,故()g x 在(,0)−∞上单调递增,()()()()11142g x x f x g +=++>=−,则210x −<+<,解得:31x −<<−;综上,原不等式的解集为(),111)3(,−−−.故选:B .例4、(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图像关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =−,12b f ⎛⎫=− ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b <<【答案】C【解析】 由函数()f x 的图像关于直线1x =对称可得()()31f f =−,结合奇函数的性质可知 ()3a f =−()()()311f f f =−=−−=,()()200c f f ===.由奇函数的性质结合()y f x =在[]0,1上单调递增可得()y f x =在[]1,1−上单调递增, 所以()()1012f f f ⎛⎫−<< ⎪⎝⎭, 所以b c a <<.故选:C例5、(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x −=,当01x ≤≤时,()1e 1x f x −=−,则方程()11f x x =−在区间[]3,5−上所有解的和为( ) A .8B .7C .6D .5【答案】A【解析】 解:因为函数()f x 满足()()2f x f x −=,所以函数()f x 的图像关于直线1x =对称, 又函数()f x 为偶函数,所以()()()2−==−f x f x f x ,所以函数()f x 是周期为2的函数, 又1()1g x x =−的图像也关于直线1x =对称, 作出函数()f x 与()g x 在区间[]3,5−上的图像,如图所示:由图可知,函数()f x 与()g x 的图像在区间[]3,5−上有8个交点,且关于直线1x =对称, 所以方程。
特殊模型抽象函数 正比例函数f(x)=kx (k ≠0)f(x+y)=f(x)+f(y)幂函数 f(x)=x nf(xy)=f(x)f(y) [或)y (f )x (f )yx (f =]指数函数 f(x)=a x(a>0且a ≠1) f(x+y)=f(x)f(y) [)y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )yx (f -=或正、余弦函数 f(x)=sinx f(x)=cosxf(x+T)=f(x)正切函数 f(x)=tanx )y (f )x (f 1)y (f )x (f )y x (f -+=+ 余切函数 f(x)=cotx)y (f )x (f )y (f )x (f 1)y x (f +-=+1.已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。
证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……①在①中令y =0则2(0)f =2(0)f ∵ (0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数。
2.奇函数()f x 在定义域(-1,1)内递减,求满足2(1)(1)0f m f m -+-<的实数m 的取值范围。
解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.如果()f x =2ax bx c ++(a>0)对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小解:对任意t 有(2)2)f t f t +=-∴x =2为抛物线y =2ax bx c ++的对称轴 又∵其开口向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数 ∴f (3)<f (4),∴f (2)<f (1)<f (4)4. 已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。
判断抽象函数单调性的四种策略抽象函数问题是指没有明确给出具体函数表达式的问题。
这类问题对开展学生思维能力,进展数学思想方法的渗透有较好的作用。
本文准备就四种常见的抽象函数单调性的判断策略做一小结,供大家解题时参考。
1 凑差策略紧扣单调函数的定义,利用赋值,设法从题设中“凑出〞“f(x1)-f(x2)〞,然后判断符号。
例1函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,试判断函数f(x)的单调性。
解:由f(x+y)=f(x)+f(y)得,f(x+y)-f(x)=f(y)令x+y=x2,x=x1,且x1<x2,如此有f(x2)-f(x1)=f(y)∵y=x2-x1>0,∴f(y)=f(x2-x1)>0,即f(x1)<f(x2),因此f(x)为增函数。
例2设函数f(x)的定义域为〔0,+∞〕,对任意正实数x、y均有f(xy)=f(x)+f(y),且当x>1时f(x)>0,判断函数f(x)的单调性并说明理由。
解:由f(xy)=f(x)+f(y)得,f(xy)-f(x)=f(y)令x+y=x1,x=x2,且x1>x2>0,如此有f(x1)-f(x2)=f(y),∵,∴即f(x1)>f(x2),因此f(x)为增函数。
2 添项策略瞄准题设中的结构特点,采用加减添项或乘除添项,以到达确定“f(x1)-f(x2)〞的符号的目的。
