正余弦定理练习
- 格式:doc
- 大小:60.50 KB
- 文档页数:4
正弦定理与余弦定理1.已知△ABC 中,a=4,ο30,34==A b ,则B 等于( )A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30°3.已知ABC ∆中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A .6πB .3πC .32π D .65π 4.在∆ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若sin sin CA=2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( )A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ∆中,756,8,cos 96BC AC C ===,则ABC ∆的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形7.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A .2π B .3π C .4π D .6π 8.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 9.在ABC ∆中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A.14 B.23 C.23- D.14- 10.在ABC ∆中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰或直角三角形 11.在△ABC 中,cos2=,则△ABC 为( )三角形.A .正B .直角C .等腰直角D .等腰 12.在△ABC 中,A=60°,a=4,b=4,则B 等于( )A .B=45°或135°B .B=135°C .B=45°D .以上答案都不对13.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠=( )A.6πB.3πC.23πD.56π14.设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 15.已知在ABC ∆中,2cos 22A b cc+=,则ABC ∆的形状是( ) A .直角三角形 B .等腰三角形或直角三角形 C .正三角形 D .等腰直角三角 16.已知ABC ∆内角,,A B C 的对边分别是,,a b c ,若1cos ,2,sin 2sin 4B bC A ===,则ABC ∆的面积为( ) A.156 B. 154 C. 152D. 15 17.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =3π,a =3,b =1,则c =( ) A . 3-1 B .3 C. 2 D. 1 评卷人 得分一、解答题(题型注释)18.在ABC ∆中,内角A ,B ,C 所对的边分别是a ,b ,c .已知4A π=,22212b ac -=. (1)求tan C 的值;(2)若ABC ∆的面积为3,求b 的值.19.在△ABC 的内角A ,B ,C 对应的边分别是a ,b ,c ,已知,(1)求B ;(2)若b=2,△ABC 的周长为2+2,求△ABC 的面积.ABC C B A ,,c b a ,,B c C b a sin cos +=B2=b ABC21.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知()222332b c a bc +=+ (1)求sinA ; (2)若32a =,△ABC 的面积S =22,且b>c ,求b ,c .22.已知ABC △的内角A B C ,,的对边分别为a b c ,,,且满足sin(2)22cos()sin A B A B A+=++.(Ⅰ)求ba的值; (Ⅱ)若17a c ==,,求ABC △的面积.23.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2a =,5c =, (1)求b 的值; (2)求sin C 的值.二、填空题 24.已知在中,,,,则___.25.△ABC 中,若222a b c bc =+-,则A = .26.在中,角,,A B C 所对边长分别为,,a b c ,若,则b=___________.27.在C ∆AB 中,已知,C 4A =,30∠B =o ,则C ∆AB 的面积是 . 28.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为△ABC 的面积,,则C 的大小为___________. 29.在∆ABC ,则这个三角形的形状是参考答案1.D 【解析】试题分析:B b A a sin sin =,2342134430sin 34sin sin 0=⋅=⋅==a A b B ;b a <Θ,030=>∴A B , 060=∴B 或0120=B ,选D.考点:正弦定理、解三角形2.B 【解析】试题分析:33sin 4321sin 21=⋅⋅=⋅⋅=∆C C BC AC S ABC ,则23sin =C ,所以060=C ,选B.考点:三角形面积公式3.C 【解析】试题分析:由已知和正弦定理得(2sin sin )cos sin cos 0,A C B B C ++=展开化简得2sin cos sin 0A B A +=,由于A 为三角形内角,所以0,sin 0A A ≠≠,所以1cos 2B =-,23B π=,选C. 考点:1.正弦定理;2.两角和的正弦公式;3.已知三角函数值求角.4.C 【解析】试题分析:由正弦定理可得,sin 22sin C c c a A a==⇒=,又222237b a ac b a -=⇒=,由余弦定理可得,2222221cos 242a cb a B ac a +--===-,又()0,B π∈,所以120B ︒∠=. 考点:1.正弦定理;2.余弦定理.5.D 【解析】解:=, ∴sinC=•sinA=×=,∵0<C <π,∴∠C=45°或135°, ∴B=105°或15°, 故选D .【点评】本题主要考查了正弦定理的应用.解题的过程中一定注意有两个解,不要漏解. 6.D 【解析】试题分析:由余弦定理得22275682682596AB =+-⨯⨯⨯=,所以最大角为B 角,因为226258cos 0265B +-=<⨯⨯,所以B 角为钝角,选D.