山东大学计算机学院机器学习实验一贝叶斯分类
- 格式:doc
- 大小:424.04 KB
- 文档页数:9
贝叶斯分类器的基本原理1.先验概率:在进行分类之前,我们需要知道每个类别的先验概率。
先验概率是指在没有其他信息的情况下,每个类别出现的概率。
例如,在对电子邮件进行垃圾邮件分类时,如果我们有大量的垃圾邮件和非垃圾邮件,我们可以假设垃圾邮件的先验概率更高,因为通常来说,收到的电子邮件中垃圾邮件的数量更多。
2.似然函数:似然函数用于计算给定类别下,一些样本的概率。
在贝叶斯分类器中,我们需要对给定样本的特征进行建模,并计算给定类别下观察到这些特征的概率。
例如,在垃圾邮件分类的例子中,我们可以建立一个似然函数来计算垃圾邮件中包含一些关键字的概率。
3.后验概率:后验概率是指在观察到新的证据后,每个类别的概率。
后验概率是通过先验概率和似然函数计算得出的,根据贝叶斯定理,后验概率可以通过先验概率和似然函数的乘积来计算。
4.最大后验概率估计:在进行分类时,贝叶斯分类器会选择具有最大后验概率的类别作为最终的分类结果。
即在给定观测数据下,选择使后验概率最大的类别作为分类结果。
1.能够很好地处理多类别的分类问题:贝叶斯分类器能够有效地处理多类别的分类问题,而且能够在训练过程中自动地学习不同类别之间的关系。
2.能够处理高维度的特征:贝叶斯分类器可以很好地处理高维度的特征,而且在处理高维度数据时,它的性能通常比其他分类算法更好。
3.对缺失数据具有鲁棒性:贝叶斯分类器在处理有缺失数据的情况下具有很强的鲁棒性。
它能够根据训练数据的先验概率和特征之间的相关性进行推断,并给出合适的分类结果。
然而,贝叶斯分类器也存在一些限制:1.对于大规模数据的处理能力有限:由于贝叶斯分类器需要计算多个类别下的似然函数和后验概率,因此在处理大规模数据时,其计算复杂度较高,会导致分类速度变慢。
2.对于特征之间相关性较高的情况,可能会产生误差:对于特征之间相关性较高的情况,贝叶斯分类器可能会产生误差,因为它假设各个特征之间相互独立。
3.需要确定先验概率的合理假设:贝叶斯分类器需要先验概率的先验知识。
《模式识别》实验报告---最小错误率贝叶斯决策分类一、实验原理对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为112211()exp ()()2(2)T d p π-⎧⎫=--∑-⎨⎬⎩⎭∑x x μx μ 式中,12,,,d x x x ⎡⎤⎣⎦=x 是d 维行向量,12,,,d μμμ⎡⎤⎣⎦=μ是d 维行向量,∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。
本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数()(|)(),1,2,3i i i g p P i ωω==x x (3个类别)其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。
由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。
我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为1122()1()exp ()(),1,2,32(2)T i i dP g i ωπ-⎧⎫=-∑=⎨⎬⎩⎭∑x x -μx -μ对上式右端取对数,可得111()()()ln ()ln ln(2)222T i i i i dg P ωπ-=-∑+-∑-i i x x -μx -μ上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。
则判别函数()i g x 可简化为以下形式111()()()ln ()ln 22T i i i i g P ω-=-∑+-∑i i x x -μx -μ二、实验步骤(1)从Iris.txt 文件中读取估计参数用的样本,每一类样本抽出前40个,分别求其均值,公式如下11,2,3ii iii N ωωω∈==∑x μxclear% 原始数据导入iris = load('C:\MATLAB7\work\模式识别\iris.txt'); N=40;%每组取N=40个样本%求第一类样本均值 for i = 1:N for j = 1:4w1(i,j) = iris(i,j+1); end endsumx1 = sum(w1,1); for i=1:4meanx1(1,i)=sumx1(1,i)/N; end%求第二类样本均值 for i = 1:N for j = 1:4 w2(i,j) = iris(i+50,j+1);end endsumx2 = sum(w2,1); for i=1:4meanx2(1,i)=sumx2(1,i)/N; end%求第三类样本均值 for i = 1:N for j = 1:4w3(i,j) = iris(i+100,j+1); end endsumx3 = sum(w3,1); for i=1:4meanx3(1,i)=sumx3(1,i)/N; end(2)求每一类样本的协方差矩阵、逆矩阵1i -∑以及协方差矩阵的行列式i ∑, 协方差矩阵计算公式如下11()(),1,2,3,41i ii N i jklj j lk k l i x x j k N ωωσμμ==--=-∑其中lj x 代表i ω类的第l 个样本,第j 个特征值;ij ωμ代表i ω类的i N 个样品第j 个特征的平均值lk x 代表i ω类的第l 个样品,第k 个特征值;iw k μ代表i ω类的i N 个样品第k 个特征的平均值。
实验一图像的贝叶斯分类一、实验目的将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。
二、实验仪器设备及软件HP D538、MATLAB三、实验原理1 基本原理阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。
并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。
此过程中,确定阈值是分割的关键。
对一般的图像进行分割处理通常对图像的灰度分布有一定的假设,或者说是基于一定的图像模型。
最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。
而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。
类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。
上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。
这时如用全局阈值进行分割必然会产生一定的误差。
分割误差包括将目标分为背景和将背景分为目标两大类。
实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。
这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。
图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。
如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。
如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。
假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。
详解贝叶斯分类器1.贝叶斯决策论贝叶斯分类器是一类分类算法的总称,贝叶斯定理是这类算法的核心,因此统称为贝叶斯分类。
贝叶斯决策论通过相关概率已知的情况下利用误判损失来选择最优的类别分类。
“风险”(误判损失)= 原本为cj的样本误分类成ci产生的期望损失,期望损失可通过下式计算:为了最小化总体风险,只需在每个样本上选择能够使条件风险R(c|x)最小的类别标记。
最小化分类错误率的贝叶斯最优分类器为:即对每个样本x,选择能使后验概率P(c|x)最大的类别标记。
利用贝叶斯判定准则来最小化决策风险,首先要获得后验概率P(c|x),机器学习要实现的是基于有限的训练样本集尽可能准确的估计出后验概率P(c|x)。
主要有两种模型:一是“判别式模型”:通过直接建模P(c|x)来预测,其中决策树,BP神经网络,支持向量机都属于判别式模型。
另外一种是“生成式模型”:通过对联合概率模型P(x,c)进行建模,然后再获得P(c|x)。
对于生成模型来说:基于贝叶斯定理,可写为下式(1)通俗的理解:P(c)是类“先验”概率,P(x|c)是样本x相对于类标记c的类条件概率,或称似然。
p(x)是用于归一化的“证据”因子,对于给定样本x,证据因子p(x)与类标记无关。
于是,估计p(c|x)的问题变为基于训练数据来估计p(c)和p(x|c),对于条件概率p(x|c)来说,它涉及x所有属性的联合概率。
2.极大似然估计假设p(x|c))具有确定的形式并且被参数向量唯一确定,则我们的任务是利用训练集估计参数θc,将P(x|c)记为P(x|θc)。
令Dc表示训练集D第c类样本的集合,假设样本独立同分布,则参数θc对于数据集Dc的似然是对进行极大似然估计,就是去寻找能最大化P(Dc|θc)的参数值。
