大学材料科学基础第二章材料中的晶体结构
- 格式:ppt
- 大小:5.45 MB
- 文档页数:94
《材料科学基础》名词解释第一章材料结构的基本知识1、晶体材料的组织:指材料由几个相(或组织单元)组成,各个相的相对量、尺寸、形状及分布。
第二章材料的晶体结构1、空间点阵:将理想模型中每个原子或原子团抽象为纯几何点,无数几何点在三维空间规律排列的阵列2、同素异构:是指有些元素在温度和压力变化时,晶体结构发生变化的特性3、离子半径:从原子核中心到其最外层电子的平衡距离。
4、离子晶体配位数:在离子晶体中,与某一考察离子邻接的异号离子的数目称为该考察离子的配位数。
5、配位数:晶体结构中任一原子周围最近邻且等距离的原子数6、致密度:晶体结构中原子体积占总体积的百分数;第三章高分子材料的结构1、聚合度:高分子化合物的大分子链是出大量锥告连成的。
大分子链中链节的重复次数叫聚合度2、官能度:指在一个单体上能和别的单体发生键合的位置数目3、加聚反应:由一种或多种单体相互加成而连接成聚合物的反应;4、缩聚反应:由一种或多种单体相互混合而连接成聚合物,同时析出(缩去)某种低分子物质(如水、氨、醉、卤化氢等)的反应;5、共聚:由两种或两种以上的单休参加聚合而形成聚合物的反应。
第四章晶体缺陷1、晶体缺陷:实际晶体中与理想的点阵结构发生偏差的区域;2、位错密度:晶体中位错的数量,是单位体积晶体中所包含的位错线总长度;3、晶界:同一种相的晶粒与晶粒的边界;4、晶界内吸附:少量杂质或合金元素在晶体内部的分布是不均匀的,它们常偏聚于晶界,称这种现象为晶界内吸附;第五章材料的相结构及相图1、固溶体:当合金相的晶体结构保持溶剂组元的晶体结构时,这种相就称为一次固溶体或端际固溶体,简称固溶体。
2、拓扑密堆积:如两种不同大小的原子堆积,利用拓扑学的配合规律,可得到全部或主要由四面体堆垛的复合相结构,形成空间利用率很高、配位数较大(12、14、15、16等)一类的中间相,称为拓扑密堆积。
3、电子浓度:固溶体中价电子数目e与原子数目之比。
4、间隙相:两组元间电负性相差大,且/1≤0.59具有简单的晶体结构的中间相5、间隙化合物:两组元间电负性相差大,且/≥0.59所形成化合物具有复杂的晶体结构。
第 2 章结晶结构一、名词解释1.晶体:晶体是内部质点在三维空间内周期性重复排列,具有格子构造的固体2.空间点阵与晶胞:空间点阵是几何点在三维空间内周期性的重复排列晶胞:反应晶体周期性和对称性的最小单元3.配位数与配位多面体:化合物中中心原子周围的配位原子个数成配位关系的原子或离子连线所构成的几何多面体4.离子极化:在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象5.同质多晶与类质同晶:同一物质在不同的热力学条件下具有不同的晶体结构化学成分相类似物质的在相同的热力学条件下具有相同的晶体结构6.正尖晶石与反尖晶石:正尖晶石是指2价阳离子全部填充于四面体空隙中,3价阳离子全部填充于八面体空隙中。
反尖晶石是指2价阳离子全部填充于八面体空隙中,3价阳离子一半填充于八面体空隙中,一半填充于四面体空隙。
二、填空与选择1.晶体的基本性质有五种:对称性,异相性,均一性,自限性和稳定性(最小内能性)。
2.空间点阵是由 C 在空间作有规律的重复排列。
( A 原子 B离子 C几何点 D分子)3.在等大球体的最紧密堆积中有面心立方密堆积和六方密堆积二种排列方式,前者的堆积方式是以(111)面进行堆积,后者的堆积方式是以(001)面进行堆积。
