中考数学复习专题-提高题1
- 格式:doc
- 大小:143.50 KB
- 文档页数:5
专题:《相交线与平行线》(专题测试-提高)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(每题4分,共48分)1.在下列图形中,∠1与∠2是同位角的是()A.B.C.D.2.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、N的位置上,若∠EFG=52°,则∠1的值()A.52°B.66°C.72°D.76°3.如图,将一个长方形纸条折成如图的形状,若已知∠1=126°,则∠2的度数为()A.54°B.63°C.72°D.45°4.下列说法正确的有()①同位角相等;②两点之间的所有连线中,线段最短;③过一点有且只有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤已知同一平面内∠AOB=70°,∠BOC=30°,则∠AOC=100°.A.②B.②③C.②③④D.②③⑤5.一副三角板按如下图放置,下列结论:①∠1=∠3;②若BC∥AD,则∠4=∠3;③若∠2=15°,必有∠4=2∠D;④若∠2=30°,则有AC∥DE,其中正确的有()A.②④B.①④C.①②④D.①③④6.下列语句中正确的是()A.不相交的两条直线叫做平行线B.过一点有且只有一条直线与已知直线平行C.平行于同一条直线的两条直线互相平行D.两条直线被第三条直线所截,同位角相等7.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.②③④B.②③⑤C.②④⑤D.②④8.如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有()个.A.1个B.2个C.3个D.4个9.如图,已知AB∥CD,∠AEG=40°,∠CFG=60°,则∠G等于()A.20°B.40°C.60°D.100°10.如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°11.如图,已知直线m∥n,将一块含30°角的直角三角板ABC,按如图方式放置(∠ABC =30°),其中A,B两点分别落在直线m,n上,若∠1=18°,则∠2的度数为()A.18°B.30°C.48°D.60°12.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有()A.①②B.①③C.①②④D.①③④第Ⅱ卷(非选择题)二.填空题(每题4分,共20分)13.如图,若∠1=∠3,∠2=60°,则∠4的大小为度.14.如图,把长方形纸片ABCD沿折痕EF折叠,使点B与点D重合,点A落在点G处,若∠BEF=65°,则∠DFG的度数为.15.如果两个角的两边互相平行,其中一个角的3倍等于另一个角的2倍,则这两个角中较小的角的大小为.16.如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M,N的位置,若∠BFM=∠EFM,则∠BFE=.17.我们知道,2条直线相交只有1个交点,3条直线两两相交最多有3个交点,4条直线两两相交最多能有6个交点,5条直线两两相交最多能有10个交点,6条直线两两相交最多能有15个交点…n条直线两两相交最多能有个交点.三.解答题(每题8分,共32分)18.已知如图1,直线AB∥CD,直线EF分别交AB、CD于E、F,EM、FN分别平分∠BEF、∠CFE.(1)求证:EM∥FN;(2)如图2,∠DFE的平分线交EM于G,求∠EGF的度数;(3)在第(2)的条件下,如图3,∠BEG、∠DFG的平分线交于H点,试问:∠H与∠G的度数是否存在某种等量关系?证明你的结论,并根据你的结论回答:若∠BEH、∠DFH的平分线交于I点,写出∠I与∠G的度数关系(不需证明).19.完成下面的证明如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD理由如下:∵∠1=∠2(已知),且∠2=∠AHB()∴∠1=∠AHB(等量代换)∴∥()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B()∴AB∥CD()20.◆探索发现:如图是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如图1图2,弹弓的两边可看成是平行的,即AB∥CD.各活动小组探索∠APC 与∠A,∠C之间的数量关系.已知AB∥CD,点P不在直线AB和直线CD上,在图1中,智慧小组发现:∠APC=∠A+∠C.智慧小组是这样思考的:过点P作PQ∥AB,……请你按照智慧小组作的辅助线补全推理过程.◆类比思考:①在图2中,∠APC与∠A,∠C之间的数量关系为②如图3,已知AB∥CD,则角α、β、γ之间的数量关系为◆解决问题:善思小组提出:如图4,图5.AB∥CD,AF,CF分别平分∠BAP,∠DCP①在图4中,∠AFC与∠APC之间的关系为②在图5中,∠AFC与∠APC之间的关系为21.已知直线a∥b,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b 上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.(1)如图1,当点P在线段EF上运动时,试说明∠1+∠3=∠2;(提示:过点P作PM ∥a)(2)当点P在线段EF外运动时有两种情况.①如图2写出∠1,∠2,∠3之间的关系并给出证明;②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).参考答案一.选择题1.解:根据同位角的定义可知答案是C.故选:C.2.解:∵长方形纸片ABCD,∴AD∥BC,∴∠DEF=∠FEG=52°,∵把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,∠EFG=52°,∴由折叠的性质可得:∠DEF=∠FEG=52°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣52°﹣52°=76°.故选:D.3.解:在图中标上各字母,如图所示.∵CD∥EF,∴∠1+∠DCF=180°,∴∠DCF=180°﹣126°=54°.∵2∠2+∠DCF=180°,∴∠2==63°.故选:B.4.解:①同位角不一定相等,故①错误;②两点之间的所有连线中,线段最短,正确;③过直线外一点有且只有一条直线与已知直线平行,错误;④两点之间的距离是两点间的线段的长度,错误;⑤已知同一平面内∠AOB=70°,∠BOC=30°,则∠AOC=100°或40°,错误.故选:A.5.解:①∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,①正确;②∵BC∥AD,AE⊥AD,∴∠3=∠B=45°,BC⊥AE,∵∠E=60°,∴∠4=30°,∴∠4≠∠3,②不正确;③∵∠2=15°,∠E=60°,∴∠2+∠E=75°,∴∠4=180°﹣75°﹣∠B=60°,∵∠D=30°,∴∠4=2∠D,③正确;④∵∠2=30°,∴∠1=60°,又∵∠E=60°,∴∠1=∠E,∴AC∥DE,④正确;故选:D.6.解:A.不相交的两条直线叫做平行线;不符合题意;反例:立方体中不在同一平面上的棱长所在直线;B.过一点有且只有一条直线与已知直线平行;不符合题意;反例:已知点在已知直线上时,所作平行线与已知直线重合;C.平行于同一条直线的两条直线互相平行;符合题意;D.两条直线被第三条直线所截,同位角相等;不符合题意;反例:如图所示,直线a和b被直线c所截,∠1≠∠2;故选:C.7.解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.8.解:(1)∵∠3=∠4,∴BD∥AC;(2)∵∠1=∠2,∴AB∥CD;(3)∵∠A=∠DCE,∴AB∥CD;(4)∵∠D+∠ABD=180°,∴AB∥CD,故选:C.9.解:过点G作GH∥AB,如图所示:∴∠EGH=∠AEG,∵AB∥CD,∴GH∥CD,∴∠FGH=∠CFG,∴∠EGH+∠FGH=∠AEG+∠CFG.即:∠EGF=∠AEG+∠CFG=40°+60°=100°,故选:D.10.解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.11.解:∵m∥n,∴∠2=∠ABC+∠1=30°+18°=48°.故选:C.12.解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故选:B.二.填空题(共5小题)13.解:∵∠1=∠3,∴AB∥CD,∴∠2=∠5,∵∠2=60°,∴∠5=60°,∴∠4=180°﹣∠5=120°,故答案为:120.14.解:∵四边形ABCD是矩形,∴AD∥BC,∵∠BEF=65°,∴∠DFE=∠BEF=65°,∠AFE=180°﹣∠BEF=115°,由折叠的性质知∠GFE=∠AFE=115°,则∠DFG=∠GFE﹣∠DFE=50°,故答案为:50°.15.解:由题意知,这两个角互补,设这两个角分别为x,y(x>y),则,解得:,故答案为:72°.16.解:由折叠的性质可得:∠MFE=∠EFC,∵∠BFM=∠EFM,可设∠BFM=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36°,∴∠BFM=36°.∴∠EFM=2∠BFM=72°,∴∠BFE=36°+72°=108°,故答案为:108°.17.解:2条直线相交有1个交点;3条直线相交有1+2=3个交点;4条直线相交有1+2+3=6个交点;5条直线相交有1+2+3+4=10个交点;6条直线相交有1+2+3+4+5=15个交点;…n条直线相交有1+2+3+5+…+(n﹣1)=n(n﹣1).故答案为:n(n﹣1).三.解答题(共4小题)18.(1)证明:∵AB∥CD,∴∠BEF=∠CFE,∵EM、FN分别平分∠BEF、∠CFE,∴∠FEM=∠EFN,∴EM∥FN;(2)解:∵AB∥CD,∴∠BEF+∠DFE=180°,∵EM、FG分别平分∠BEF、∠DFE,∴∠GFE=∠DFE,∠GEF=∠BEF,∴∠GFE+∠GEF=(∠BEF+∠DFE)=90°,∴∠EGF=180°﹣(∠GFE+∠GEF)=180°﹣90°=90°;(3)∠H=∠G;理由如下:过点H作HN∥AB,如图3所示:则HN∥CD,∴∠EH N=∠BEH,∠FHN=∠DFH,∴∠H=∠BEH+∠DFH,由(2)得:∠G=∠GFE+∠GE F=∠BEG+∠DFG,∵EH、FH分别平分∠BEG、∠DFG,∴∠BEH=∠BEG,∠DFH=∠DFG,∴∠H=∠BEH+∠DFH=(∠BEG+∠DFG)=∠G,同理,∠I=∠H=×∠G=∠G.19.解:∵∠1=∠2(已知),又∵∠2=∠AHB(对顶角相等),∴∠1=∠AHB(等量代换)∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换)∴AB∥CD(内错角相等,两直线平行),故答案为:对顶角相等,CE,BF,同位角相等,两直线平行,C,两直线平行,同位角相等,等量代换,内错角相等,两直线平行.20.