考点:余弦定理【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 7.A 【解析】试题分析:由正弦定理得()2sin cos 2sin cos sin sin B C C A B C -==+sin cos cos sin B C B C =+,2sin cos 3sin cos ,sin 2cos 3sin cos 2B C C B C C C C ==,()2222cos 3cos sin C C C =-,213tan ,tan 33C C ==,2,B C C =∴Q 为锐角,所以,,632C B A πππ===,故选A.考点:1、正弦定理两角和的正弦公式;2、三角形内角和定理.8.C 【解析】试题分析:由题可根据正弦定理,得a 2+b 2<c 2,∴cos C =2222a b c ab+-<0,则角C 为钝角考点:运用正弦和余弦定理解三角形. 9.D 【解析】试题分析:sin :sin :sin 3:2:4,::3:2:4A B C a b c =∴=2221cos 24a b c C ab +-∴==- 考点:正余弦定理解三角形10.C 【解析】试题分析:在给定的边与角的关系式中,可以用余弦定理,得22222a b c a b ab+-=g ,那么化简可知所以 2222=a a b c +-,即 22=b c ,=b c ,所以三角形ABC 是等腰三角形.故选C .考点:余弦定理判断三角形的形状. 11.B 【解析】试题分析:根据二倍角的余弦公式变形、余弦定理化简已知的等式,化简后即可判断出△ABC 的形状. 解:∵cos2=,∴(1+cosB )=,在△ABC 中,由余弦定理得,=,化简得,2ac+a 2+c 2﹣b 2=2a (a+c ),则c 2=a 2+b 2,∴△ABC 为直角三角形, 故选:B . 12.C 【解析】试题分析:由A 的度数求出sinA 的值,再由a 与b 的值,利用正弦定理求出sinB 的值,由b 小于a ,得到B 小于A ,利用特殊角的三角函数值即可求出B 的度数. 解:∵A=60°,a=4,b=4, ∴由正弦定理=得:sinB===,∵b <a ,∴B <A , 则B=45°. 故选C 13.A 【解析】试题分析:利用正弦定理化简得:sinAsinBcosC+sinCsinBcosA=12sinB , ∵sinB ≠0,∴sinAcosC+cosAsinC=sin (A+C )=sinB=12, ∵a >b ,∴∠A >∠B ,∴∠B=6π 考点: 14.B 【解析】试题分析:()22cos cos sin sin cos cos sin sin sin sin b C c B a A B C B C A B C A +=∴+=∴+=sin 12A A π∴=∴=,三角形为直角三角形考点:三角函数基本公式 15.A【解析】试题分析:22cos 2cos 11cos 1cos 222A b c A b c b b b A A c c c c c++=⇒==+⇒+=+⇒= ()sin sin cos sin cos 0cos 0,sin sin 2A CB A AC C C C C π+==⇒=∴==,选A考点:正弦定理,二倍角的余弦,两角和的正弦16.B【解析】试题分析:2222214sin 2sin 2cos 242a c b a c C A c a B ac ac +-+-=∴==∴=Q Q 1,2a c ∴==111515sin 122244S ac B ∴==⨯⨯⨯= 考点:正余弦定理解三角形17.C 【解析】试题分析:由余弦定理可得2222113cos 2222b c a c A c bc c+-+-=∴=∴= 考点:余弦定理解三角形 18.(1)2;(2)3.【解析】试题分析:(1)先运用余弦定理求得b c 322=,进而求得b a 35=,再运用正弦定理求C sin 的值即可获解;(2)利用三角形的面积公式建立关于b 方程求解. 试题解析:(1)由余弦定理可得222222⨯-+=bc c b a , 即bc c a b 2222=+-,将22212b a c -=代入可得b c 322=,再代入22212b ac -=可得b a 35=, 所以522sin sin ==a c A C ,即52sin =C ,则51cos =C ,所以2tan =C ; (2)因3sin 21=A bc ,故322322212=⨯⨯b ,即3=b . 考点:正弦定理余弦定理等有关知识的综合运用. 19.(1)B=(2)【解析】解:(1)由正弦定理可得:=,∴tanB=,∵0<B <π, ∴B=;(2)由余弦定理可得b 2=a 2+c 2﹣2accosB ,即a 2+c 2﹣ac=4,又b=2,△ABC 的周长为2+2, ∴a+c+b=2+2, 即a+c=2, ∴ac=,∴S △ABC =acsinB=××=.【点评】本题考查了正弦定理、余弦定理、三角形周长、三角形面积计算公式,考查了推理能力与计算能力,属于中档题. 20.(1)B=.4π(2)21+ 【解析】试题分析:(1)由题为求角,可利用题中的条件B c C b a sin cos +=,可运用正弦定理化边为角, 再联系两角和差公式,可求出角B 。
正余弦定理练习题正余弦定理练习题在初中数学中,我们学习了许多几何定理,其中正余弦定理是一个非常重要且实用的定理。
正余弦定理可以帮助我们计算三角形的边长和角度,解决实际问题。
在本文中,我们将通过一些练习题来巩固对正余弦定理的理解和运用。
练习题1:已知一个三角形ABC,边长分别为a、b、c,角A的度数为α。
根据正余弦定理,我们可以得出以下公式:a² = b² + c² - 2bc * cosα现在,我们假设a=5cm,b=7cm,c=8cm,α=30°,请计算出角B和角C的度数。
解答:根据正余弦定理,我们可以得到以下两个公式:b² = a² + c² - 2ac * cosβc² = a² + b² - 2ab * cosγ代入已知条件,我们可以得到:7² = 5² + 8² - 2 * 5 * 8 * cosβ8² = 5² + 7² - 2 * 5 * 7 * cosγ通过计算,我们可以得出:cosβ ≈ 0.42,cosγ ≈ 0.71由于0°< β, γ < 180°,我们可以使用反余弦函数来计算角度:β ≈ arccos(0.42) ≈ 64.6°γ ≈ arccos(0.71) ≈ 44.4°因此,角B的度数约为64.6°,角C的度数约为44.4°。
练习题2:现在,我们来解决一个实际问题。
假设你正在参加一个登山活动,你站在山脚下,想要测量山顶的高度。
你找到了一棵高大的树,树的高度为10m。
你站在树的底部,向上仰望山顶,测得角度为30°。
然后,你向上走了100m,再次测量角度,发现角度变为15°。
请计算山顶的高度。
解答:我们可以将问题抽象成一个三角形,树的高度为a,你站在树底部的位置为B,你站在树顶的位置为A,山顶的位置为C。