例3〔题同例1〕解:设x1<x2,如此x2-x1>0,∵当x>0时,f(x)>0,∴f(x2-x1)>0∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0即f(x1)<f(x2),因此f(x)为增函数。
例4〔题同例2〕解:设0<x1<x2<+∞,如此∵当x>1时f(x)>0,∴∴即f(x2)>f(x1),因此f(x)为增函数。
必修一《函数的单调性》教学设计第一篇:必修一《函数的单调性》教学设计必修一《函数的单调性》教学设计必修一《函数的单调性》教学设计本节课是北师大版必修1,§3《函数的单调性》新授课的微课程教学设计。
课程标准:通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义。
教学目标:1.理解函数单调性的定义,掌握其图象特征;2.能够根据函数的图象,读出函数的单调区间;3.会用定义法证明函数的单调性;4.能够判断抽象函数的单调性.教学重点:函数单调性的定义,及单调函数的图象特征。
教学难点:数形结合的数学思想方法在函数单调性中的应用。
教学过程:第1个环节:复习函数单调性的定义。
一般地,设函数f(x)的定义域内的一个区间A上:如果对于属于A内某个区间上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2).那么就说f(x)在这个区间上是增函数.如果对于属于A内某个区间上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2).那么就说f(x)在这个区间上是减函数.给出函数单调性的定义,强调定义中的“任意”二字,指出函数的单调性是一个整体的概念,在给定的区间内的所有的均要满足单调性的数学表达式。
【设计意图】对函数单调性的定义进行学习,特别是要领会定义中的“任意”二字。
第2个环节:单调函数的图象特征。
给出3个具体的例子,剖析函数单调性的图象特征。
然后给出一个函数的图象,读出单调递增和单调递减区间,将抽象的定义具体化。
在本环节,要重点突出的两个问题:(1)单调区间区间端点的“开”和“闭”的问题;因为函数的单调性是一个整体的概念,在区间端点讨论单调性是毫无意义的。
但是要注意,如果函数在区间端点处没有定义,则区间端点必须是“开”的,有定义则“可开可闭”。
(2)单调区间不能写成并集的形式。
两个集合的并集相当于是进行集合的运算,结果是一个集合,而显然函数在[0,4]∪[14,24]图象不是一直下降的,所以不能写成并集的形式。
抽象函数中的单调性问题摘要:单调性函数是函数中的一个重要特性,它被广泛应用于数学和经济学中。
介绍了函数单调性评判的几种方法和几个结论,先针对具体函数从函数单调性定义入手,先后给出定义法,导数法,函数性质法,图像法和复合函数单调性评判法;其次,对不给具体函数表达的抽象函数给出定义法与复合函数法。
关键词:函数;单调性;特定功能;抽象函数函数作为研究现实世界数量关系的数学模型,其最基本和最主要的特性就是函数的单调性。
函数单调性对高中数学学习具有重要作用,包含数形结合,分类讨论等数学思想。
同时函数的单调性也为学生以后学习高等数学提供了依据。
[1]所以如何判断函数是否单调变得非常重要。
对于具体函数与抽象函数的单调性判断问题,文章引入了如下一些方法。
一、特定函数单调性判断法(一)定义的方法通常情况下,设定f是定义于D中的函数。
若对任何x1、x2∈D,当x1f(x2))成立时,称f为D上的严格增(减)函数。
[2]应用定义,证明了函数y=f(x)单调于给定间隔D的一般程序:(1)设元,任取x1,x2∈D且x1(2)作差f(x1)-f(x2);(3)变形(一般采用因式分解与配方相结合);(4)断号(即判断f(x1)-f(x2)和0的尺寸);(5)定论(即指出函数f(x)给定区间D单调性)。
例1通过定义证明了(判断)函数/(0,+∞)中单调性。
证明设x1、x2∈(0,+∞),且x1又00,每小时x1x2-k≈0对于f(x1)-f(x2)≤0来说,这时函数f(x)是一个减函数;当/时x1x2-k>0,f(x1)-f(x2)<0,此时函数f(x)为增函数。
总之,函数/是区间/范围内的减函数;区间/内是一个增函数。
本题函数f(x)是一种特殊函数(对号函数),用定义法证明时,通常需要进行因式分解,由于x1x2-k与0的大小关系(k>0)不明确,所以要分段讨论。
利用定义法确定函数单调性更适合于定义域中任意两个数字x1和x2在x1解题中,定义法最为直接,是大家最先想到的一种办法,尽管此法思路清晰一些,但是一般流程较为繁琐。
数学必修1专题1:抽象函数的单调性
1. 三类抽象函数的类型及其单调性分析
(1) 已知定义在R 上的函数)(x f 对任意实数y x 、都满足)()()(y f x f y x f +=+,且当0>x 时,0)(>x f .判断)(x f 的单调性并证明.
证明:令0==y x ,则)0()0()00(f f f +=+ ∴0)0(=f
令x y -=,则0)()()0()(=-+==-x f x f f x x f ∴)()(x f x f =-
在R 上任取21x x ,,且使21x x <
0)()()()()(121212<-=-+=-x x f x f x f x f x f 即)()(12x f x f <
由定义可知)(x f 在R 上为单调递减函数
(2) 已知函数)(x f 的定义域是()∞+,0,
满足)()()(y f x f xy f +=,且当1>x 时,0)(>x f .判断)(x f 的单调性并证明.