解:探索发现:∴∠APQ=∠A,∵PQ∥AB,AB∥CD,∴PQ∥CD,∴∠APQ=∠C,∴∠APQ+∠CPQ=∠A+∠C,∴∠APC=∠A+∠C;类比思考:①∠APC+∠A+∠C=360°;理由如下:过点P作PQ∥AB,延长BA到M,延长DC到N,如图2所示:∴∠APQ=∠PAM,∵PQ∥AB,AB∥CD,∴PQ∥CD,∴∠APQ=∠PCN,∴∠APQ+∠CPQ+∠PAB+∠PCD=180°+180°=360°,∴∠APC+∠A+∠C=360°,故答案为:∠APC+∠A+∠C=360°;②α+β﹣γ=180°;理由如下:过点M作MQ∥AB,如图3所示:∴α+∠QMA=180°,∵MQ∥AB,AB∥CD,∴MQ∥CD,∴∠QMD=γ,∵∠QMA+∠QMD=β,∴α+β﹣γ=180°,故答案为:α+β﹣γ=180°;解决问题:①∠AFC=∠APC;理由如下:过点P作PQ∥AB,过点F作FM∥AB,如图4所示:∴∠APQ=∠BAP,∠AFM=∠BAF,∵AF平分∠BAP,∴∠BAF=∠PAF,∴∠AFM=∠BAP,∵PQ∥AB,FM∥A B,AB∥CD,∴PQ∥CD,FM∥CD,∴∠CPQ=∠DCP,∠CFM=∠DCF,∵CF平分∠DCP,∴∠DCF=∠PCF,∴∠CFM=∠DCP,∴∠APC=∠BAP+∠DCP,∠AFC=∠BAP+∠DCP=(∠BAP+∠DCP),∴∠AFC=∠APC,故答案为:∠AFC=∠APC;②∠AFC=180°﹣∠APC;理由如下:过点P作PH∥AB,过点F作FQ∥AB,延长BA到M,延长DC到N,如图5所示:∴∠APH=∠MAP,∠AFQ=∠BAF,∵AF平分∠BAP,∴∠BAF=∠PAF,∴2∠AFQ=∠BAP,∵PH∥AB,FQ∥AB,AB∥CD,∴PH∥CD,FQ∥CD,∴∠CPH=∠NCP,∠CFQ=∠DCF,∵CF平分∠DCP,∴∠DCF=∠PCF,∴2∠CFQ=∠DCP,∵∠BAP+∠MAP=180°,∠DCP+∠NCP=180°,∴2∠AFQ+∠APH=180°,2∠CFQ+∠CPH=180°,∴2∠AFQ+∠APH+2∠CFQ+∠CPH=360°,即2∠AFC+∠APC=360°,∴∠AFC=180°﹣∠APC,故答案为:∠AFC=180°﹣∠APC.21.解:(1)结论:∠APB=∠1+∠3.理由:如图1中,作PM∥a,则∠1=∠APM,∵PM∥a,a∥b,∴PM∥b,∴∠MPB=∠3,∴∠APB=∠APM+∠MPB=∠1+∠3.(2)如图2中,结论:∠APB=∠3﹣∠1.理由:作PM∥a,则∠1=∠APM,∵PM∥a,a∥b,∴PM∥b,∴∠MPB=∠3,∴∠APB=∠MPB﹣∠MPA=∠3﹣∠1.如图3中,结论:∠APB=∠3﹣∠2.理由:作PM∥a,则∠3=∠APM,∵PM∥a,a∥b,∴PM∥b,∴∠MPB=∠2,∴∠APB=∠MPA﹣∠MPB=∠3﹣∠1.。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0.【解析】【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数.【详解】若存在n 满足题意.设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0, ①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍. ②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍), 综上所述,n=0.2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1, ∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣13.发现思考:已知等腰三角形ABC 的两边分别是方程x 2﹣7x+10=0的两个根,求等腰三角形ABC 三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x 2﹣7x+10=0a=1 b=﹣7 c=10∵b 2﹣4ac=9>0∴2b b 4ac -±-732± ∴x 1=5,x 2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC 的两边是关于x 的方程x 2﹣mx+m 2﹣14=0的两个实数根. (1)当m=2时,求△ABC 的周长;(2)当△ABC 为等边三角形时,求m 的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC 的周长为72;(2)当△ABC 为等边三角形时,m 的值为1.【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m )2﹣4(m 2﹣14)=m 2﹣2m+1,可求得m. 【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5. 错误原因:此时不能构成三角形.(1)当m=2时,方程为x 2﹣2x+34=0, ∴x 1=12,x 2=32.当12为腰时,12+12<32,∴12、12、32不能构成三角形;当32为腰时,等腰三角形的三边为32、32、12,此时周长为32+32+12=72.答:当m=2时,△ABC的周长为72.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.4.从图象来看,该函数是一个分段函数,当0≤x≤m时,是正比例函数,当x>m时是一次函数.【小题1】只需把x代入函数表达式,计算出y的值,若与表格中的水费相等,则知收取方案.5.解下列方程:(1)2x2-4x-1=0(配方法);(2)(x+1)2=6x+6.【答案】(1)x1=1x2=11=-1,x2=5.【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x2-2x=12,∴x2-2x+1=32.∴(x-1)2=32.∴x-1=.∴x 1=1+2,x 2=1-2. (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.∴x +1=0或x +1-6=0.∴x 1=-1,x 2=5.6.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【解析】【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.7.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x 元(40≤x ≤60),每星期的销售量为y 箱.(1)求y 与x 之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y =-10x +780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x 元,则多销售的数量为60-x, (2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x 元(40≤x≤60),则y=180+10(60-x )=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w ,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10<0,二次函数向下,函数有最大值,当x=59时, 利润最大,为3610元.【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.8.关于x 的一元二次方程x 2﹣2x ﹣(n ﹣1)=0有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.【答案】(1)n >0;(2)x 1=0,x 2=2.【解析】【分析】(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案.【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯-->解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数,∴1n =,则方程为220x x -=,即(2)0x x -=,解得120,2x x ==.【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.9.已知关于x 的方程x 2-(m +2)x +(2m -1)=0。
中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。
答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。
答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。
答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。
答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。
解:首先,将方程因式分解为(x - 6)(x + 2) = 0。
然后,解得x = 6或x = -2。
答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。
若长方体的体积为V,求V的表达式。
解:由题意可知,a + c = 2b,所以c = 2b - a。
长方体的体积V = abc = ab(2b - a)。
答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。
一次函数图象与性质的综合应用1.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是(C )2.如图,在Rt △ABC 中,∠C =90°,AC =1 cm ,BC =2 cm ,点P 从点A 出发,以1 cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能够反映y 与x 之间函数关系的图象大致是(A ),(第2题图))(第14题图)3.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应为点为直线y =34x 上一点,则点B 与其对应点B ′间的距离为 (C )A. 94B. 3C. 4D. 54.汽车以60 km/h 的速度在公路上匀速行驶,1 h 后进入高速路,继续以100 km/h 的速度匀速行驶,则汽车行驶的路程s (km)与行驶的时间t (h)的函数关系的大致图象是(C )5.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是(C )A. 1<m <7B. 3<m <4C. m >1D. m <46.如图,已知一条直线经过点A (0,2),B (1,0),将这条直线向左平移,使其与x 轴、y 轴分别交与点C ,D .若DB =DC ,则直线CD 的函数表达式为y =-2x -2.,(第6题图))7.已知直线y =-(n +1)n +2x +1n +2(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012=__5032014__.解:令x =0,则y =1n +2; 令y =0,则-n +1n +2x +1n +2=0, 解得x =1n +1. ∴S n =12·1n +1·1n +2=12⎝ ⎛⎭⎪⎫1n +1-1n +2,∴S 1+S 2+S 3+…+S 2012=12×⎝ ⎛12-13+13-14+14-15+…+12013-⎭⎪⎫12014=12×⎝ ⎛⎭⎪⎫12-12014=5032014. 