A.6B.2 C.3 D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .42 B .43 C .46 D.3233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135°B .135°C .45°D .以上答案都不对.以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6B .6∶5∶1 C .6∶1∶5 D .不确定.不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.146.在△ABC 中,若cos A cos B =b.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC C.32或3 D.34或3、b 、c .若c =2,b =6,B =120°,则a 等于( ) A.6 B .2 C.3 D.2 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________. 15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.组解. 的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?的距离是多少?18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2、c ,且cos cos 22A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.的长.1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) a,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形.等腰三角形或直角三角形 7的面积为( ) A.32B.3428.△ABC 的内角A 、B 、C 的对边分别为a 17.如图所示,货轮在海上以40 40 km/h km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°A2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b,那么26 6 6 =3-A.3 B.2 5 c 2+3bc =3A.π B.π C.π或5π D.π或2π =3,c A.3 .23 C.323 3,则边32=13,则=a +b -c 1为3,则(3-(3∶1023x 为2=2sin 的面积为1sin =5,-π)A.6B.2 3 6 应用正弦定理得:=,求得== 6. 42 43 46 D.32= 6. 3,42,则角由正弦定理=得:==2,又∵=2,则B.1 D.1,由=得=2×2×sin 30°sin 30°=中,若cos A =,则△∵=sin B ,∴cos A =sin B ,π. 3A.3 B.3 C.3或3 D.3或3D.=,求出=3,∵1AB ,6A.6 C.3 D.2 由正弦定理得6=2,= 2. 3,π,则=2=1. A =csin C, 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =bsin B ⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×12×sin30°sin30°sin120°=43, ∴.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________. 解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×12×sin60°sin60°sin60°××c =183, ∴c =6. 答案:12 6 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C =________. 解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°, ∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C , ∴a -2b +c sin A -2sin B +sin C =2R s in A -2sinB +sin C sin A -2sin B +sin C =2R =2. 答案:2 15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 解析:由解析:由正弦定理正弦定理得:a sin a +c =8 3. 答案:83 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得,得 2R sin A =2·2·22R ·sin B ·cos C , 所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:答案:等腰三角形等腰三角形13解析:依题意,sin C =223,S △ABC =12ab s in C =43,解得b =2 3. 答案:23 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.组解.解析:∵b sin C ==BC ·sin ∠ABCsin A =20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是102 2 km. km. 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c . 解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A2,得,得sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ), 即2sin B sin C +cos(B +C )=1,变形得,变形得 cos B cos C +sin B sin C =1, 即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3. 由正弦定理a sin A =b sin B =csin C ,得,得b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009所对应的边分别为a 、b 、c ,且cos cos 22A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.的值. 43×12=23且c =2,∴c <b sin C ,∴此三角形无解.,∴此三角形无解. 