直观上看,极大似然估计是试图在θc所有可能的取值中,找到一个能使数据出现的“可能性”最大的值。
上式的连乘操作易造成下溢,通常使用对数似然:此时参数θc的极大似然估计为在连续属性情形下,假设概率密度函数,则参数和的极大似然估计为:也就是说,通过极大似然法得到的正态分布均值就是样本均值,方差就是的均值,在离散情况下,也可通过类似的方式估计类条件概率。
使用贝叶斯分类的流程1. 简介贝叶斯分类是一种基于贝叶斯定理的机器学习算法,常用于文本分类、垃圾邮件过滤、垃圾短信过滤等领域。
在贝叶斯分类中,我们使用统计方法来计算给定输入数据下某个类别的概率,并选择具有最高概率的类别作为预测结果。
2. 贝叶斯分类的原理贝叶斯分类基于贝叶斯定理,该定理可以表示如下:P(C|X) = (P(X|C) * P(C)) / P(X)其中,P(C|X)是给定输入X的条件下事件C发生的概率;P(X|C)是事件C发生的条件下X的概率;P(C)是事件C的先验概率;P(X)是输入X的先验概率。
贝叶斯分类的核心思想就是通过计算输入数据在各个类别下的条件概率,然后选择具有最高概率的类别作为预测结果。
3. 贝叶斯分类的流程贝叶斯分类的流程主要包括以下几个步骤:3.1 收集训练数据首先,我们需要收集一定量的训练数据。
训练数据应包含已知类别的样本,以及每个样本对应的特征数据。
3.2 数据预处理在进行贝叶斯分类之前,我们通常需要对数据进行预处理。
预处理包括去除噪声、填充缺失值、标准化等操作,以提高分类器的性能。
3.3 计算先验概率在贝叶斯分类中,先验概率指的是每个类别的概率。
在训练数据中,我们可以通过统计各个类别的样本数量,然后将其除以总样本数量得到先验概率。
3.4 计算条件概率在贝叶斯分类中,条件概率指的是给定输入数据下各个类别发生的概率。
对于离散特征,我们可以通过统计每个特征值在每个类别下的出现次数,然后除以该类别下的总样本数得到条件概率。
对于连续特征,我们通常使用概率密度函数(PDF)来估计其条件概率。
3.5 进行分类预测在计算完先验概率和条件概率之后,我们可以根据贝叶斯定理计算出给定输入数据下各个类别的后验概率。
我们选择具有最高后验概率的类别作为分类预测结果。
3.6 评估分类器性能最后,我们需要评估贝叶斯分类器的性能。
常用的评估指标包括准确率、精确率、召回率、F1分数等。
4. 示例代码以下是一个简单的使用贝叶斯分类的示例代码:from sklearn.naive_bayes import GaussianNB# 初始化贝叶斯分类器clf = GaussianNB()# 训练分类器clf.fit(X_train, y_train)# 进行分类预测y_pred = clf.predict(X_test)# 评估分类器性能accuracy = clf.score(X_test, y_test)以上代码使用scikit-learn库中的GaussianNB类实现了贝叶斯分类器的训练和预测,通过score方法可以计算分类器的准确率。
一、实验意义及目的1、掌握贝叶斯判别定理2、能利用matlab编程实现贝叶斯分类器设计3、熟悉基于matlab的算法处理函数,并能够利用算法解决简单问题二、算法原理贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。
其中P(A|B)是在B发生的情况下A发生的可能性公式为:贝叶斯法则:当分析样本大到接近总体数时,样本中事件发生的概率将接近于总体中事件发生的概率。
内容:(1)两类w服从正态分布,设计基于最小错误率的贝叶斯分类器,对数据进行分类。
(2)使用matlab进行Bayes判别的相关函数,实现上述要求。
(3)针对(1)中的数据,自由给出损失表,并对数据实现基于最小风险的贝叶斯分类。
三、实验内容(1)尝两类w服从正态分布,设计基于最小错误率的贝叶斯分类器,对数据进行分类。
代码清单:clc;clear all;meas=[0 0;2 0;2 2;0 2;4 4;6 4;6 6;4 6];%8x2矩阵这里一行一行2个特征[N n]=size(meas);species={'one';'one';'one';'one';'two';'two';'two';'two'};%这里也对应一行一行的sta=tabulate(species)[c k]=size(sta);priorp=zeros(c,1);for i=1:cpriorp(i)=cell2mat(sta(i,k))/100;%计算概率end%cell2mat(sta(:,2:3)) 提取数组中的数据本来sta数组中数据为矩阵不能直接用%估算类条件概率参数cpmean=zeros(c,n);cpcov=zeros(n,n,c);for