设计--直流电机综合测控系统设计
- 格式:pdf
- 大小:953.67 KB
- 文档页数:19
直流电机控制器设计说明书1.1 设计思想直流电机PWM 控制系统主要功能包括:直流电机的加速、减速以及电机的正转和反转,并且可以调整电机的转速,还可以方便读出电机转速的大小,能够很方便的实现电机的智能控制。
其间,还包括直流电机的直接清零、启动、暂停、连续功能。
该直流电机系统由以下电路模块组成:振荡器和时钟电路:这部分电路主要由89C51单片机和一些电容、晶振组成。
设计输入部分:这一模块主要是利用带中断的独立式键盘来实现。
设计控制部分:主要由89C51单片机的外部中断扩展电路组成。
设计显示部分:包括液晶显示部分和LED 数码显示部分。
LED 数码显示部分由七段数码显示管组成。
直流电机PWM 控制实现部分:主要由一些二极管、电机和L298直流电机驱动模块组成。
1.2 系统总体设计框图直流电机PWM 调速系统以AT89C51单片机为核心,由命令输入模块、LED 显示模块及电机驱动模块组成。
采用带中断的独立式键盘作为命令的输入,单片机在程序控制下,定时不断给直流电机驱动芯片发送PWM 波形,H 型驱动电路完成电机正,反转控制;同时单片机不停的将从键盘读取的数据送到LED 显示模块去显示,进而读取其速度。
1.3 程序设计流程图图1-2中断服务流程图2 总体硬件电路设计2.1 芯片介绍2.1.1 89C51单片机结构特点: 8位CPU ;片内振荡器和时钟电路; 32根I/O 线;外部存贮器寻址范围ROM 、RAM64K ; 2个16位的定时器/计数器; 5个中断源,两个中断优先级; 全双工串行口;图1.2 定时中断服务流程图布尔处理器。
图2-1 89C51单片机引脚分布图2.1.2 RESPACK-8排阻RESPACK-8是带公共端的8电阻排,它一般是接在51单片机的P0口,因为P0口内部没有上拉电阻,不能输出高电平,所以要接上拉电阻。
图2-2 RESPACK-8引脚分布图2.1.3 驱动器L298L298是双电源大电流功率集成电路,直接采用TTL逻辑电平控制,可用来驱动继电器,线圈,直流电动机,步进电动机等电感性负载。
基于PLC的直流电机控制系统设计摘要:本文提出了一种利用可编程逻辑控制器件(plc)对他励直流电机进行速度控制的方法。
该方法使plc工作在dc/dc斩波模式,通过将固定直流电压转变为可变直流电压提供给电机电枢。
pang-pang控制是依据参考速度来导通或关断直流电机的电源。
这种方法简单、迅速而且有效,能够在0至100%范围内调整电机转速。
该系统能够广泛应用于不同的工业应用场合。
关键词:直流电机可编程逻辑器件速度控制中图分类号:tm921.5 文献标识码:a 文章编号:1007-9416(2013)01-0010-021 引言直流电机的速度控制相对于交流电机来说更加的简单,成本也更低。
但是由于有换向器的存在,直流电机不太适用于转速要求较高的场合,而且也有维修成本。
固定交流电压通过可控整流器得到可变直流电压输出,而固定直流电压可以通过斩波器得到可变直流电压输出[1]。
由于以上两者能提供连续可变的直流电压,使得其在工业控制中的到广泛应用。
可编程逻辑器件(plc)是一种工业计算控制单元,它能够在各种处理过程和工况环境下执行离散或连续的控制[2]。
工业过程控制时plc应用最为广泛的场合。
本文利用plc工作在dc/dc斩波器模式下,提出一种基于plc的直流电机速度控制系统。
该系统避免了功率管的时间导数dv/dt或者di/dt。
该系统能广泛应用于各种环境下。
2 直流电机的经典斩波控制方法直流斩波器是用来改变电枢电压的一种器件,它连接在固定直流电压源与直流电机之间。
斩波器能提供电机的制动反馈能量,并能把能量反馈到电源[3,4]。
他励直流电机的斩波控制电路如图1所示。
电机电流是否连续取决于占空比和电枢电感。
图2所示为电机电流连续和不连续时的波形。
其中有三种可能的工作模式,下面将逐一介绍。
模式一:功率管t导通,在0<t<t1时电源给电机供电,ia=i1,此时电压方程为(1)转矩方程为(2)模式二:功率管t关断,在t1<t<t2时二极管续流,ia=i2,系统方程有(3)(4)模式三:t2<t<t电机处于惯性滑行阶段(5)(6)3 控制系统设计基于plc的直流电机控制系统框图如图3所示。
0 前言在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用,无论在工业农业生产、交通运输、国防航空航天、医疗卫生、商务与办公设备,还是在日常生活中的家用电器,都在大量地使用着各式各样的电动机。