答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°,∠ACB =(180°-140°140°))+65°=105°, 所以∠A =180°-(30°+105°105°))=45°, 由正弦定理得AC 年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C=10,=1-sin 2B =310. =3,∴=5,25,25×310-5×10=2. π. 3π2==得5a =10b =2c 2b =5-b =2-,∴2=2-=2,c = 5. 603×3×sin =1,∴∠3,sin A =sin B ,∴215. 21,那么6 6 46 AC =AB 2+BC 2-2AB ·BC cos B = 42+62-2×2×4×4×4×6×6×13=6. .在△ABC 中,a =2,b =3A.3 2 C.5 2(3-2×((32. +3bc ==-3bc 2bc =-32,:603153=1153115. 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( ) A.π6B.π3C.π6或5π6D.π3或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac 2-b 22ac =32·1tan B =32·cos Bsin B . 显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3. 5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1 ) A .2 B .-2 C .4 D .-4 解析:选A.S △ABC =3=12|AB →|·|·||AC →|·|·sin sin A=12×4×4×1×1×1×sin sin A , ∴sin A =32,又∵△ABC 为锐角三角形,为锐角三角形,∴cos A =12,∴AB →·AC →=4×4×1×1×12=2. 8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) A.3 B .23 C.3或23 D .2 解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3. 9.已知△ABC π3. 在△ABD 中,中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×2×1×1×1×2×2×12= 3. 答案:3 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10. 设a =(3-1)k ,b =(3+1)k ,c =10k (k >0),,联想到余弦定理,代入得到余弦定理,代入得cos B =a 2+c C .c D .以上均不对.以上均不对解析:选C.a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c=c . 6.如果把.如果把直角三角形直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形三角形 B .直角三角形.直角三角形 C .钝角三角形.钝角三角形 D .由增加的长度决定.由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m ,△ABC 的面积为3,则AB →·AC →的值为( 的三个的三个内角内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的上的中线中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B ==-1,3,=1ab =3,∴===11,7,=-132,43=1,∴=22. 1ab 431·32·22=432 3. 答案:23 = =49+25-36 19,-19) ±12,又∵=21或61. 答案:21或61 ,则角1ab ==·1ab4=78. 答案:723x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12. 又∵a ,b 是方程x 2-23x +2=0的两根,的两根,∴a +b =23,ab =2. ∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12) =a 2+b 2+ab =(a +b )2-ab =(23)2-2=10, ∴AB =10. 18.已知△ABC AC =2+1,BC +AC =2AB , 两式相减,得AB =1. (2)由△ABC 的面积12BC ·AC ·sin C =AC 2+BC 2-AB 22AC ·BC=A C +BC 2-2AC ·BC -AB 22AC ·BC =12,所以C =60°60°. . 19.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值;的值;(2)求sin(2A -π4)的值.的值.解:(1)在△ABC 中,由正弦定理AB sin C =BCsin A ,得AB =sin Csin A BC =2BC =2 5. (2)在△ABC 中,根据余弦定理,得中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255, 于是sin A =1-cos 2A =55. 从而sin 2A =2sin A cos A =45, cos 2A =cos 2 A -sin 2 A =35. 所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210. 则îïíïìk 2+k -12-k +12<0k +k -1>k +1⇒2<k <4, ∴k =3,故三边长分别为2,3,4,∴最小角的∴最小角的余弦余弦值为32+42-222×2×3×3×817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-的周长为2+1,且sin A +sin B =2sin C . (1)求边AB 的长;的长; (2)若△ABC 的面积为16sin C ,求角C 的度数.的度数. 解:(1)由题意及由题意及正弦定理正弦定理得AB +BC +=16sin C ,得BC ·AC =13, 由余弦定理得cos C=. sin C ,所以=,得sin C =,。