8.已知直线y =kx +b ,若k +b =5,kb =6,那么该直线不经过第__四__象限.9.如图,点A ,B 的坐标分别为(0,2),(3,4),点P 为x 轴上的一点.若点B 关于直线AP 的对称点B ′恰好落在x 轴上,则点P 的坐标为__(43,0)__.(第9题图)10.已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(第10题图水银柱的长度x (cm) 4.2 … 8.2 9.8 体温计的读数y (℃)35.0…40.042.0(1)求y 关于的函数关系式(不需要写出函数自变量的取值范围).(2)用该体温计测体温时,水银柱的长度为6.2 cm ,求此时体温计的读数.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35=4.2k +b ,40=8.2k +b ,解得⎩⎪⎨⎪⎧k =54,b =29.75.∴y =54x +29.75.∴y 关于x 的函数关系式为y =54x +29.75.(2)当x =6.2时,y =×6.2+29.75=37.5.答:此时体温计的读数为37.5 ℃.(第11题图)11.如图,一次函数y =ax +b 与反比例函数y =k x的图象交于A ,B 两点,点A 坐标为(m ,2),点B 坐标为(-4,n ),OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C作y 轴的垂线,交反比例函数图象于点D ,连结OD ,BD . (1)求一次函数与反比例函数的表达式. (2)求四边形OCBD 的面积.解:(1)如解图,过点A 作AE ⊥x 轴于点E .(第11题图解)∵点A (m ,2),tan∠AOE =13,∴tan ∠AOE =AE OE =2m =13,∴m =6,∴点A (6,2).∵y =k x 的图象过点A (6,2), ∴2=k6,∴k =12,∴反比例函数的表达式为 y =12x.∵点B (-4,n )在 y =12x的图象上,∴n =12-4=-3,∴点B (-4,-3).∵一次函数y =ax +b 过A ,B 两点,∴⎩⎪⎨⎪⎧6k +b =2,-4k +b =-3,解得⎩⎪⎨⎪⎧k =12,b =-1.∴一次函数的表达式为y =12x -1.(2)对于y =12x -1,当x =0时,y =-1,∴点C (0,-1). 当y =-1时,-1=12x,∴x =-12,∴点D (-12,-1), ∴S 四边形OCDB =S △ODC +S △BDC=12×|-12|×|-1|+12×|-12|×|(-3)-(-1)| =6+12 =18.12.甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h ,并且甲车途中休息了0.5 h ,如图是甲、乙两车行驶的距离y (km)与时间x (h)的函数图象.(第12题图)(1)求出图中m ,a 的值.(2)求出甲车行驶路程y (km)与时间x (h)的函数表达式,并写出相应的x 的取值范围. (3)当乙车行驶多长时间时,两车恰好相距50 km? 解:(1)由题意,得 m =1.5-0.5=1.120÷(3.5-0.5)=40, ∴a =40×1=40. ∴a =40,m =1.(2)∵260÷40=6.5,6.5+0.5=7,∴0≤x ≤7.当0≤x ≤1时,设y 与x 之间的函数表达式为y =k 1x ,由题意,得 40=k 1, ∴y =40x ;当1<x ≤1.5时, y =40;当1.5<x ≤7时,设y 与x 之间的函数表达式为y =k 2x +b ,由题意,得⎩⎪⎨⎪⎧40=1.5k 2+b ,120=3.5k 2+b , 解得⎩⎪⎨⎪⎧k 2=40,b =-20.∴y =40x -20.∴y =⎩⎪⎨⎪⎧40x (0≤x ≤1),40(1<x ≤1.5),40x -20(1.5<x ≤7).(3)设乙车行驶的路程y 与时间x 之间的函数表达式为y =k 3x +b 3,由题意,得⎩⎪⎨⎪⎧0=2k 3+b 3,120=3.5k 3+b 3, 解得⎩⎪⎨⎪⎧k 3=80,b 3=-160.∴y =80x -160.当40x -20-50=80x -160时, 解得x =94.当40x -20+50=80x -160时, 解得x =194.94-2=14,194-2=114. 答:乙车行驶14 h 或114h ,两车恰好相距50 km.13.经统计分析,某市跨河大桥上的车流速度v (千米/小时)是车流密度x (辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x ≤220时,车流速度v 是车流密度x 的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数(即:车流量=车流速度×车流密度).求大桥上车流量y 的最大值.解:(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,由题意,得⎩⎪⎨⎪⎧80=20k +b ,0=220k +b , 解得⎩⎪⎨⎪⎧k =-25,b =88.∴当20≤x ≤220时,v =-25x +88,当x =100时,v =-25×100+88=48(千米/小时).(2)由题意,得⎩⎪⎨⎪⎧-25x +88>40,-25x +88<60,解得70<x <120.∴应控制大桥上的车流密度在70~120辆/千米范围内. (3)设车流量y 与x 之间的关系式为y =vx , 当0≤x ≤20时, y =80x .∵k =80>0,∴y 随x 的增大而增大, ∴x =20时,y 最大=1600; 当20≤x ≤220时y =(-25x +88)x =-25(x -110)2+4840,∴当x =110时,y 最大=4840. ∵4840>1600,∴当车流密度是110辆/千米,车流量y 取得最大值,是每小时4840辆.14.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳设享受医保的某居民一年的大病住院医疗费用为元,按上述标准报销的金额为y 元. (1)直接写出x ≤50000时,y 关于x 的函数表达式,并注明自变量x 的取值范围. (2)若某居民大病住院医疗费用按标准报销了20000元,则他住院医疗费用是多少元? 解:(1)由题意得:①当x ≤8000时,y =0;②当8000<x ≤30000时,y =(x -8000)×50%=0.5x -4000;③当30000<x ≤50000时,y =(30000-8000)×50%+(x -30000)×60%=0.6x -7000. (2)当花费30000元时,报销钱数为y =0.5×30000-4000=11000, ∵20000>11000,∴他的住院医疗费用超过30000元,当花费是50000元时,报销钱数为y =11000+20000×0.6=23000(元), 故住院医疗费用小于50000元.故把y =20000代入y =0.6x -7000中,得 20000=0.6x -7000, 解得x =45000.答:他住院医疗费用是45000元.15.某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同. (1)求甲、乙两种油茶树苗每株的价格.(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少? 解:(1)设甲、乙两种油茶树苗每株的价格分别为x 元,y 元,由题意,得 ⎩⎪⎨⎪⎧y =x +3,100x=160y ,解得⎩⎪⎨⎪⎧x =5,y =8.答:甲、乙两种油茶树苗每株的价格分别为5元,8元.(2)设购买甲种树苗a 株,则购买乙种树苗(1000-a )株,由题意,得 5a +8(1000-a )=5600,解得a =800,∴乙种树苗购买株数为1000-800=200株.答:购买甲种树苗800株,购买乙种树苗200株.(3)设购买甲种树苗b 株,则购买乙种树苗(1000-b )株,设购买的总费用为W 元,由题意,得90%b +95%(1000-b )≥1000×92%, 解得b ≤600.易得W =5b +8(1000-b )=-3b +8000, ∵k =-3<0,∴W 随b 的增大而减小,∴当b =600时,W 最低=6200元.答:购买甲种树苗600株,购买乙种树苗400株时,费用最低,最低费用是6200元. 16.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放.某日从上午7点到10点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的变化趋势如图①,每个无人售票窗口售出的车票数y 2(张)与售票时间x (h)的变化趋势是以原点为顶点的抛物线的一部分,如图②.若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同. (1)求图②中所确定抛物线的表达式.(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?(第16题图)解:(1)设y 2=ax 2,当x =2时,y 1=y 2=40,把点(2,40)的坐标代入y 2=ax 2,得 4a =40, 解得a =10,∴y 2=10x 2.(2)设y 1=kx +b (1≤x ≤3),把点(1,0),(2,40)的坐标分别代入y 1=kx +b ,得⎩⎪⎨⎪⎧k +b =0,2k +b =40,解得⎩⎪⎨⎪⎧k =40,b =-40. ∴y 1=40x -40.∴当x =3时,y 1=80,y 2=90.设需要开放m 个普通售票窗口,由题意,得 80m +90×5≥900,∴m ≥558.∵m 取整数, ∴m ≥6.答:至少需要开放6个普通售票窗口.。