证明:令1==y x ,则)1()1()1(f f f += ∴0)1(=f 令x y 1=,则0)1()()1()1·(=+==x f x f f x x f ∴)()1(x f x
f -= 任取()∞+∈,,021x x ,且使21x x <
0)()1()()()(1
21212>=+=-x x f x f x f x f x f 即)()(12x f x f > 由定义可知)(x f 在()∞+,0上为单调递增函数
(3) 已知函数)(x f 的定义域是()∞+,0,且对一切00>>y x ,都有)()()(y f x f y
x
f -=,当1>x 时,有0)(>x f .判断)(x f 的单调性并证明.
证明:令1==y x ,则)1()1()1(f f f += ∴0)1(=f
任取()∞+∈,,021x x ,且使21x x < 则0)(
)()(1212>=-x x f x f x f 即)()(12x f x f > 由定义可知)(x f 在()∞+,0上为单调递增函数
2. 简短评价
(1) 注意三类函数的定义域不同的区别;
(2) 其实我们可以看出解题的思路大致一样:求出)0(f 或)1(f ;令x y -=或x
y 1=
针对练习:
1. 已知函数)(x f 的定义域是()∞+,0,满足1)2(=f ,且对于定义域内任意x 、y 都有)()()(y f x f xy f +=成立,那么=+)4()1(f f _______
2. 定义在R 上的函数)(x f 满足xy y f x f y x f 2)()()(++=+ )(R y x ∈,,2)1(=f ,则=-)3(f _______
3. 已知函数)(x f 在定义域()∞+,0上为增函数,且满足)()()3(y f x f xy f +=,1)3(=f
(1) 求)27()9(f f ,的值;
(2) 解不等式2)8()(<-+x f x f
4. 设函数)(x f 对任意的R b a ∈,,都有1)()()(-+=+b f a f b a f ,且当0>x 时,1)(>x f
(1) 求证:)(x f 是R 上的增函数
(2) 若5)4(=f ,解不等式3)23(2<--m m f
5. 设函数)(x f 是定义域为R ,并满足)()()(y f x f y x f +=+,1)3
1
(=f ,且当0>x 时,0)(>x f
(1) 求)0(f 的值;
(2) 判断函数的奇偶性;
(3) 如果2)2()(<++x f x f ,求x 的取值范围
6. 已知函数)(x f 对一切R y x ∈,,都有)()()(y f x f y x f +=+,若a f =-)3(,则是否可以用a 表示)12(f
7. 已知函数)(x f 的定义域是()∞+,0,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=
(1) 求)1(f
(2) 证明:)(x f 在定义域上是增函数
(3) 如果1)3
1(-=f ,求满足不等式2)21()(≥--x f x f 的x 的取值范围 8.(河南省许昌市四校高一(上)期中联考)已知定义域为(0,+∞)的函数)(x f 满足:①x >1时,
0)(<x f ;②1)2
1(=f ③对任意的正实数x ,y ,都有)()()(y f x f xy f += (1) 求证:0)1(=f ,)()1(x f x
f -=; (2) 求证:)(x f 在定义域内为减函数;
(3) 求不等式2)5()2(-≥-+x f f 的解集.
9.(湖南永州市祁阳四中高一(上)期中数学试卷)已知定义在R 上的函数)(x f 满足)()()(y x f y f x f +=+,当x <0时2)1(0)(=<f x f ,;
(1) 求证:)(x f 为奇函数;
(2) 求)(x f 在[﹣3,3]的最值;
(3) 当t >2时,0)2log (log )log (2222<--+t f t k f 恒成立,求实数k 的取值范围.
10. 已知函数)(x f 定义域为[﹣1,1],若对任意的]11[,,
-∈y x ,都有)()()(y f x f y x f +=+,且0>x 时,有0)(>x f
(1) 证明:)(x f 为奇函数;
(2) 证明:)(x f 在[﹣1,1]上为单调递增函数;
(3) 设1)(=x f ,若12)(2+-<am m x f ,对所有]11[,,-∈y x ,]11[,-∈a 恒成立,求实数m 的取值范围。
11. 已知)(x f 的定义域为()∞+,0,且满足)()()(1)2(y f x f xy f f +==,
,又当y x >时,)()(y f x f >
(1) 求)4()1(f f 、的值;
(2) 如果2)3()(≤-+x f x f ,求x 的范围
12. 设)(x f 是定义在()∞+,0上的增函数,且对任意()∞+∈,、
0y x 都有)()()(y f x f y x f -= (1) 求)1(f
(2) 若1)4(=f ,解不等式2)1
()6(>-+x f x f。