后,就可以计算出A 、B 两点的距离为( )课时作业3应用举例时间:45分钟 满分:100分1. 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成 60°勺视角,从B 岛望C 岛和A 岛成75°的视角,贝J B 、C 间的距离是 ()A . 10^3海里 C . 5迈海里【答案】 D【解析】 如图,/A = 60° /B = 75° 贝JZC = 45 °, 由正弦定理得:BCAB si nA 10x sin60 BC= sinC = sin452. 如图所示,设A 、B 两点在河的两岸,一测量者在 A 所在的河岸边选定一点 C ,测出AC 的距离为50m , / ACB = 45° / CAB = 105°B . 10/6海里 D . 5^6海里课堂训练—30 =150 ° ZCBO = 45 ° AB=35 ,【答案】 A【解析】 因为ZACB = 45° ZCAB = 105°所以ZABC = 30°根 据正弦定理可知'sin%=sin 監,即爲=馬,解得AB=5072m ,选 A.3. 从某电视塔的正东方向的A 处,测得塔顶仰角是60°从电视 塔的西偏南30°的B 处,测得塔顶仰角为45° A , B 间距离是35m ,【答案】 如图所示,塔高为0C ,贝JZOAC = 60° 从OB = 180°A . 5Oj2m C . 25 辺m则此电视塔的高度是m.【解析】A设电视塔高度为hm,则OA=^h, OB= h,在△KOB中由余弦定理可得AB2= OA2+ OB2—2OA OB cos/AOB,即352=(誓h)2 + h2—2x¥hx hx (—乎)解得h= 5佰.4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45° °如果此船不改变航向,继续向南航行, 有无触礁的危险?【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.【解析】 在△ABC 中,BC= 30,ZB= 30°,ZACB= 135°,•••zBAC = 15「「亠亠5 BC AC 卄30 AC 由正弦疋理snB ,即:sin15匸sin30/.AC = 60COS15 =°0cos(45 — 30 )=60(cos45 coS30 斗 sin45 sin30 ) = 15(V 6+V 2),•••A 到 BC 的距离为 d = ACsin45 = 15&3 + 1)〜40.98 海里 >38 海 里,所以继续向南航行,没有触礁危险.课后作业、选择题(每小题5分,共40分)1. 已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°如图所示,/ ECA = 40° ZFCB = 60°, ZACB = 180°—40 -60 = 80 :180 ° — 80••AC= BC ,.・.ZA=/ABC = ------ 2 --- = 50°,.・.ZABG= 180 —Z CBH-ZCBA = 180°— 120°— 50°= 10°.故选 B.2. 某市在“旧城改造”工程中,计划在如下图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮价格为a 元/m 2,则购买这【答案】 C1 1 1【解析】 $△= 2^ 20X 30X sin150 =十 20X 30X=150(m 2),•••购买这种草皮需要150a 元,故选C.【答案】【解析】 EGCH种草皮需要A . 450a 元C . 150a 元3. 有一长为10m 的斜坡,倾斜角为75°.在不改变坡高和坡顶的 前提下,通过加长坡面的方法将它的倾斜角改为 30。
正余弦定理 15道经典基础例题例1、(共5分,2分钟)在∆ABC 中,若∠A =60°,∠B =45° ,BC =3√2 ,则AC=( )A .4√3B .2√3C .√3 D.√32解答:由正弦定理,可得AC sin45°=BCsin60° 所以AC =3√2√32×√22=2√3可得答案B考点: 考点:正弦定理, 难度:★☆☆☆☆☆例2、(共5分,2分钟)在∆ABC 中,角A,B,C 所对边长分别为a,b,c ,若a 2+b 2=2c 2,则sin C 的最小值为( )A. √32 B. √22 C. 12 D. −12 解答:cos C =a 2+b 2−c 22ab=2c 2−c 22ab≥c 2a 2+b 2=12可得答案C考点:余弦定理,基本不等式,难度:★☆☆☆☆☆ 例3、(共5分,3分钟)在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ). A.32B.332C.3+62D.3+394解答:设AB =c ,BC 边上的高为h .由余弦定理,得AC 2=c 2+BC 2-2BC ·c cos 60°,即7=c 2+4-4c cos 60°, 即c 2-2c -3=0,∴c =3(负值舍去).又h =c ·sin 60°=3×32=332,故选B.可得答案B考点:余弦定理,难度:★☆☆☆☆☆例4、(共5分,3分钟)在∆ABC 中,内角A ,B ,C 所对的边分别是a,b,c ,已知8b =5c,C =2B ,则cos C = ( ) A.725 B.−725 C.±725 D.2425 解答:由8b =5c,C =2B 及正弦定理得, 8sin B =5sin C,sin C =sin 2B ,又由正弦公式知sin 2B =2sin B cos B ,整理可得 8sin B =10sin B cos B ,cos B =45,sin B =35, cos C =cos 2B =cos 2B −sin 2B =725 可得答案A考点:正弦定理,二倍角公式,难度:★★☆☆☆☆例5、(共5分,2分钟)在∆ABC 中,AB =√6,∠A =75°,∠B =45°,则AC= .解答:由正弦定理可知:ABsin [180°−(75°+45°)]=ACsin 45°⇒√6sin 60°=ACsin 45°⇒AC =2可得答案:AC=2考点:正弦定理,难度:★☆☆☆☆☆例6、(共5分,2分钟)在∆ABC 中,a=4,b=5,c=6,则sin 2A sin C= .解答:sin2Asin C =2sin A cos Asin C=2ac∙b2+c2−a22bc=1可得答案sin2Asin C=1考点:正弦定理、余弦定理,难度:★☆☆☆☆☆例7、(共5分,3分钟)若锐角∆ABC的面积为10√3,且AB=5,AC=8,则BC 等于________.解答:由已知得的∆ABC面积为12AB∙AC sin A=20sin A=10√3,∴sin A=√32,A∈(0,π2),可知A=π3由余弦定理得AB2+AC2−2AB∙AC cos A=49,解得BC=7可得答案BC=7考点:三角形面积公式,余弦定理,难度:★☆☆☆☆☆例8、(共5分,2分钟)设∆ABC的内角A,B,C的对边分别为a,b,c若a=√3,sin B=12,C=π6,则b= .解答:由sin B=12且B∈(0,π)∴B=π6或5π6,又C=π6,则B=π6可得A=π−B−C=2π3,又a=√3由正弦定理asin A =bsin B,代入可得b=1可得答案b=1考点:正弦定理,难度:★☆☆☆☆☆例9、(共5分,2分钟)设∆ABC的内角A,B,C,所对的边分别是a,b,c,若(a+b−c)(a+b+c)=ab,则角C= .