专题:《四边形》(专题测试-提高)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(每题4分,共48分)1.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6 B.n=7 C.n=8 D.n=92.如图,点P是四边形ABCD内的一点,AP平分∠DAB,BP平分∠ABC,设∠C+∠D 的大小为x,∠P的大小为y,则x,y的关系是()A.y=2x﹣180°B.y=x C.y=x D.y=180°﹣x 3.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B.C.D.44.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=1,则AB的长是()A.1 B.2 C.D.25.用边长为1的正方形做了一套七巧板,拼成如图所示的一座桥,则桥中阴影部分的面积为原正方形面积的()A.B.C.D.不能确定6.如图,在四边形ABCD中,E、F分别是边AD、BC的中点,连AC、BE、DF、CE,AC分别交BE、DF于G、E,判断下列结论:(1)BF=DE;(2)AG=GH=HC;(3)EG=BG;(4)S=6S△AGE,其中正确的结论有()△BCEA.1 B.2 C.3 D.47.如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,则下列说法正确的是()A.若四边形EFGH是平行四边形,则AC与BD相等B.若四边形EFGH是正方形,则AC与BD互相垂直且相等C.若AC=BD,则四边形EFGH是矩形D.若AC⊥BD,则四边形EFGH是菱形8.我们知道,勾股定理反映了直角三角形三条边的关系:a2+b2=c2,而a2,b2,c2又可以看成是以a,b,c为边长的正方形的面积.如图,在Rt△ABC中,∠ACB=90°,BC=a,AC=b,O为AB的中点分别以AC,BC为边向△ABC外作正方形ACFG,BCED,连结OF,EF,OE,则△OEF的面积为()A.B.C.D.9.如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC相交于点O,连接DE.若∠AOD=120°,AC=4,则CD的大小为()A.8 B.4C.8D.610.如图,正方形ABCD的边长为2,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.B.2C.2D.11.下列图形中有大小不同的平行四边形,第一幅图中有1个平行四边形,第二幅图中有3个平行四边形,第三幅图中有5个平行四边形,则第6幅和第7幅图中合计有()个平行四边形.A.22 B.24 C.26 D.2812.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB于点E,点F、G分别是AD、BC的中点,连接CF、EF、FG,下列结论:①CE⊥FG;②四边形ABGF是菱形;③EF=CF;④∠EFC=2∠CFD.其中正确的个数是()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题(每题4分,共20分)13.如果梯形两底分别为4和6,高为2,那么两腰延长线的交点到这个梯形的较大底边的距离是.14.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,外角∠1,∠2,∠3,∠4的和等于220°,则∠BOD的度数是度.15.如图,在矩形ABCD中,已知AB=2,点E是BC边的中点,连接AE,△AB′E和△ABE关于AE所在直线对称,若△B′CD是直角三角形,则BC边的长为.16.小明用四根长度相同的木条制作了能够活动的菱形学具,他先把活动学具制作成图1所示菱形,并测得∠B=60°,接着活动学具制作成图2所示正方形,并测得正方形的对角线AC=acm,则图1中对角线AC的长为cm.17.一组正方形按如图所示放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C…在x轴上.已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,3则正方形A2019B2019C2019D2019的边长是.三.解答题(每题8分,共32分)18.如图,△ABC中,∠C=90°,AC=20,BC=10,动点D从A出发,以每秒10个单位长度的速度向终点C运动.过点D作DF⊥AC交AB于点F,过点D做AB的平行线,与过点F且与AB垂直的直线交于点E,设点D的运动时间为t(秒)(>0)(1)用含t的代数式表示线段DE的长;(2)求当点E落在BC边上时t的值;(3)设△DEF与△ABC重合部分图形的面积为S(平方单位),求S与t的函数关系式;(4)连结EC,若将△DEC沿它自身的某边翻折,翻折前后的两个三角形能形成菱形直接写出此时t的值.19.已知:如图,▱ABCD的对角线AC、BD相交于点O,∠BDC=45°,过点B作BH⊥DC交DC的延长线于点H,在DC上取DE=CH,延长BH至F,使FH=CH,连接DF、EF.(1)若AB=2,AD=,求BH的值;(2)求证:AC=EF.20.如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(与点O 不重合),作AF⊥BE,垂足为G,交BC于F,交BO于H,连接OG,CG.(1)求证:AH=BE;(2)试探究:∠AGO的度数是否为定值?请说明理由;的值.(3)若OG⊥CG,BG=2,求S21.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在D的右侧作正方形ADEF,解答下列问题:(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图2,线段CF,BD之间的位置关系为,数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动(如图4)当∠ACB=时,CF⊥BC(点C,F重合除外)?(3)若AC=4,BC=3.在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.参考答案一.选择题1.解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.2.解:∵四边形ABCD,∠C+∠D的大小为x,∴∠DAB+∠ABC=360°﹣x,∵AP平分∠DAB,BP平分∠ABC,∴∠PAB+∠PBA=,∵∠P的大小为y,∴∠P=180°﹣(∠PAB+∠PBA),即y=180°﹣(360°﹣x)=x,故选:B.3.解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.4.解:在矩形ABCD中,OA=OB=OD,∵∠AOD=60°,∴△AOD是等边三角形,∴OD=AD=1,∴BD=1+1=2,由勾股定理得,AB===.故选:C.5.解:读图可得,阴影部分的面积为原正方形的面积的一半,则阴影部分的面积为1×1÷2=;是原正方形的面积的一半;故选A.6.解:(1)∵▱ABCD,∴AD=BC,AD∥BC.∵E、F分别是边AD、BC的中点,∴BF∥DE,BF=DE.∴BEDF为平行四边形,BE=DF.故正确;(2)根据平行线等分线段定理可得AG=GH=HC.故正确;(3)∵AD∥BC,AE=AD=BC,∴△AGE∽△CGB,AE:BC=EG:BG=1:2,∴EG=BG.故正确.(4)∵BG=2EG,∴△ABG的面积=△AGE面积×2,∴S△ABE=3S△AGE.又∵S△BCE=2S△ABE.∴S△BCE=6S△AGE.故正确.故选:D.7.解:∵E、F分别是边AB、BC的中点,∴EF∥AC,EF=AC,同理可知,HG∥AC,HG=AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,AC与BD不一定相等,A说法错误;四边形EFGH是正方形时,AC与BD互相垂直且相等,B说法正确;若AC=BD,则四边形EFGH是菱形,C说法错误;若AC⊥BD,则四边形EFGH是矩形,D说法错误;故选:B.8.解:如图,过点O作OH⊥AC于点H,∵∠ACB=90°∴OH∥BC设OF与AC交于点G,∴=∵O为AB的中点,∴H为AC的中点,∴OH BC=a,AH=AC=b,设CG=x,则GH=b﹣x,∴=解得x=∴S△OEF=(EC+CG)•(FC+OH)=(a+)•(b+a)=(a2+2ab+b2)=(a+b)2故选:D.9.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=DC,∵CE=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形,∵AB=DC,AE=AB,∴AE=DC,∴四边形ACED是矩形;∴OA=AE,OC=CD,AE=CD,∴OA=OC,∵∠AOC=180°﹣∠AOD=180°﹣120°=60°,∴△AOC是等边三角形,∴OC=AC=4,∴CD=2OC=8;故选:A.10.解:设EF=x,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,∴BD=AB=2,EF=BF=x,∴BE=x,∵∠BAE=22.5°,∴∠DAE=90°﹣22.5°=67.5°,∴∠AED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠DAE,∴AD=ED,∴BD=BE+ED=x+2=2,解得:x=2﹣,即EF=2﹣;故选:B.11.解:根据图形分析可知:第1幅时,有2×1﹣1=1个平行四边形;第2幅时,有2×2﹣1=3个平行四边形;第3幅时,有2×3﹣1=5个平行四边形;第4幅时,有2×4﹣1=7个平行四边形;…;第n幅时,有2×n﹣1=2n﹣1个平行四边形;∴第6幅图时,有2×6﹣1=11个平行四边形,第7幅图,有2×7﹣1=13个平行四边形,∴第6幅和第7幅图中合计有11+13=24个平行四边形;故选:B.12.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点F、G分别是AD、BC的中点,∴AF=AD,BG=BC,∴AF=BG,∵AF∥BG,∴四边形ABGF是平行四边形,∴AB∥FG,∵CE⊥AB,∴CE⊥FG;故①正确;∵AD=2AB,AD=2AF,∴AB=AF,∴四边形ABGF是菱形,故②正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=EF=FM,故③正确;∴∠FCD=∠M,∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故④正确,故选:D.二.填空题(共5小题)13.解:在梯形BCED中,作AG⊥BC于G,交DE于F,如图所示:∵DE∥BC,∴△ADE∽△ABC,∴===,解得:AF=4,∴AG=AF+GF=4+2=6.故答案为:6.14.解:在DO延长线上找一点M,如图所示.∵多边形的外角和为360°,∴∠BOM=360°﹣220°=140°.∵∠BOD+∠BOM=180°,∴∠BOD=180°﹣∠BOM=180°﹣140°=40°.故答案为:4015.解:连接BB′,∵BE=B′E=EC,∴∠BB′C=90°,∴∠B′CD<90°,(1)如图1,∠B′DC=90°,则四边形ABEB′和ECDB′是正方形,∴BC=2AB=4,(2)如图2,∠CB′D=90°,则B,B′D三点共线,设AE,BB′交于F,则F,B′是对角线BD的三等分点,∵△BCB′∽△CDB′,∴==,∴=, ∴BC =CD =2,故答案为:4或2.16.解:如图1,2中,连接AC .在图2中,∵四边形ABCD 是正方形,∴AB =BC ,∠B =90°,∵AC =a ,∴AB =BC =a ,在图1中,∵∠B =60°,BA =BC ,∴△ABC 是等边三角形,∴AC =BC =a ,故答案为:a ,17.解:∵∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,∴∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,1111则B2C2===()1,同理可得:B3C3==()2,故正方形A n B n∁n D n的边长是:()n﹣1.则正方形A2019B2019C2019D2019的边长是:()2018.故答案为:()2018.三.解答题(共4小题)18.