据资料统计,现在有的90%以上的动力源来自于电动机,电动机与人们的生活息息相关,密不可分。
随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。
直流电动机具有优良的调速特性,调速平滑、方便,调速范围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转,能满足生产过程自动化系统各种不同的特殊运行要求。
直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。
直流电机的数字控制是直流电动机控制的发展趋势,用单片机的数字控制的发展趋势,用单片机进行控制是实现电动机数字控制的最常用的手段。
由于电网相控变流器供电的直流电机调速系统能够引起电网波形畸变、降低电网功率因数,除此之外,该系统还有体积大、价格高、电压电流脉动频率低、有噪声等缺点。
而采用直流电动机的PWM调速控制系统可以克服电网相控调速系统的上述诸多缺点。
电动机的控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、电动控制技术、微机应用技术的最新发展成果。
正是这些技术的进步使电机控制技术在近20多年内发生了翻天覆地的变化,其中电动机的控制部分已由模拟控制逐渐让位于以单片机为主的微处理器控制,形成数字和模拟的混合控制系统和纯数字控制的应用,并曾向全数字化控制方向快速发展。
电动机的驱动部分所用的功率器件经历了几次更新换代,目前开关速度更快、控制更容易的全控型功率器件MOSFET和IGBT成为主流。
功率器件控制条件的变化和微电子技术的使用也使新型的电动控制方法能够得到实现,脉宽调制控制方法(PWM和SPWM),变频技术在直流调速和交流调速中获得广泛的应用。
电子信息与电气工程系课程设计报告设计题目:直流伺服电机控制系统设计系别:电子信息与电气工程系年级专业:学号:学生姓名:2006级自动化专业《计算机控制技术》课程设计任务书摘要随着集成电路技术的飞速发展,微控制器在伺服控制系统普遍应用,这种数字伺服系统的性能可以大大超过模拟伺服系统。
数字伺服系统可以实现高精度的位置控制、速度跟踪,可以随意地改变控制方式。
单片机和DSP在伺服电机控制中得到了广泛地应用,用单片机作为控制器的数字伺服控制系统,有体积小、可靠性高、经济性好等明显优点。
本设计研究的直流伺服电机控制系统即以单片机作为核心部件,主要是单片机为控制核心通过软硬件结合的方式对直流伺服电机转速实现开环控制。
对于伺服电机的闭环控制,采用PID控制,利用MATLAB软件对单位阶跃输入响应的PID 校正动态模拟仿真,研究PID控制作用以及PID各参数值对控制系统的影响,通过试凑法得到最佳PID参数。
同时能更深度地掌握在自动控制领域应用极为广泛的MATLAB软件。
关键词:单片机直流伺服电机 PID MATLAB目录1.引言 ...................................................... 错误!未定义书签。
2.单片机控制系统硬件组成.................................... 错误!未定义书签。
微控制器................................................ 错误!未定义书签。
DAC0808转换器.......................................... 错误!未定义书签。
运算放大器............................................... 错误!未定义书签。
按键输入和显示模块....................................... 错误!未定义书签。
课程设计--直流电机调速控制系统设计指导教师评定成绩:审定成绩:**********课程设计报告设计题目:直流电机调速控制系统设计学校:********************学生姓名:**********专业:********************班级:***********学号:**************指导教师:*****************8设计时间:2013 年12 月目录引言 (3)一、直流电动机的工作原理 (4)二、直流电动机的结构 (5)三、直流电动机的分类 (6)四、电动机的机械特性 (7)五、他励直流电动机起动 (10)六、他励直流电动机的调速方法 (11)七、PWM调制电路 (14)八、H桥驱动电路 (14)九、直流电动机调速控制系统设计 (15)十、心得体会 (22)附录参考文献 (23)课程设计任务书 (23)引言现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。