解答:由(a+b+c)(a+b−c)=a2+b2−c2+2ab=ab得a2+b2−c2=−ab由余弦定理cos C=a2+b2−c22ab =−ab2ab=−12,C=2π3可得答案C=2π3考点:余弦定理,难度:★☆☆☆☆☆例10、(共5分,2分钟)在∆ABC中,内角A,B,C所对的边分别是a,b,c..已知b−c=14a,2sin B=3sin C,则cos A的值为 .解答:由正弦定理知2b=3c,解得b=3c2,a=2c.则由余弦定理知cos A=b2+c2−a22bc =−14可得答案cos A=−14考点:三角形面积公式,余弦定理,难度:★☆☆☆☆☆例11、(共5分,3分钟)在∆ABC中,内角A,B,C所对的边分别为a,b,c,已知∆ABC的面积为3√15,b−c=2,cos A=−14,则a的值为 .解答:因为0<A<π,所以sin A=√1−cos2A=√154,又S∆ABC=12bc sin A=√158bc=3√15,∴bc=24解方程组{b−c=2bc−−24得b=6,c=4由余弦定理得a2=b2+c2−2bc cos A=64, 所以a=8可得答案a=8考点:同角三角函数关系,三角形面积公式,余弦定理,难度:★☆☆☆☆☆例12、(共5分,3分钟)在∆ABC中,B=120°,AB=√2,A的角平分线AD=√3,则AC=_______.解答:由正弦定理得ABsin∠ADB =ADsin B,即√2sin∠ADB=√3sin120°,解得sin∠ADB=√22,∠ADB=45°,从而∠BAD=15°=∠DAC , 即C=30° ,|AC|=2|AB|cos30°=√6.可得答案AC=√6考点:正弦定理, 难度:★☆☆☆☆☆例13、(共12分,8分钟)∆ABC的内角A,B,C所对的边分别为a,b,c,向量m⃗⃗⃗ =(a,√3b)与n⃗=(cos A,sin B)平行,(I)求A;(II)若a=√7,b=2,求∆ABC的面积.解答:(I)由m⃗⃗⃗ 与n⃗平行,则a sin B−√3b cos A=0,由正弦定理,得sin A sin B−√3sin B cos A=0又sin B≠0 ,从而tan A=√3由于0<A<π ,所以A=π3(II)由余弦定理,得a2=b2+c2−2bc cos A,而a=√7,b=2,A=π3, 得7=4+c2−2c因为c>0所以c=3故∆ABC的面积为12bc sin A=3√32可得答案(I)π3;(II)3√32.考点:平行向量的坐标运算,正弦定理,3、余弦定理,4、三角形的面积公式,难度:★☆☆☆☆☆例14、(共12分,8分钟)在△ABC中,角A,B,C的对边分别为a,b,c,点(a,b)在直线x(sin A-sin B)+y sin B=c sin C上.(1)求角C 的值;(2)若a 2+b 2=6(a +b )-18,求△ABC 的面积.解答:(1)由题意得a (sin A -sin B )+b sin B =c sin C , 由正弦定理,得a (a -b )+b 2=c 2, 即a 2+b 2-c 2=ab , 由余弦定理,得cos C =a 2+b 2-c 22ab=12, 结合0<C <π,得C =π3.(2)由a 2+b 2=6(a +b )-18,得(a -3)2+(b -3)2=0, 从而得a =b =3, 所以△ABC 的面积S =12×32×sinπ3=934.可得答案(1) C =π3,(2)S ∆ABC =9√34.考点:正弦定理,余弦定理,三角形面积公式, 难度:★☆☆☆☆☆例15、(共12分,8分钟)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c 。
【正弦定理、余弦定理模拟试题】一. 选择题:1. 在∆ABC 中,a b B ===︒232245,,,则A 为( )A B C D ....60120603015030︒︒︒︒︒︒或或2. 在∆AB C A a B bB 中,若,则sin cos =∠=( ) A BCD ....30456090︒︒︒︒3. 在∆ABC 中,a b c bc 222=++,则A 等于( )A B C D ....604512030︒︒︒︒4. 在∆ABC 中,||||()()AB BC AB BC AB BC →=→=→+→⋅→+→=+12523,,,则边||AC →等于( ) A B C D ....5523523523--+5. 以4、5、6为边长的三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 锐角或钝角三角形6. 在∆ABC 中,b A a B cos cos =,则三角形为( )A. 直角三角形B. 锐角三角形C. 等腰三角形D. 等边三角形7. 在∆ABC 中,cos cos sin sin A B A B >,则∆ABC 是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 正三角形8. 三角形的两边分别为5和3,它们夹角的余弦是方程57602x x --=的根,则三角形的另一边长为( )A. 52B. 213C. 16D. 4二. 填空题:9. 在∆ABC 中,a b A B +==︒=︒126045,,,则a =_______,b =________10. 在∆ABC 中,化简b C c B cos cos +=___________11. 在∆ABC 中,已知sin :sin :sin ::A B C =654,则cosA =___________12. 在∆ABC 中,A 、B 均为锐角,且cos sin A B >,则∆ABC 是_________三. 解答题:13. 已知在∆ABC 中,∠=︒==A a c 4526,,,解此三角形。
正弦定理和余弦定理测试题一、选择题:1.在△ABC中,a=15,b=10,A=60°,则 cos B=() 22226 A.-3 B.3C.-3D.6 32.在△ABC中,内角A,B,C的对边分别是a,b,c.若 a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°3.E,F是等腰直角△ABC斜边AB上的三平分点,则tan ∠ECF =()16233A. 27B. 3C.3D.4.△中,若-lg c ==-lg 2且∈ 0,π,则△ABC4ABC lg a lgsin B B2的形状是 ()A.等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形5.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,假如a、b、c 成等差数列,∠ B=30°,△ ABC的面积为,那么 b 为()A.1+ 3B.3+ 3 C.3+ 3D.2+ 3 36.