解:(1)∵DF⊥AC,∴∠ADF=∠C=90°,∴tan∠A====,∵AD=t,∴DF=t,∵EF⊥AB,∴∠EFD+∠AFD=90°,又∵∠AFD+∠A=90°,∴∠EFD=∠A,在Rt△ABC中,AB==10,sin∠A====,∴sin∠EFD==,∴DE=DF=t;(2)当点E落在BC边上时,如图1,∵DE∥AB,∴∠EDC=∠A,∴EC=DE=t,∵DE∥BF,BE∥DF,∴四边形DEBF为平行四边形,∴BE=DF=t,∵BE+CE=BC=10,∴t+t=10,解得,t=;(3)当0<t≤时,△DEF在△ABC内部,∴△DEF的面积即为△DEF与△ABC重合部分图形的面积,∴S=S△DEF=DE•EF=×t×t=t2;当<t≤20时,如图2所示,过点E作EH⊥AD交AD的延长线于点H,则EH=DE=t,∴DH=2EH=t,∵DC=AC﹣AD=20﹣t,∴CH=DH﹣DC=t﹣20,∵MN∥ED,∴△EMN∽△EFD,∴==,∵=t2,∴=t2﹣60t+500,∴S四边形MNDF=S△DEF﹣S△EMN=t2﹣(t2﹣60t+500)=﹣t2+60t﹣500,综上所述,S=;(3)当△DEC是等腰三角形时,沿着它的底边翻折,翻折前后的两个三角形形成的四边形的四边相等,即为菱形,①如图3﹣1,当ED=DC时,沿DC翻折,得到菱形EDPC,连接EP交DC于O,则EO=DE=t,∴DO=2EO=t,DC=2DC=t,∵DC=AC﹣AD,∴t=20﹣t,∴t=;②如图3﹣2,当DE=DC时,沿EC翻折,得到菱形EDCP,则DC=DE=t,∵DC=AC﹣AD,∴t=20﹣t,∴t=;③如图3﹣3,当CD=CE时,沿延DE翻折,得到菱形EPDC,连接PC,交DE于O,∵DE=t,∴DO=DE=t,∴OC=DO=t,DC=OC=t,∵DC=AC﹣AD,∴t=20﹣t,∴t=,综上所述,t的值为或或.19.(1)解:过点A作AN⊥BD于N,如图1所示:∵四边形ABCD为平行四边形,∴AB∥CD,∴∠ABD=∠BDC=45°,∵AN⊥BD,∴△ABN是等腰直角三角形,∵AB=2,∴AN=BN=AB=,DN===2,∴BD=BN+DN=+2=3,∵BH⊥DC,∴△BDH是等腰直角三角形,∴BH=DH=BD=×3=3;(2)证明:取DH的中点M,连接OM,如图2所示:∵四边形ABCD是平行四边形,∴OB=OD,∴OM是△BDH的中位线,∴OM∥BH,OM=BH=DH=DM,设DE=a,CE=b,则CH=FH=a,CD=EH=CE+CH=a+b,BH=DH=DE+CE+CH =2a+b,∴OM=DM=(2a+b),∴CM=CD﹣DM=a+b﹣(2a+b)=b,在Rt△OMC中,由勾股定理得:OC2=OM2+CM2=(2a+b)2+b2=AC2,∴AC2=(2a+b)2+b2=4a2+4ab+2b2=2(2a2+2ab+b2),在Rt△EHF中,由勾股定理得:EF2=EH2+FH2=(a+b)2+a2=2a2+2ab+b2,∴AC2=2EF2,∴AC=EF.20.(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠AOB=∠BOE=90°,∵AF⊥BE,∴∠GAE+∠AEG=∠OBE+∠AEG=90°.∴∠GAE=∠OBE,在△AOH和△BOE中,,∴△AOH≌△BOE(ASA),∴AH=BE.(2)解:∠AGO的度数为定值,理由如下:∵∠AOH=∠BGH=90°,∠AHO=∠BHG,∴△AOH∽△BGH,∴=,∴=,∵∠OHG=∠AHB,∴△OHG∽△AHB,∴∠AGO=∠ABO=45°,即∠AGO的度数为定值.(3)解:∵∠ABC=90°,AF⊥BE,∴∠BA G=∠FBG,∠AGB=∠BGF=90°,∴△ABG∽△BFG,∴=,∴AG•GF=BG2=20,∵△AHB∽△OHG,∴∠BAH=∠GOH=∠GBF.∵∠AOB=∠BGF=90°,∴∠AOG=∠GFC,∵∠AGO=45°,CG⊥GO,∴∠AGO=∠FGC=45°.∴△AGO∽△CGF,∴=,∴GO•CG=AG•GF=20.∴S△OGC=CG•GO=10.21.解:(1)CF⊥BD,CF=BD,理由如下:∵四边形ADEF是正方形,∴∠DAF=90°,AD=AF,∵AB=AC,∠BAC=90°,∴∠BAD+∠DAC=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴CF=BD,∴∠B=∠ACF,∴∠B+∠BCA=90°,∴∠BCA+∠ACF=90°,即CF⊥BD;故答案为:CF⊥BD,CF=BD;②当点D在BC的延长线上时,①的结论仍成立.如图2,由正方形ADEF得:AD=AF,∠DAF=90°.∵∠BAC=90°,∴∠DAF=∠BAC.∴∠DAB=∠FAC.又∵AB=AC,∴△DAB≌△FAC(SAS).∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠A CF=45°.∴∠BCF=∠ACB+∠ACF=90°,∴CF⊥BD;(2)当∠BCA=45°时,CF⊥BD;理由如下:如图3,过点A作AC的垂线与CB所在直线交于G,∵∠ACB=45°,∴△AGC等腰直角三角形,∴AG=AC,∠AGC=∠ACG=45°,∵AG=AC,AD=AF,∵∠GAD=∠GAC﹣∠DAC=90°﹣∠DAC,∠FAC=∠FAD﹣∠DAC=90°﹣∠DAC,∴∠GAD=∠FAC,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGD=45°,∴∠GCF=∠GCA+∠ACF=90°,∴CF⊥BC;故答案为:45°;(3)过点A作AQ⊥BC交CB的延长线于点Q,如图4所示:∵DE与CF交于点P时,此时点D位于线段CQ上,∵∠BCA=45°,AC=4,∴△ACQ是等腰直角三角形,∴AQ=CQ=4.设CD=x,则DQ=4﹣x,∵∠ADB+∠ADE+∠PDC=180°且∠ADE=90°,∴∠ADQ+∠PDC=90°,又∵在直角△PCD中,∠PDC+∠DPC=90°∴∠ADQ=∠DPC,∵∠AQD=∠DCP=90°∴△AQD∽△DCP,∴=,即=.解得:CP=﹣x2+x=﹣(x﹣1)2+1.∵0<x≤3,∴当x=1时,CP有最大值1,即线段CP长的最大值为1.。
中考数学复习《多边形》专题练习(含答案)(1)中考数学专题练习多边形一、选择题1.(·云南)一个五边形的内角和为( )A. 540oB. 450oC. 360oD. 180o2. (2018·南通)若一个凸多边形的内角和为720o,则这个多边形的边数为( )A. 4B. 5C. 6D. 73. (2018·呼和浩特)已知一个多边形的内角和为1 080o,则这个多边形是( )A.九边形B.八边形C.七边形D.六边形4. ( 2018·台州)正十边形的每一个内角的度数为( )A. 120oB. 135oC. 140oD. 144o5. (2018·曲靖)若一个正多边形的内角和为720o,则这个正多边形的每一个内角是( )A. 60oB. 90oC. 108oD. 120o6. ( 2018·宁波)已知正多边形的一个外角等于40o,那么这个正多边形的边数为( )A. 6B. 7C. 8D.97. (2018·北京)若正多边形的一个外角是60o,则该正多边形的内角和为( )A. 360oB. 540oC. 720oD. 900o8. (2018·宿迁)如果一个多边形的内角和是外角和的3倍,那么这个多边形的边数是( )A. 8B. 9C. 10D. 119. (2018·济宁)如图,在五边形ABCDE 中,300A B E ∠+∠+∠=?,,DP CP 分别平分EDC ∠,BCD ∠,则P ∠的度数是( )A. 50oB. 55oC. 60oD. 65o10. (2018·双鸭山)如图,在四边形ABCD 中,AB AD =,5AC =,90DAB DCB ∠=∠=?,则四边形ABCD 的面积为( )A. 15B. 12.5C. 14.5D. 17二、填空题11. (2018·福建)一个n 边形的内角和为360o,则n 的值为 .12. (2018·广安)一个n 边形的每一个内角等于108o,那么n 的值为 .13. (2018·菏泽)若正多边形的每一个内角为135o,则这个正多边形的边数是 .14. (2018·上海)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 .15. (2018·江汉油田)若一个多边形的每个外角都等于30o,则这个多边形的边数为 .16. (2018·怀化)一个多边形的每一个外角都是36o,则这个多边形的边数是 .17. (2018·山西)图①是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消融,形状无一定规则,代表一种自然和谐美.图②是从图①冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= .18. (2018·邵阳)如图,在四边形ABCD 中,AD AB ⊥,110C ∠=?,它的一个外角60ADE ∠=?,则B ∠的大小是 .19. (2018·陕西)如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE ∠的度数为 .20. (2018·抚顺)将两张三角形纸片如图摆放,量得1234220∠+∠+∠+∠=?,则5∠的度数为 .21. (2018·南京)如图,五边形ABCDE 是正五边形.若12//l l ,,则12∠-∠= .22. (2018·贵阳)如图,,M N 分别是正五边形ABCDE 的两边,AB BC 上的点.若AM BN =,点O 是正五边形的中心,则MON ∠的度数是 .23. (2018·株洲)如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则BOM ∠的度数为 .24. (2018·宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.设⊙O 的半径为1,若用⊙O 的外切正六边形的面积S 来近似估计⊙O 的面积,则S = . (结果保留根号) 25. (2018·呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为 .26.(导学号78816049)(2018·聊城)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .三、解答题27. (2018·河北)如图①,作BPC ∠的平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=?,而90452?=?是360o(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图②所示.(1)图②中的图案外轮廓周长是 ;(2)在所有符合要求的图案中选一个外轮廓周长最大的定为会标,求该会标的外轮廓周长.参考答案一、1. A 2. C 3. B 4. D 5. D 6. D 7. C 8. A 9. C10. B二、填空题11. 412. 513. 814. 540?15. 1216. 1017. 360?18. 40?19. 72?20. 40?21. 72?22. 72?23. 48?24. 25.26. 540?或360?或180?三、27. (1) 14(2) 会标的外轮廓周长为21。