i=1:ccpmean(i,:)=mean(meas(strmatch(char(sta(i,1)),species,'exact'),:));%exact精确查找cpmean放的每一类的均值点几类就几行cpcov(:,:,i)=cov(meas(strmatch(char(sta(i,1)),species,'exact'),:))*(N*priorp(i)-1)/(N*priorp(i));end%求(3 1)的后验概率x=[3 1];postp=zeros(c,1);for i=1:cpostp(i)=priorp(i)*exp(-(x-cpmean(i,:))*inv(cpcov(:,:,i))*(x-cpmean(i,:))'/2)/((2*pi)^(n/2)*det(cpcov(:,:,i)));endif postp(1)>postp(2)disp('第一类');elsedisp('第二类');end运行结果:(2)使用matlab进行Bayes判别的相关函数,实现上述要求。
机器学习——基础整理(⼀)贝叶斯决策论;⼆次判别函数;贝叶斯错误率;⽣成式模型的参数⽅法本⽂简单整理了以下内容:(⼀)贝叶斯决策论:最⼩错误率决策、最⼩风险决策;经验风险与结构风险(⼆)判别函数;⽣成式模型;多元⾼斯密度下的判别函数:线性判别函数LDF、⼆次判别函数QDF(三)贝叶斯错误率(四)⽣成式模型的参数估计:贝叶斯学派与频率学派;极⼤似然估计、最⼤后验概率估计、贝叶斯估计;多元⾼斯密度下的参数估计(五)朴素贝叶斯与⽂本分类(挪到了下⼀篇博客)(⼀)贝叶斯决策论:最⼩风险决策(Minimum risk decision)贝叶斯决策论(Bayesian decision theory)假设模式分类的决策可由概率形式描述,并假设问题的概率结构已知。
规定以下记号:类别有c个,为\omega_1,\omega_2,...,\omega_c;样本的特征⽮量\textbf x\in\mathbb R^d;类别\omega_i的先验概率为P(\omega_i)(prior),且\sum_{i=1}^cP(\omega_i)=1;类别\omega_i对样本的类条件概率密度为p(\textbf x|\omega_i),称为似然(likelihood);那么,已知样本\textbf x,其属于类别\omega_i的后验概率P(\omega_i|\textbf x)(posterior)就可以⽤贝叶斯公式来描述(假设为连续特征):P(\omega_i|\textbf x)=\frac{p(\textbf x|\omega_i)P(\omega_i)}{p(\textbf x)}=\frac{p(\textbf x|\omega_i)P(\omega_i)}{\sum_{j=1}^cp(\textbfx|\omega_j)P(\omega_j)}分母被称为证据因⼦(evidence)。
后验概率当然也满⾜和为1,\sum_{j=1}^cP(\omega_j|\textbf x)=1。
贝叶斯分类实验报告篇一:贝叶斯分类实验报告实验报告实验课程名称数据挖掘实验项目名称贝叶斯分类年级XX级专业信息与计算科学学生姓名学号 1207010220理学院实验时间:XX年12月2日学生实验室守则一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。
二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。
三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。
四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。
五、实验中要节约水、电、气及其它消耗材料。
六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。
七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。
仪器设备发生故障和损坏,应立即停止实验, 并主动向指导教师报告,不得自行拆卸查看和拼装。
八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。
九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。
十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。
H^一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。