已知锐角A是△ABC的一个内角,a、b、c是三角形中各内角的对应边,若 sin2-cos2=1,则 ()A A2A.b+c=2a B .b+c<2a C.b+c≤2a D.b+c≥2a7、若ABC的内角A知足sin 2A 2,则 sin A cos A 3A.153 B.153C.5D.5338、假如A1 B1C1的三个内角的余弦值分别等于A2 B2C2的三个内角的正弦值,则A.A1B1C1和A2B2C2都是锐角三角形B.A1B1C1和A2 B2C2都是钝角三角形C.A1 B1C1是钝角三角形,A2 B2C2是锐角三角形D.A1B1C1是锐角三角形,A2 B2C 2是钝角三角形9、VABC的三内角A,B,C所对边的长分别为 a, b, c 设向量ur r ur rp (a c, b) , q (b a, c a) ,若 p // q ,则角C的大小为(A)(B)(C)(D)233 6210、已知等腰△ABC的腰为底的 2 倍,则顶角A的正切值是()A.3B. 3C.15D.15 28711、ABC的内角 A、B、C的对边分别为a、b、c,若 a、b、c 成等比数列,且 c2a ,则 cosBA .1B.3C .24 44D.2312、在△ABC中,角A、B、C的对边分别为a、b、c, A=, a= 3 , b=1,3则 c=(A)1(B)2(C)3—1(D)3二、填空题:13 、在ABC中,若sin A:sin B :sin C5:7:8 ,则B的大小是___________.14、在 ABC中,已知a 3 3,=,=°,则=.b 4 A30sinB415、在△ ABC中,已知 BC=12,A=60°, B=45°,则 AC=16、已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边 BC上的中线 AD的长为.三、解答题:11 17。
【典型例题】例题1:例题:在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、, 设c b a 、、满足条件222a bc cb =-+和321+=b c ,求A ∠和B tan 的值.练习1:在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知a 2-c 2=2b ,且 sin A cos C =3cos A sin C ,求b .例题2:ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB练习2:在△ABC 中,A =60°,b =1,3S A BC =∆,求CB A cb a sin sin sin ++++的值.例题3:△ABC 的三个内角A 、B 、C 的对边分别是a b c 、、,如果()2a b b c =+,求证:2.A B =练习3:在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,6cos b aC a b+=,则tan tan tan tan C CA B+=____。
AB 例题4:在△ABC中,BC=a,顶点A在平行于BC且与BC相距为a的直线上滑动,求AC 的取值范围.62,C=30°,求a+b的最大值。
练习4:在△ABC中,c=+例题5:是否存在三边为连续自然数的三角形,使得最大角是最小角的两倍?练习5:若a ,b ,c 是三角形的三边长,证明长为a ,b ,c 的三条线段能构成锐角三角形。
例题6:下列条件中,△ABC 是锐角三角形的是( )51cos sin A.=+A A 0 B.>⋅→→BC AB0tan tan tan C.>++C B A ︒===30,33,3 D.B c b练习6:在△ABC 中,sin A =CB CB cos cos sin sin ++,判断这个三角形的形状.例题7:如果111C B A ∆的三个内角的余弦值分别等于222C B A ∆的三个内角的正弦值,则( )A .111CB A ∆和222C B A ∆都是锐角三角形 B .111C B A ∆和222C B A ∆都是钝角三角形C .111C B A ∆是钝角三角形,222C B A ∆是锐角三角形D .111C B A ∆是锐角三角形,222C B A ∆是钝角三角形练习7:若cCb B a A cos cos sin ==则△ABC 为( ) A .等边三角形B .等腰三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形例题8:已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sin B ,外接圆半径为2. 则△ABC 面积的最大值为__________ .练习8:在△ABC 中,2b =a +c ,∠B =30°,△ABC 的面积为32,那么b 等于________.例题9:△ABC 的三边长为a 、b 、c ,对应的三内角为A 、B 、C ,求证:C B A c b a sin )sin(222-=-.练习9:△ABC 的三边长为a 、b 、c ,对应的三内角为A 、B 、C , 求证:C ab A b B a sin 22sin 2sin 22=+ .例题10:如图3,甲船在A 处,乙船在A 处的南偏东45°方向,距A 有9n mile 并以20n mile/h 的速度沿南偏西15°方向航行,若甲船以28n mile/h 的速度航行,应沿什么方向,用多少h 能尽快追上乙船?练习10:(A)已知A 码头在B 码头的南偏西75处,两码头相距200千米,甲、乙两船同时分别由A 码头和B 码头出发,乙船朝着西北方向航行,乙船的航行速度为40海里/小时,如果两船出发后5小时相遇,求甲船的速度。
正余弦定理典型例题一、正弦定理典型例题1. 例题1:已知两角和一边,求其他边和角题目:在△ ABC中,已知A = 30^∘,B = 45^∘,a = 2,求b,c和C。
解析:根据三角形内角和C=180^∘-A B,所以C = 180^∘-30^∘-45^∘=105^∘。
由正弦定理(a)/(sin A)=(b)/(sin B),已知a = 2,A = 30^∘,B = 45^∘,则b=(asin B)/(sin A)。
因为sin A=sin30^∘=(1)/(2),sin B=sin45^∘=(√(2))/(2),所以b=(2×frac{√(2))/(2)}{(1)/(2)} = 2√(2)。
再根据正弦定理(a)/(sin A)=(c)/(sin C),sin C=sin105^∘=sin(60^∘+45^∘)=sin60^∘cos45^∘+cos60^∘sin45^∘=(√(3))/(2)×(√(2))/(2)+(1)/(2)×(√(2))/(2)=(√(6)+√(2)) /(4)。
所以c=(asin C)/(sin A)=(2×frac{√(6)+√(2))/(4)}{(1)/(2)}=√(6)+√(2)。
2. 例题2:已知两边和其中一边的对角,求其他边和角(可能有两解)题目:在△ ABC中,a = 2√(3),b = 6,A = 30^∘,求B,C,c。
解析:由正弦定理(a)/(sin A)=(b)/(sin B),可得sin B=(bsin A)/(a)。