中考冲刺:创新、开放与探究型问题—巩固练习(提高)【巩固练习】一、选择题1. 下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为()A、55B、42C、41D、292.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D 重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯3.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ) A.495 B.497 C.501 D.503二、填空题4. 如图所示,一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个5×3的矩形用不同的方式分割后,小正方形的个数可以是____ ____.5. 一园林设计师要使用长度为4L 的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O 为圆心的两个同心圆弧和延长后通过O 点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)使图①花圃面积为最大时R -r 的值为 ,以及此时花圃面积为 ,其中R 、r 分别为大圆和小圆的半径;(2)若L =160 m ,r =10 m ,使图面积为最大时的θ值为 .6.如图所示,已知△ABC 的面积1ABC S =△,在图(a)中,若11112AA BB CC AB BC CA ===,则11114A B C S =△; 在图(b)中,若22213AA BB CC AB BC CA ===,则222A B C 13S =△;在图(c),若33314AA BB CC AB BC CA ===,则333716A B C S =△.…按此规律,若88819AA BB CC AB BC CA ===,则888A B C S =△________.三、解答题7.如图所示,∠ABM 为直角,C 为线段BA 的中点,D 是射线BM 上的一个动点(不与点B 重合),连接AD ,作BE ⊥AD ,垂足为E ,连接CE ,过点E 作EF ⊥CE ,交BD 于F .(1)求证:BF =FD ;(2)∠A 在什么范围内变化时,四边形ACFE 是梯形?并说明理由;(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件14DG DA?并说明理由.8.如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.(1)①如图(a),求证:△ADC≌△ABE;②探究:图(a)中,∠BOC=________;图(b)中,∠BOC=________;图(c)中,∠BOC=________;(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)②根据图(d)证明你的猜想.9. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC上任取一点P(P 不与B,C重合),连接DP,作射线.PE⊥DP,PE与直线AB交于点E.(1)试确定CP=3时,点E的位置;(2)若设CP=x(x>0),BE=y(y>0),试写出y关于自变量x的函数关系式;(3)若在线段BC上能找到不同的两点P1,P2,使按上述作法得到的点E都与点A重合,试求出此时a的取值范围.10. 点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=k·AB.连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图(a),当k=1时,探究线段EF与EB的关系,并加以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC为特殊角),在图(b)中补全图形,完成证明.(2)如图(c),若∠ABC=90°,k≠l,探究线段EF与EB的关系,并说明理由.【答案与解析】一、选择题1.【答案】C;【解析】找出规律:∵图②平行四边形有5个=1+2+2,图③平行四边形有11个=1+2+3+2+3,图④平行四边形有19=1+2+3+4+2+3+4,∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41.故选C.2.【答案】A;【解析】由题意得,AD=12BC=52,AD1=AD﹣DD1=158,AD2=25532⨯,AD3=37532⨯,AD n=21532nn+⨯,故AP1=54,AP2=1516,AP3=26532⨯…APn=12532nn-⨯,故可得AP6=512532⨯.故选A.3.【答案】A ;【解析】根据题意,当第1位数字是3时,按操作要求得到的数字是3624862486248…,从第2位数字起每隔四位数重复一次6248,因为(100-1)被4整除得24余3,所以这个多位数前100位的所有数字之间和是3+(6+2+4)+(6+2+4+8)×24=495,答案选A . 二、填空题4.【答案】4或7或9或12或15;【解析】 一个5×3的矩形可以有下面几种分割方式,如图所示.5.【答案】(1)R -r 的值为4L ,以及此时花圃面积为24L ; (2)θ值为240π.【解析】要使花圃面积最大,则必定要求扇环面积最大.设扇环的圆心角为θ,面积为S ,根据题意得:2()180180R rL R r θπθπ=++- ()2()180R r R r πθ+=+-g ,∴180[2()]()L R r R r θπ--=+∴2222()360360360R r S R r θπθππθ=-=-22180[2()]()360()L R r R r R r ππ--=-+gg1[2()]()2L R r R r =---g 21()()2R r L R r =--+-22()416L L R r ⎡⎤=---+⎢⎥⎣⎦.∵02L R r <-<, ∴S 在4LR r -=时取最大值为216L .∴花圃面积最大时R -r 的值为4L,最大面积为224164L L ⨯=.(2)∵当4LR r -=时,S 取大值, ∴1604044L R r -===(m),40401050R r =+=+=(m),∴180[2()]180(160240)240()60L R r R r θπππ---⨯===+.6.【答案】1927. 【解析】1111111-3=224A B C S =⨯⨯△222A B C 2111-3=333S =⨯⨯△3331-3=4416A B C S =⨯⨯△…8888157191-3==998127A B C S =⨯⨯△2131-3=111(1)AnBnCn n nS n n n =⨯⨯-+++△三、解答题 7.【答案与解析】解:(1)Rt △AEB 中,∵AC =BC ,∴CE =12AB . ∴CB =CE .∴∠CEB =∠CBE .∵∠CEF =∠CBF =90°,∴∠BEF=∠EBF.∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°.∴∠FED=∠EDF.∴EF=FD.∴BF=FD.(2)由(1)得BF=FD,而BC=CA,∴CF∥AD,即AE∥CF.若AC∥EF,则AC=EF,∴BC=BF.∴BA=BD,∠A=45°.∴当0°<∠A<45°或45°<∠A<90°时,四边形ACFE为梯形.(3)作GH⊥BD,垂足为H,则GH∥AB.∵DG=14DA,∴DH=14DB.又F为BD的中点,∴H为DF的中点.∴GH为DF的中垂线.∴∠GDF=∠GFD.∵点G在ED上,∴∠EFD≥∠GFD.∵∠EFD+∠FDE+∠DEF=180°,∴∠GFD+∠FDE+∠DEF≤180°.∴3∠EDF≤180°.∴∠EDF≤60°.又∠A+∠EDF=90°,∴30°≤∠A<90°.∴30°≤∠A<90°时,DE上存在点G,满足条件DG=14 DA,8.【答案与解析】(1)证法一:∵△ABD与△ACE均为等边三角形,∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE.∴△ADC≌△ABE.证法二:∵△ABD与△ACE均为等边三角形,∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.∴△ADC可由△ABE绕着点A按顺时针方向旋转60°得到.∴△ABE ≌△ADC .②120°,90°,72°. (2)①360n°. ②证法一:依题意,知∠BAD 和∠CAE 都是正n 边形的内角,AB =AD ,AE =AC , ∴∠BAD =∠CAE =(2)180n n-°.∴∠BAD -∠DAE =∠CAE -∠DAE , 即∠BAE =∠DAC . ∴△ABE ≌△ADC . ∴∠ABE =∠ADC .∵∠ADC+∠ODA =180°, ∴∠ABO+∠ODA =180°.∴∠ABO+∠ODA+∠DAB+∠BOC =360°. ∴∠BOC+∠DAB =180°. ∴∠BOC =180°-∠DAB =(2)180360180n n n--=°°°. 证法二:延长BA 交CO 于F ,证∠BOC =∠DAF =180°-∠BAD .证法三:连接CE .证∠BOC =180°-∠CAE .9.【答案与解析】解:(1)作DF ⊥BC ,F 为垂足.当CP =3时,四边形ADFB 是矩形,则CF =3. ∴点P 与点F 重合.又∵BF ⊥FD ,∴此时点E 与点B 重合.(2)(i)当点P 在BF 上(不与B ,F 重合)时,(见图(a))∵∠EPB+∠DPF =90°,∠EPB+∠PEB =90°, ∴∠DPF =∠PEB .∴Rt △PEB ∽△ARt △DPF .∴BE FPBP FD=. ① 又∵ BE =y ,BP =12-x ,FP =x-3,FD =a ,代入①式,得312y x x a-=- ∴1(12)(3)y x x a =--,整理, 得21(1536)(312)y x x x a=-+<< ②(ii)当点P 在CF 上(不与C ,F 重合)时,(见上图(b))同理可求得BE FPBP FD=. 由FP =3-x 得21(1536)(03)y x x x a=-+<<.∴ 221(1536)(03)1(1536)(312).x x x ay x x a⎧--+<<⎪⎪=⎨⎪--+<<⎪⎩(3)解法一:当点E 与A 重合时,y =EB =a ,此时点P 在线段BF 上. 由②式得21(1536)a x x a=--+. 整理得2215360x x a -++=. ③∵在线段BC 上能找到两个不同的点P 1与P 2满足条件, ∴方程③有两个不相等的正实根.∴△=(-15)2-4×(36+a 2)>0. 解得2814a <. 又∵a >0, ∴902a <<. 解法二:当点E 与A 重合时,∵∠APD =90°,∴点P 在以AD 为直径的圆上.设圆心为M ,则M 为AD 的中点. ∵在线段BC 上能找到两个不同的点P 1与P 2满足条件, ∴线段BC 与⊙M 相交.即圆心M 到BC 的距离d 满足02ADd <<. ④ 又∵AD ∥BC , ∴d =a . ∴由④式得902a <<. 10.【答案与解析】解:(1)EF =EB .证明:如图(d),以E 为圆心,EA 为半径画弧交直线m 于点M ,连接EM .∴EM =EA ,∴∠EMA =∠EAM . ∵BC =k ·AB ,k =1, ∴BC =AB .∴∠CAB =∠ACB .∵m ∥n ,∴∠MAC =∠ACB ,∠FAB =∠ABC .∴∠MAC=∠CAB.∴∠CAB=∠EMA.∵∠BEF=∠ABC,∴∠BEF=∠FAB.∵∠AHF=∠EHB,∴∠AFE=∠ABE.∴△AEB≌△MEF.∴EF=EB.探索思路:如上图(a),∵BC=k·AB,k=1,∴BC=AB.∴∠CAB=∠ACB.∵m∥n,∴∠MAC=∠ACB.添加条件:∠ABC=90°.证明:如图(e),在直线m上截取AM=AB,连接ME.∵ BC=k·AB,k=1,∴ BC=AB.∵∠ABC=90°,∴∠CAB=∠ACB=45°.∵ m∥n,∴∠MAE=∠ACB=∠CAB=45°,∠FAB=90°.∵ AE=AE,∴△MAE∽△BAE.∴ EM=EB,∠AME=∠ABE.∵∠BEF=∠ABC=90°,∴∠FAB+∠BEF=180°.又∵∠ABE+∠EFA=180°,∴∠EMF=∠EFA.∴ EM=EF.∴ EF=EB.(2)EF=1k EB.说明:如图(f),过点E作EM⊥m,EN⊥AB,垂足为M,N.∴∠EMF=∠ENA=∠ENB=90°.∵ m∥n,∠ABC=90°,∴∠MAB=90°.∴四边形MENA为矩形.∴ ME=NA,∠MEN=90°.∵∠BEF=∠ABC=90°.∴∠MEF=∠NEB.∴△MEF∽△NEB.∴ME EF EN EB=,∴AN EF EN EB=在Rt△ANE和Rt△ABC中,tanEN BCBAC kAN AB∠===,∴1EF EBk=.。