直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。
改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。
PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。
直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。
随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展,到目前为止,已经出现了多种PWM控制技术。
基于c8051的直流无刷电机控制系统的设计
设计一个基于c8051的直流无刷电机控制系统,可以按照以下步骤进行:
1. 选择合适的c8051单片机芯片,建议选择具备PWM输出和
高速计数器功能的型号。
2. 设计电机驱动电路,包括功率电路和驱动电路。
功率电路通常由MOSFET H桥组成,负责将电机驱动电压转换为驱动电流。
驱动电路负责根据单片机控制信号控制MOSFET开关,
控制电机的起停和运动方向。
3. 编写单片机的控制程序。
需要实现以下功能:
- 设定电机转速或转矩的目标值;
- 读取电机的实际转速或转矩;
- 根据目标值和实际值进行比较,计算出控制电压;
- 生成PWM信号,控制电机驱动电路。
4. 调试和测试控制系统。
连接电机和单片机,进行测试和调试,确保系统正常工作。
5. 优化系统性能。
可以根据需要进行性能优化,例如增加闭环控制、采用磁编码器等。
以上步骤仅供参考,根据实际需求和资源可以进行适当调整和修改。
希望能对你有所帮助!。
南通纺织职业技术学院毕业论文设计基于ATMEGA8直流电机测速系统设计高瑶班级:09电子信息专业:电子信息工程技术教学系:机电系指导老师:邱宏完成时间2018年9月至2018年12月目录摘要 (2)一引言 (3)1、直流电机的应用与特点 (4)2、文章的选题意义 (4)3、文章的主要内容 (4)二任务分析与方案确定 (5)1、设计的目标任务 (5)2、设计的总体方案 (5)三硬件电路设计 (6)1、电源电路 (6)2、单片机电路 (7)3、显示电路 (9)4、整体电路 (11)四软件设计 (13)1、软件设计方案 (13)2、功能模块子程序 (14)五软硬件系统调试 (21)1、硬件调试 (21)2、软件调试 (22)小结 (24)六参考文献 (26)基于ATMEGA8的直流电机调速系统的设计摘要:文章介绍了一种直流电机测速系统的设计过程,首先明确设计任务、提出了电路设计的总体方案,接着介绍硬件电路主要功能模块的作用、电路结构原理、及关键元件的选型与参数;然后是系统的软件设计,分析了软件所要实现的功能、并画出软件的方案流程图,给出了几个软件功能模块的子程序;最后是系统的调试部分,包括硬件软件调试的一般过程,并且结合本设计的具体,对开发过程中出现的一些问题现象及调试解决的过程进行了阐述。
关键词:直流电机测速ATMEGA8 MAX7219一引言1.直流电机的应用与特点直流伺服电机常常用于实现精密调速和位置控制随动系统中,在工业、国防和民用等领域内到广泛应用,特别是火炮稳定系统、舰载平台、雷达天线、机器人控制等场合。
直流电机由于具有速度控制容易, 启动、制动性能良好,平滑调速范围宽等特点, 在冶金、机械制造、轻工等工业部门中得到广泛应用。
早期直流电动机的控制均以模拟电路为基础, 控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难, 阻碍了直流电动机控制技术的发展和应用范围的推广。
随着单片机技术的日新月异,使许多控制功能及算法可以采用软件技术来完成,不但为直流电动机的控制提供了更大的灵活性,而且使系统能达到更高的性能, 从而大大降低了系统成本,有效地提高了工作效率。
北京信息科技大学测控综合实践课程设计报告题目:基于光电传感器的直流电机转速测量系统设计学院:仪器科学与光电工程学院专业:测控技术与仪器学生姓名:摘要摘要基于单片机的转速测量方法较多,本次设计主要针对于光电传感器测量直流电机转速的原理进行简单介绍,并说明它是如何对电机转速进行测量的。
通过实验得到结果并进行了数据分析。