学生所在学院:理学院专业:信息与计算科学班级: 信计121篇二:数据挖掘-贝叶斯分类实验报告实验报告实验课程名称数据挖掘实验项目名称贝叶斯的实现年级专业学生姓名学号00学院实验时间:年月曰13篇三:模式识别实验报告贝叶斯分类器模式识别理论与方法课程作业实验报告实验名称:Generating Pattern Classes 实验编号:Proj02-01规定提交日期:XX年3月30日实际提交日期:XX年3 月24日摘要:在熟悉贝叶斯分类器基本原理基础上,通过对比分类特征向量维数差异而导致分类正确率发生的变化,验证了“增加特征向量维数,可以改善分类结果”。
贝叶斯分类分类算法贝叶斯分类(Bayesian classification)是一种基于贝叶斯定理的分类算法,它将特征之间的条件概率和类别的先验概率组合起来,通过计算后验概率来确定一个样本属于其中一类别的概率。
贝叶斯分类算法在文本分类、垃圾邮件过滤和情感分析等领域都有广泛应用。
贝叶斯分类的核心思想是通过条件概率来计算后验概率。
在分类问题中,我们要将一个样本进行分类,假设有 n 个特征变量 x1, x2, ..., xn,每个特征变量有 k 个可能的取值,将样本分为 m 个类别 C1,C2, ..., Cm。
需要计算的是给定样本的特征值 x1, x2, ..., xn 下,它属于每个类别的概率 P(C1,x1, x2, ..., xn), P(C2,x1, x2, ..., xn), ..., P(Cm,x1, x2, ..., xn)。
根据贝叶斯定理,P(Ci,x1, x2, ..., xn) = P(Ci) * P(x1,x2, ..., xn,Ci) / P(x1, x2, ..., xn)。
其中,P(Ci) 是类别 Ci 的先验概率,P(x1, x2, ..., xn,Ci) 是样本 x1, x2, ..., xn 在给定类别 Ci 的条件下的概率,P(x1, x2, ..., xn) 是样本 x1, x2, ..., xn出现的概率。
贝叶斯分类算法的核心是学习类别的先验概率和特征之间的条件概率。
通常采用的方法是从已有数据中估计这些概率。
假设训练数据集中有 N个样本,属于类别 Ci 的样本有 Ni 个。
类别 Ci 的先验概率可以估计为P(Ci) = Ni / N。
而特征之间的条件概率可以通过计算样本中特征的频率来估计,比如计算属于类别 Ci 的样本中特征 xj 取值为 a 的频率 P(xj = a,Ci) = Nij / Ni,其中 Nij 是属于类别 Ci 的样本中特征 xj 取值为 a 的个数。
贝叶斯分类原理贝叶斯分类原理是一种基于贝叶斯定理的分类方法。
在机器学习中,分类是指将一个实例分配到一组预定义的类别中的任务。
在这种情况下,“贝叶斯分类”指的是将数据集分为一个或多个类别的算法。
随着互联网和人工智能的发展,贝叶斯分类原理在信息检索、垃圾邮件过滤、舆情分析和医疗诊断等领域中得到了广泛应用。
贝叶斯理论最早由英国统计学家托马斯·贝叶斯在18世纪提出。
贝叶斯分类原理是基于贝叶斯定理的。
贝叶斯定理的官方表述是:P(A|B) = P(B|A) × P(A) / P(B)P(A)和P(B)是事件A和事件B的先验概率分布;P(B|A)是在事件A下B的条件概率;P(A|B)是在已知事件B的情况下A的后验概率分布。
在贝叶斯分类中,我们将每个分类视为事件A并计算每个分类的先验概率P(A)。
然后考虑训练数据集中与该分类相关的每个特征,计算在每个类别中某一特征的条件概率P(B|A)。
使用贝叶斯公式来计算每个分类的后验概率P(A|B)。
将后验概率最高的分类作为预测结果。
贝叶斯分类的核心思想是通过先前的知识和后验概率的推断,来预测事物的未来发展。
在贝叶斯分类原理中,我们将每个分类视为一个“类别”,然后通过计算每个类别与每个特征的条件概率来进行分类。
具体过程如下:1.准备训练数据集。
2.计算训练数据集中每个类别的先验概率。
3.计算在每个类别下各特征的条件概率。
4.输入待分类的实例,计算在每个类别下该实例的后验概率。
5.选择后验概率最高的类别作为预测结果。
下面用一个简单的例子来说明贝叶斯分类原理。
假设我们需要对电子邮件进行自动分类,将它们分为“垃圾邮件” 和“正常邮件” 两类。
我们可以将邮件的主题、发件人信息、时间戳等各种特征作为分类依据。
现在我们已经有了一个训练集,并将训练集按照类别分别标记为“垃圾邮件” 和“正常邮件”。
在训练数据集中,假设类别“垃圾邮件” 的总数为1000封,其中主题包含“online casino” 的邮件有800封,主题不包含“online casino” 的邮件有200封;假设类别“正常邮件” 的总数为2000封,其中主题包含“online casino” 的邮件有100封,主题不包含“online casino” 的邮件有1900封。