2021年中考数学《勾股定理》复习高频考点靶向专题提升练习专题一:勾股定理中的多解问题1. 在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是( )A.4.8B.4.8或3.8C.3.8D.52. 若一直角三角形两边长分别为12和5,则第三边长为.3. 已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为.4. 若△ABC的三边a,b,c满足(a-c)(a2+b2-c2)=0,则△ABC的形状是 .5. 已知△ABC中,AB=17cm,AC=10cm,BC边上的高AD=8cm,则边BC的长为 .专题二:利用勾股定理求阴影部分面积1.如图,图中有一个正方形,此正方形的面积是( )A.16B.8C.4D.22. 勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积 B.最大正方形的面积C.较小两个正方形重叠部分的面积 D.最大正方形与直角三角形的面积和3.如图,在正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是________.4.如图,阴影部分是一个正方形,则此正方形的面积为 cm2.5.如图是由四个直角边分别为3和4的全等直角三角形拼成的“赵爽弦图”,那么阴影部分面积为.6.如图所示,分别以直角三角形三边为直径作半圆,设图中两个月牙形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请写出S1,S2,S3的数量关系:.专题三:利用勾股定理解决折叠问题1. 如图,在Rt △ABC 中,AB =6,BC =4,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.53B.52C.83 D .52. 有一张直角三角形纸片,两直角边长AC=6cm ,BC=8cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE(如图),则CD 等于( )A.254cmB.223cmC.74cmD.53cm3. 如图,矩形ABCD 中,AB=8,BC=6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE=OD ,则AP 的长为________.4. 如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB = .5.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.专题四:勾股定理的验证及实际应用1. 如图,一棵大树在离地面9m高的B处断裂,树顶A落在离树底BC12m处,则大树断裂之前的高度为( )A.9mB.15mC.21mD.24m2. 如图,有两棵树,一棵高10m,另一棵树高4m,两树相距8m.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行( )A.8 mB.10 mC.12 mD.14 m3. 我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(ji ā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.若把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是尺.4. 意大利著名画家达·芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是( )A.S1=a2+b2+2ab B.S1=a2+b2+abC.S2=c2D.S2=c2+12ab5. 超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100 m的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3 s,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了80 km/h的限制速度?(3≈1.732)6. 如图,某小区的两个喷泉A,B位于小路AC的同侧,两个喷泉的距离AB的长为250 m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC上,供水点M到AB的距离MN的长为120 m,BM的长为150 m.(1)求供水点M到喷泉A,B需要铺设的管道总长.(2)直接写出喷泉B到小路AC的最短距离.7. 如图,是某次机器人创意大赛中一位参赛队员设计的机器人行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问从点A到点B的直线距离是多少?专题五:勾股定理的解决最值范围、面积类问题1. 如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b 的面积为( )A.3B.4C.5D.72. 如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤133. 已知在Rt△ABC中,∠C=90°,两直角边分别为a,b,斜边为c,若a+b=14cm,c=10cm,则Rt△ABC的面积是 .4. 如图是一个边长为6的正方体木箱,点Q在上底面的棱上,AQ=2,一只蚂蚁从P点出发沿木箱表面爬行到点Q,则蚂蚁爬行的最短路程是.5. 如图,在等边△ABC中,D是BC的中点,E是AB的中点,H是AD上任意一点.如果AB=AC=BC=10,那么HE+HB的最小值是.6.如图,小李准备建一个蔬菜大棚,棚宽4m,高3m,长20m,棚的长方形斜面用塑料薄膜遮盖,不计墙的厚度,求阳光透过的最大面积.7. 如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36cm,点P从点A 开始沿AB边向B点以每秒1cm的速度移动,点Q从点B开始沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为多少?。
专题:《图形的平移》(专题测试-提高)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在指定位置上第Ⅰ卷(选择题)一.选择题(每题4分,共48分)1.如图,A、B、C、D四个图案中可以由左下图平移得到的是()A.B.C.D.2.如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF的位置,AB=10,DH=4,BC=15,平移距离为6,则阴影部分的面积()A.40 B.42 C.45 D.483.如图,直线a||b,△ABC是等边三角形,点A在直线a上,边BC在直b上,把△ABC沿BC方向平移BC长度的一半得到△A'B'C'(如图①):持续以上的平移得到图②,再持续平移以上的图案得到③,…第2019个图形中等边三角形的个数()A.8076 B.6058 C.4038 D.20194.如图,将△ABC沿BC方向平移1个单位得到△DEF,如果四边形ABFD的周长为12,则△ABC的周长为()A.8 B.10 C.12 D.145.如图,在图形M到图形N的变化过程中,下列述正确的是()A.先向下平移3个单位,再向右平移3个单位B.先向下平移3个单位,再向左平移3个单位C.先向上平移3个单位,再向左平移3个单位D.先向上平移3个单位,再向右平移3个单位6.地面上铺设了长为20cm,宽为10cm的地砖,长方形地毯的位置如图所示.那么地毯的长度最接近多少?()A.50cm B.100cm C.150cm D.200cm7.将点A(﹣2,3)沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度后得到的点A′的坐标为()A.(1,7)B.(1.﹣1)C.(﹣5,﹣1)D.(﹣5,7)8.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD 的面积为10,则△BCE的面积为()A.5 B.6 C.10 D.49.如图,△DAF沿直线AD平移得到△CDE,CE,AF的延长线交于点B.若∠AFD=111°,则∠CED=()A.110°B.111°C.112°D.113°10.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC 先向左平移2个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B'的坐标是()A.(﹣3,0)B.(0,3)C.(﹣3,2)D.(l,2)11.如图,在△ABC中,BC=6,将△BC以每秒2cm的速度沿BC所在直线向右平移,所得图形对应为△DEF,设平移时间为t秒,若要使BE=2CE成立,则t的值为()A.6 B.1 C.2 D.312.如图,点A1(1,1),点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3;点A3向上平移4个单位,再向右平移8个单位,得到点A4,……,按这个规律平移得到点A n,则点A n的横坐标为()A.2n B.2n﹣1C.2n﹣1 D.2n+1第Ⅱ卷(非选择题)二.填空题(每题4分,共20分)13.如图所示,由三角形ABC平移得到的三角形有个.14.如图所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为cm2.15.如图,在△ABC中,∠BAC=90°,将△ABC沿直线BC向右平移5个单位得到△DEF,连接AD,若AB=6,AO=4,OD=3,则四边形OCFD的面积为.16.如图所示,正方形ABCD的边长为5,把它的对角线AC分成n段,以每一小段为对角线作小正方形,这n个小正方形的周长之和等于.17.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳运1个单位至点P1(1,1)紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第2016次跳动至点P2016的坐标是.三.解答题(每题8分,共32分)18.如图,方格纸中每个小正方形的边长都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).(1)在图①中,过点P画出AB的平行线PM和AB的垂线PN(其中M、N为格点);(2)通过平移使图②中三条线段围成一个三角形(三个顶点均在格点上),请在图②中画出一个这样的三角形,并求出所画三角形的面积.19.