本次设计应用了STC89C52RC单片机,采用光电传感器测量电机转速的方法,其中硬件系统包括脉冲信号的产生模块、脉冲信号的处理模块和转速的显示模块三个模块,采用C语言编程,结果表明该方法具有简单、精度高、稳定性好的优点。
关键词:直流电机;单片机;PWM调节;光电传感器Abstract目录摘要 (I)第一章概述 (1)1.1 课设目标 (1)1.2 内容 (1)第二章系统设计原理 (2)2.1 STC89C52单片机介绍 (2)2.2 STC89C52定时计数器 (4)2.3 STC89C52中断控制 (6)2.4 光电传感器 (6)2.5 数码管介绍 (7)第三章硬件系统设计 (10)3.1测速信号采集及其处理 (10)3.2 单片机处理电路设计 (11)3.3 显示电路 (12)3.4 PWM驱动电路 (13)第四章软件设计 (14)4.1语言选用 (14)4.2程序设计流程图 (14)4.3原程序代码 (15)第五章数据分析 (19)总结 (20)附件 (21)参考文献 (23)第一章概述在工程实践中,经常会遇到各种需要测量转速的场合,例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。
目前国内外测量电机转速的方法有很多,按照不同的理论方法,先后产生过模拟测速法(如离心式转速表、用电机转矩或者电机电枢电动势计算所得)、同步测速法(如机械式或闪光式频闪测速仪)以及计数测速法。
计数测速法又可分为机械式定时计数法和电子式定时计数法。
电气测量综合控制系统设计-学生版1.技术数据系统用线性集成电路运算放大器作为调节器的转速、电流无静差直流控制系统,主电路由晶闸管可控整流电路供电的V-M 系统,各设计具体参数如下: 设计1:某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下直流电动机:额定电压V U N 220=,额定电流A I N 130=,额定转速min 1500r n N =,电动机电势系数r V C e m in 132.0=,允许过载倍数5.1=λ。
晶闸管装置放大系数:40=s K电枢回路总电阻:Ω=5.0R时间常数:s T s T m l 18.0,03.0==滤波时间常数T on =T oi =0.0035s 电流反馈系数:A V 062.0=β 转速反馈系数:r V m in 008.0=α设计要求:1)稳态指标:无静差;2)动态指标:电流超调量%5≤i σ;空载起动到额定转速时的转速超调量%10%<n σ。
设计2:某双闭环直流调速系统,采用晶闸管三相桥式全控整流电路供电,基本数据如下:直流电动机N U =220V ,N I =136A ,N n =1460r/min ,电枢电阻a R =0.2Ω,允许过载倍数λ=1.5;晶闸管装置s T =0.00167s ,放大系数s K =40;平波电抗器:电阻Ω=1.0P R 、电感mH L P 4=;电枢回路总电阻R=0.5Ω;电枢回路总电感L=15mH ;电动机轴上的总飞轮惯量GD 2=22.5N·m 2;电流调节器最大给定值*im U =10.2V ,转速调节器最大给定值*nm U =10.5V ; 电流滤波时间常数oi T =0.002s ,转速滤波时间常数on T =0.01s 。
设计要求:1)稳态指标:转速无静差;2)动态指标:电流超调量%5≤i σ;空载启动到额定转速的转速超调量%10≤n σ。
设计3:某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下直流电动机:额定电压V U N 220=,额定电流A I dN 116=,磁极对数P=2,额定转速min 1460r n N =,电动机电势系数r V C e m in 138.0=,允许过载倍数5.1=λ。
课程: EDA 技术设计 班级: 10电信本2班 姓名:学号: 100917024 教师: 肖老师徐简易直流电机PWM调速控制系统设计直流电机PWM调速控制电路设计如图1所示,基于FPGA的直流电机PWM控制电路主要由四部分组成:控制命令输入模块、控制命令处理模块、控制命令输出模块、电源模块。
键盘电路、时钟电路是系统的控制命令输入模块,向FPGA芯片发送命令,FPGA 芯片是系统控制命令的处理模块,负责接收、处理输入命令并向控制命令输出模块发出PWM信号,是系统的控制核心。
控制命令输出模块由H型桥式直流电机驱动电路组成,它负责接收由FPGA芯片发出的PWM信号,从而控制直流电机的正反转、加速以及在线调速。
电源模块负责给整个电路供电,保证电路能够正常的运行。
图1 FPGA直流电机PWM 控制电路1.系统工作原理在图1中所示的FPGA是根据设计要求设计好的一个芯片。