把a = 2√(3),b = 6,A = 30^∘代入,sinB=frac{6×sin30^∘}{2√(3)}=(6×frac{1)/(2)}{2√(3)}=(√(3))/(2)。
因为b > a,A = 30^∘,所以B = 60^∘或B = 120^∘。
当B = 60^∘时,C=180^∘-A B=180^∘-30^∘-60^∘=90^∘,再由(a)/(sinA)=(c)/(sin C),c=(asin C)/(sin A)=frac{2√(3)×sin90^∘}{sin30^∘} = 4√(3)。
完整版)正弦定理与余弦定理练习题1.已知三角形ABC中,a=4,b=43,A=30°,求角B的大小。
解:根据正弦定理,有XXX,即sinB=43/4×sin30°=21.5/4.由此可知B的大小为30°或150°,故选B。
2.已知锐角三角形ABC的面积为33,BC=4,CA=3,求角C的大小。
解:根据面积公式,有33=1/2×4×3×sinC,即sinC=22/3.由此可知C的大小为arcsin(22/3)≈75°,故选A。
3.已知三角形ABC中,a,b,c分别是角A,B,C所对的边,且(2a+c)cosB+bcosC=0,求角B的大小。
解:根据余弦定理,有c^2=a^2+b^2-2abcosC,即cosC=(a^2+b^2-c^2)/(2ab)。
代入已知式中,得(2a+c)cosB-b(a^2+b^2-c^2)/(2ab)=0,化简得(4a^2+2ac-b^2)cosB=2abc。
由此可知cosB=(2abc)/(4a^2+2ac-b^2)。
代入cosine double angle formula,得cos2B=(4a^2b^2c^2)/(4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4)。
由于cos2B≤1,可列出不等式4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4≥4a^2b^2c^2,即b^4-2ab^3+(2ac-2c^2-4a^2)b+6a^2c^2-5a^2b^2≤0.考虑b的取值,当b=0时,不等式显然成立;当b>0时,由于a,b,c均为正数,不等式两边同除以b^4后,得到一个关于x=ac/b^2的一元二次不等式6x^2-5x-2≤0.解得x∈[2/3,1],即ac/b^2∈[2/3,1]。
由此可知cosB的取值范围为[1/2,√3/2],故角B的大小为arccos(1/2)≈60°或arccos(√3/2)≈30°,故选B。
正弦定理、余弦定理的应用
一、基础过关
1.如图,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB =45°,则圆O 的 面积为________.
2.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6 =0的根,则此三角形的面积是________cm 2.
3.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的直径为________. 4.△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为________.
5.平行四边形中,AC =65,BD =17,周长为18,则平行四边形的面积是________.
6.在△ABC 中,已知b 2-bc -2c 2=0,a =6,cos A =78
,则△ABC 的面积S 为________.
7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255
,AB →·AC →=3.
(1)求△ABC 的面积;(2)若c =1,求a 的值.
8.如图,在△ABC 中,BC =5,AC =4,cos ∠CAD =3132
且AD =BD ,求△ABC 的面积.
二、能力提升
9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC =________.
10.如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB
=45°,求BD 的长.
三、探究与拓展
13.在△ABC 中,若已知三边为连续正整数,最大角为钝角.
(1)求最大角的余弦值;
(2)求以此最大角为内角,夹此角的两边之和为4的平行四边形的最大面积.
答案
1.8π 2.6 3.924 4.-19 5.16 6.152
7.解 (1)因为cos A 2=255
, 所以cos A =2cos 2A 2-1=35
, sin A =45
. 又由AB →·AC →=3,得bc cos A =3,
所以bc =5.
因此S △ABC =12
bc sin A =2. (2)由(1)知,bc =5,又c =1,所以b =5.
由余弦定理,得
a 2=
b 2+
c 2-2bc cos A =20,
所以a =2 5.
8.解 设CD =x ,则AD =BD =5-x ,
在△CAD 中,由余弦定理可知
cos ∠CAD =(5-x )2+42-x 22×(5-x )×4=3132
. 解得x =1.
在△CAD 中,由正弦定理可知
AD sin C =CD sin ∠CAD
, ∴sin C =AD CD ·1-cos 2∠CAD =41-(3132)2=378
, ∴S △ABC =12
AC ·BC ·sin C =12×4×5×387=1574
. 所以三角形ABC 的面积为1574
. 9.106 10.27π5 11.4(3-3) 12.解 在△ABC 中,AB =5,AC =9,∠BCA =30°.
由正弦定理,得AB sin ∠BCA =AC sin ∠ABC
, sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910
. ∵AD ∥BC ,∴∠BAD =180°-∠ABC ,
于是sin ∠BAD =sin ∠ABC =910
. 同理,在△ABD 中,AB =5, sin ∠BAD =910
,∠ADB =45°, 由正弦定理:
AB sin ∠BDA =BD sin ∠BAD
, 解得BD =922.故BD 的长为922
. 13.解 (1)设这三个数为n ,n +1,n +2(n ∈N *),最大角为θ,
则cos θ=n 2+(n +1)2-(n +2)2
2·n ·(n +1)
<0, 化简得n 2-2n -3<0⇒-1<n <3.
又∵n ∈N *且n +(n +1)>n +2,
∴1<n <3,∴n =2.
∴cos θ=4+9-162×2×3
=-14. (2)设此平行四边形的一边长为a ,则夹θ角的另一边长为4-a ,平行四边形的面积为
S =a (4-a )·sin θ=
154(4a -a 2) =154
[-(a -2)2+4]≤15. 当且仅当a =2时,S max =15.。