如图,已知两条射线OM∥CN,动线段AB的两个端点A,B分别在射线OM,CN 上,且∠C=∠OAB=108°,点E在线段CB上,OB平分∠AOE.(1)图中有哪些与∠AOC相等的角?并说明理由;(2)若平移AB,那么∠OBC与∠OEC的度数比是否随着AB位置变化而变化?若变化,找出变化规律;若不变,求出这个比值.20.如图,已知,BC∥OA,∠C=∠OAB=100°,试回答下列问题:(1)如图1,求证:OC∥AB;(2)如图2,点E、F在线段BC上,且满足∠EOB=∠AOB,并且OF平分∠BOC:①若平行移动AB,当∠BOC=6∠EOF时,求∠ABO;②若平行移动AB,那么的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.21.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是,线段AC扫过的图形的面积为.参考答案一.选择题1.解:A、图形的方向发生了变化,不是平移,不合题意;B、图形的方向发生了变化,不是平移,不合题意;C、是平移,符合题意;D、图形的方向发生了变化,不是平移,不合题意.故选:C.2.解:∵两个三角形大小一样,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=6,∵AB=10,DH=4,∴HE=DE﹣DH=10﹣4=6,∴阴影部分的面积=×(6+10)×6=48,故选:D.3.解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.故第2019个图形中等边三角形的个数是:2×2019+2×2019=8076.故选:A.4.解:根据题意,将△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12,∴AB+BC+AC=10,故选:B.5.解:在图形M到图形N的变化过程中是先向下平移3个单位,再向右平移3个单位,故选:A.6.解:长方形地毯的长为10×10=100≈141.4cm,故选:C.7.解:∵点A(﹣2,3)沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度后得到点A′,∴点A′的横坐标为﹣2﹣3=﹣5,纵坐标为3+4=7,∴A′的坐标为(﹣5,7).故选:D.8.解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,BC∥DE,∴S△ABC=S△BCD=S△ACD=×10=5,∵DE∥BC,∴S△BCE=S△BCD=5.故选:A.9.解:∵△DAF沿直线AD平移得到△CDE,∴∠CED=∠AFD=111°,故选:B.10.解:∵将△ABC先向左平移2个单位,再向上平移1个单位得到△A′B′C′,B(﹣1,1),∴点B的对应点B'的坐标是(﹣1﹣2,1+1),即(﹣3,2),故选:C.11.解:根据图形可得:线段BE和AD的长度即是平移的距离,则AD=BE,设AD=2tcm,则CE=tcm,依题意有2t+t=6,解得t=2.故选:C.12.解:点A1的横坐标为1=21﹣1,点A2的横坐为标3=22﹣1,点A3的横坐标为7=23﹣1,点A4的横坐标为15=24﹣1,…按这个规律平移得到点A n的横坐标为为2n﹣1,故选:C.二.填空题(共5小题)13.解:如图1,,由三角形ABC平移得到的三角形有5个:△DBE、△BHI、△EFG、△EIM、△IPN.故答案为:5.14.解:∵直角梯形ABCD沿AD方向平移到梯形EFGH,∴HG=CD=24,∴DW=DC﹣WC=24﹣6=18,∵S阴影部分+S梯形EDWF=S梯形DHGW+S梯形EDWF,∴S阴影部分=S梯形DHGW=(DW+HG)×WG=×(18+24)×8=168(cm2).故答案为168.15.解:∵将△ABC沿直线BC向右平移5个单位得到△DEF,∴AB∥DE,AB=DE=6.∵OD=3,∴OE=DE﹣DO=6﹣3=3.∵S△ABC=S△DEF,∴S△ABC﹣S△OEC=S△DEF﹣S△OEC,∴S四边形ABEO=S四边形CFDO=(OE+AB)•OA=(3+6)×4=18.故答案是:18.16.解:由题意可得:这n个小正方形周长的总和为正方形ABCD的周长,即为:5×4=20,故答案为:2017.解:由题中规律可得出如下结论:设点P m的横坐标的绝对值是n,则在y轴右侧的点的下标分别是4(n﹣1)和4n﹣3,在y轴左侧的点的下标是:4n﹣2和4n﹣1;判断P2016的坐标,就是看2016=4(n﹣1)和2016=4n﹣3和2016=4n﹣2和2016=4n﹣1这四个式子中哪一个有整数解,从而判断出点的横坐标,点P第2016次跳动至点P2016的坐标是(505,1008).故答案为:(505,1008).三.解答题(共4小题)18.解:(1)如图①,点M、N为所作;(2)如图②,△ABG为所作,S△ABG=3×4﹣×2×4﹣×1×2﹣×2×3=4.19.解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°.又∵∠BAM=180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠ABC和∠BAM.(2)∵OM∥CN,∴∠OBC=∠AOB,∠OEC=∠AOE.∵OB平分∠AOE,∴∠AOE=2∠AOB.∴∠OEC=2∠OBC.∴∠OBC:∠OEC=.20.(1)证明:∵BC∥OA,∴∠C+∠COA=180°,∠BAO+∠ABC=180°,∵∠C=∠BAO=100°,∴∠COA=∠ABC=80°,∴∠COA+∠OAB=180°,∴OC∥AB;(2)①如图②中,设∠EOF=x,则∠BOC=6x,∠BOF=3x,∠BOE=∠AOB=4x,∵∠AOB+∠BOC+∠OCB=180°,∴4x+6x+100°=180°,∴x=8°,∴∠ABO=∠BOC=6x=48°.如图③中,设∠EOF=x,则∠BOC=6x,∠BOF=3x,∠BOE=∠AOB=2x,∵∠AOB+∠BOC+∠OCB=180°,∴2x+6x+100°=180°,∴x=10°,∴∠ABO=∠BOC=6x=60°.综上所述,满足条件的∠ABO为48°或60°;②∵BC∥OA,∠C=100°,∴∠AOC=80°,∵∠EOB=∠AOB,∴∠COE=80°﹣2∠AOB,∵OC∥AB,∴∠BOC=∠ABO,∴∠AOB=80°﹣∠ABO,∴∠COE=80°﹣2∠AOB=80°﹣2(80°﹣∠ABO)=2∠ABO﹣80°,∴==2,∴平行移动AB,的值不发生变化.21.解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,BD即为所求;(3)如图所示,AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10×2﹣2××4×1﹣2××6×1=10,故答案为:平行且相等、10.。
2019-2020年中考数学复习专题-提高题1
1、分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.
(1)试用列表或画树状图的方法,求欢欢获胜的概率;
(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.
2、已知二次函数的图象如图所示,它与轴的一个交点坐标为(-1,0),
与轴的交点坐标为(0,3).
(1)求出,的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值为正数时,自变量的取值范围.
3、某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整
箱
购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?
4、某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元。
商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B 型号计算器,可获利润120元。
(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)
(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?
5、如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到的小路. 现
新修一条路AC到公路. 小明测量出∠ACD=30º,∠ABD=45º,BC=50m. 请你帮小明计算他家到公路的距离AD的长度(精确到0.1m;参考数据:,).
6、如图,分别以的直角边AC及斜边AB向外作等边,等边.已知∠BAC=30°,EF⊥AB,垂
足为F,连结DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
7.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题7图所示的不完整统计图表.
(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题7图);
(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.
8、雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.
第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?
7题图
9、如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.
(1)设Rt△CBD的面积为, Rt△BFC的面积为, Rt△DCE的面积为,
则 ______ +(用“>”、“=”、“<”填空);
(2)写图中的三对相似三角形,并选择其中一对进行证明.
xx年中考数学复习专题———提高解答题
(一)参考答案
1、解:(1)(2)不公平。
因为欢欢获胜的概率是;乐乐获胜的概率是。
2、解:(1)2
2323
b c y x x
=-=-++
,,(2)
3、解:设该品牌饮料一箱有x瓶,依题意,得
化简,得解得 (不合,舍去),
经检验:符合题意答:略.
4、解:(1)四种方案,分别为:
:4:5:6:7
:6:5:4:3⎧⎧⎧⎧
⎨⎨⎨⎨
⎩⎩⎩⎩
甲甲甲甲
或或或
乙乙乙乙
(2)最便宜,费用为18800元。
5、解:略解:AD=25(+1)≈68.3m
6、解:(1)提示:AC AB EF AE AB AC AE
===
,,
(2)提示:000
603090
DAF EFA
∠=+==∠,AD∥EF且AD=EF
7.解:(1)30%、10、50;图略;(2)276(人).
8.解:(1)10%;(2)12100×(1+0. 1)=13310(元).
9.解:(1) S1= S2+ S3;
(2)△BCF∽△DBC∽△CDE;
选△BCF∽△CDE
证明:在矩形ABCD中,∠BCD=90°且点C在边EF上,
∴∠BCF+∠DCE=90°
在矩形BDEF中,∠F=∠E=90°,
∴在Rt△BCF中,∠CBF+∠BCF=90°∴∠CBF=∠DCE, ∴△BCF∽△CDE. 9€40319 9D7F 鵿539957 9C15 鰕23436 5B8C 完25307 62DB 招C38171 951B 锛22712 58B8 墸&35045 88E5 裥36385 8E21 踡
21735 54E7 哧。