START是电机的开启端,U_D控制电机加速与减速,EN1用于设定电机转速的初值,Z_F是电机的方向端口,选择电机运行的方向。
CLK2和CLK0是外部时钟端,其主要作用是向FPGA控制系统提供时钟脉冲,控制电机进行运转。
通过键盘设置PWM信号的占空比。
当U_D=1时, 表明键U_D按下,输入CLK2使电机转速加快;当U/D =0,表明键U_D松开,输入CLK2使电机转速变慢,这样就可以实现电机的加速与减速。
Z_F键是电机运转的方向按键,当把Z_F键按下时,Z_F=1,电机正转;反之Z/F =0时,电机反转。
START是电机的开启键,当START=1,允许电机工作;当START=0时,电机停止转动。
H桥电路由大功率晶体管组成,PWM输出波形通过由两个二选一电路组成的方向控制电路送到H 桥, 经功率放大以后对直流电机实现四象限运行。
并由EN1信号控制是否允许变速。
以上是在网上查询的关于直流电机的简易结构描述,我们电脑QuartusⅡ做的是FPGA内部逻辑组成。
2.控制逻辑VHDL描述新建文件夹,以文件名PWM保存。
2.1 PWM脉宽调制信号产生电路描述图2 PWM脉宽调制信号产生电路PWM脉宽调制信号产生电路由可控的加减计数器CNTA、5位二进制计数器CNTB、数字比较器LPM_COMPARE三部分组成。
可控的加减计数器做细分计数器,确定脉冲宽度。
当U/D=1时,输入CLK2,使设定值计数器的输出值增加,PWM的占空比增加,电机转速加快;当U/D =0,输入CLK2,使设定值计数器的输出值减小,PWM的占空比减小,电机转速变慢。
5位二进制计数器在CLK0的作用下,锯齿波计数器输出周期性线性增加的锯齿波。
当计数值小于设定值时,数字比较器输出高电平;当计数值大于设定值时,数字比较器输出低电平,由此产生周期性的PWM波形。
2.1.1可控的加减计数器CNTA新建VHDL File文本,输入如下程序:LIBRARY IEEE;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNTA ISPORT(CLK:IN STD_LOGIC;U_D:IN STD_LOGIC;CQ:OUT STD_LOGIC_VECTOR(4 DOWNTO 0));END CNTA;ARCHITECTURE behav OF CNTA ISSIGNAL CQI:STD_LOGIC_VECTOR(4 DOWNTO 0);BEGINPROCESS(CLK)BEGINIF CLK'EVENT AND CLK='1'THENIF U_D='1' THENIF CQI<=31 THEN CQI<="11111";ELSE CQI<=CQI+1; END IF;ELSIF CQI=0 THEN CQI<="00000";ELSE CQI<=CQI-1;END IF;END IF;END PROCESS;CQ<=CQI;END behav;保存该文件并以文件名CNTA.vhd存盘,新建工程CNTA,编译CNTA.vhd。
如下图新建波形编辑图图3 新建vwf向波形编辑器拖入信号节点,并设置好仿真激励波形,以CNTA.vwf存盘。
仿真得如仿真波形输出报告。
图4 仿真波形输出报告可控的加减计数器CNTA中的端口U_D控制计数器的方向,EN1是计数器的使能端,控制计数器初值的变化。
U_D=1时,加减计数器CNTA在脉冲CLK2的作用下,每来一个脉冲,计数器CNTA加1,U_D=0时,每来一个脉冲,计数器CNTA减1。
使能端EN1设定计数器值的初值,当EN1由1变为0的时候,无论U_D如何表化,计数器的值都不会发生变化,这样就完成了计数器的设定值。
选择File—Create/Update—Create Symbol Files for Current File,生成Symbol供顶层文件调用。
图5 CNTA Symbol图6 CNTA RTL 2.1.2 5位二进制计数器CNTB如下图新建VHDL File格式文本图7选择编译文件类型输入如下程序LIBRARY IEEE;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNTB ISPORT(CLK: IN BIT;Q:BUFFER INTEGER RANGE 31 DOWNTO 0);END;ARCHITECTURE BHV OF CNTB ISBEGINPROCESS(CLK)BEGINIF CLK'EVENT AND CLK='1' THENQ<=Q+1;END IF;END PROCESS;END BHV;保存该文件并以文件名CNTB.vhd存盘,新建工程CNTB,编译CNTB.vhd。
新建波形编辑器,向波形编辑器拖入信号节点,并设置好仿真激励波形,以CNTB.vwf存盘。
仿真得如仿真波形输出报告。
图8 5位二进制计数器仿真波形CNTB是一个简单的5位二进制计数器,它的工作原理和CNTA的原理很相似,我们只是在CNTA的时钟端加了一个使能端U_D控制其加减的方向。
而CNTB 的时钟端没有加使能端,所以每来一个脉冲计数器加1,因为CNTB是一个5位的二进值计数器,所以当计数器的值当大于32时,计数器又重新从0开始记数,从而产生周期性的线性增加的锯齿波。
选择File—Create/Update—Create Symbol Files for Current File,生成Symbol供顶层文件调用。
图9 CNTB Symbol图10 CNTB RTL2.1.3 数字比较器LPM-COMPARE选择Tools—Mega Plug-In Manager命令,按如下图示定制新的宏功能模块。
图11 LPM宏功能模块设定图12设5位数据比较器2.1.4 PWM脉宽调制信号产生电路如下图新建原理图编辑窗图13选择编辑类型调用上述生成的Symbol和软件自带的常用端口,在编辑窗里连出图2所示的PWM脉宽调制信号产生电路。
并新建成工程PWMmktz.新建波形编辑窗口,拖入信号节点。
设置好仿真激励波形,以PWMmktz.vwf存盘。
仿真得如仿真波形输出报告。
图14 数字比较器的仿真波形数字比较器是产生PWM波形的核心组成部件,可控的加减计数器CNTA和5位二进制计数器CNTB同时加数字比较器LPM-COMPARE两端作为两路输入信号,当计数器CNTB输出值小于细分计数器CNTA输出的规定值时, 比较器输出高电平; 当CNTB输出值大于细分计数器CNTA输出的规定值时, 比较器输出低电平。
改变细分计数器的设定值, 就可以改变PWM输出信号的占空比。
为了便于观察防真波形,在CNTB的输出加上B[4..0],在最后的设计中须删除不必要的的输出端口B[4..0]。
细分计数器CNTA是一个双向计数器, 可以进行加减计数,由U_D控制其加/减计数方向, CLK是计数时钟输入端。
为了便于连续变速控制, 在计数器的CLK 端通过“与”门, 加入了CLK2外部变速控制附加时钟, 并由EN1信号控制是否允许变速。
在本次设计中直流电机转速进行了32级细分。
其仿真波形如图15,细分计数器的初值我设为08H,也就是十进值的8,当计数器CNTB的值小于8时,AGB输出高电平,当计数器CNTB的值大于8时,AGB的输出值为低电平,从而产生PWM波形。
图15 A[4..0]=08H时电机加速PWM波形通过改变细分计数器的值就可以改变PWM的占空比,从而改变直流电机的速度。
在图11中占空比D=8/32=0.25,在图16中占空比D=4/32=0.125。
通过以上两组数据比较以及分析仿真波形我们可以看出,只要改变使能端电平的高低,便可以改变细分计数器的值,也就是改变细分计数器CNTA的初值,从而可以改变直流电机的占空比,改变直流电机的速度。
图16 A[4..0]=04H时电机减速PWM波形调节PWM波的占空比是电机调速的重要手段,若脉宽计数器CNTA的值逐渐增大,输出脉冲的开启时间变大,PWM占空比逐渐变大,功率器件输出给电机电枢的能量增加,电机加速。
若脉宽计数器定时器CNTA的值减小,输出脉冲的开启时间变小,PWM占空比逐渐变小,功率器件输出给电机电枢的能量减少,电机减速。
当电机得到加速信号,占空比增大至它可调范围的最大值后保持,电机得到减速信号,占空比减小至它的可调范围的最小值后保持。
2.2运行控制逻辑电路描述2.2.1 2选1多路选择器MUX21A新建VHDL File文本,输入如下程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY MUX21A ISPORT(A,B,S:IN STD_LOGIC;Y:OUT STD_LOGIC);END ENTITY MUX21A ;ARCHITECTURE one OF MUX21A ISSIGNAL E:STD_LOGIC;SIGNAL D:STD_LOGIC;BEGIND<=A AND (NOT S);E<=B AND S;Y<=D OR E;END ARCHITECTURE one;保存该文件并以文件名MUX21A.vhd存盘,新建工程MUX21A,编译MUX21A.vhd。
如下图新建波形编辑图图17 新建vwf向波形编辑器拖入信号节点,并设置好仿真激励波形,以MUX21A.vwf存盘。