4.如晶体按立方紧密堆积,单位晶胞中原子的个数为 4 ,八面体空隙数为 4 ,四面体空隙数为 8 ;如按六方紧密堆积,单位晶胞中原子的个数为 6 ,八面体空隙数为6 ,四面体空隙数为 12 ;如按体心立方近似密堆积,单位晶胞中原子的个数为 2 ,八面体空隙数为 12 ,四面体空隙数为 6 。
5.等径球体最紧密堆积的空隙有两种:四面体空隙和八面体空隙。
一个球的周围有 8个四面体空隙、 6 个八面体空隙;n个等径球体做最紧密堆积时可形成 2n 个四面体空隙、 n 个八面体空隙。
不等径球体进行堆积时,大球做最紧密堆积或近似密堆积,小球填充于空隙中。
6.在离子晶体中,配置于正离子周围的负离子数(即负离子配位数),决定于正、负离子半径比(r +/r -)。
材料科学基础第2章材料中的晶体结构晶体是由原子、离子或分子按照一定的规则排列而成的固体。
晶体结构是指晶体中原子,离子或分子的排列方式。
晶体结构的特点是重复性和周期性。
晶体结构可以通过晶体的晶胞来描述,晶胞是晶体中最小重复单元,是由若干个原子,离子或分子组成的。
晶体结构的分类可以根据晶体的对称性进行。
常见的晶体结构类型有立方晶系、四方晶系、正交晶系、单斜晶系、三斜晶系、六角晶系和三角晶系。
立方晶系是最常见的晶体结构类型,它具有最高的对称性。
立方晶系包括体心立方晶体、面心立方晶体和简单立方晶体。
体心立方晶体每个晶胞中有一个原子位于立方体的中心,面心立方晶体每个晶胞中有一个原子位于每个立方体的面心,简单立方晶体每个晶胞中只有一个原子。
四方晶系的晶体中,晶胞的底面为矩形,其中一个边与底面垂直。
正交晶系的晶胞基本上和四方晶系相似,但它的底面为正方形。
单斜晶系的晶胞有一个倾斜的边,它是在不同轴上分别有两面成直角。
三斜晶系的晶体是最复杂的结构类型,它的晶胞没有任何对称性。
六角晶系的晶体结构可以看作是体心立方晶体和单斜晶体的组合,晶胞为底面呈六角形的棱柱。
三角晶系的晶体结构最特殊,晶胞为三角形。
晶体结构的研究对于材料科学非常重要。
通过了解晶体结构,我们可以预测和解释材料的物理性质,如硬度、热膨胀系数和电导率等。
晶体结构还对材料的合成和制备起到了指导作用。
例如,通过改变晶体结构,可以改变材料的性质,如增加或减少导电性。
总之,材料中的晶体结构是材料科学基础中的重要内容。
了解晶体结构有助于我们理解材料的性质和行为,并为材料设计和合成提供基础。
晶体结构的研究对于材料科学的发展非常重要,并在材料的合成和制备中起到了指导作用。
陆佩文材料科学基础名词解释(课后)-第二章晶体结构2.1名词解释晶体是由原子(或离子分子等)组成的固体物质晶体。
)在空间中周期性排列。
晶胞是能反映晶体结构特征的最小单位。
晶体可以看作是一堆无间隙的晶体单元。
晶体结构中的平行六面体单元晶格(空间晶格)是在三维空间中周期性排列的一系列几何点。
对称:物体的同一部分有规律地重复。
对称型:晶体结构中所有点对称元素(对称平面、对称中心、对称轴和旋转轴反向延伸)的集合,也称为点群。
空间群:指晶体结构中所有对称元素的集合brafi晶格以相同的方式将元素放置在每个晶格点上以获得实际晶体结构只有一个原子的晶格叫做布拉菲晶格范德华简分子间由于色散、诱导和取向而产生的吸引力的总配位数:晶体结构中任何原子周围的最近邻和等距原子数。
2.2试图从晶体结构的周期性讨论晶格结构不能有5个或6个以上的旋转对称?2.3金属镍具有最紧密堆积的立方结构。
一个晶胞中有多少个镍原子?如果已知镍原子的半径为0.125纳米,单位晶胞边长是多少?2.4金属铝属于立方晶系,边长为0.405纳米。
假设其质量密度为2.7g/m3,试确定其晶胞的Blavy晶格类型2.5晶体为四方结构,晶胞参数为a=b,c=a/2。
如果一个晶面在x y z 轴上的截距分别是2A3C6,试着给出晶面的米勒指数。
2.6尝试在立方晶体结构中绘制以下晶面(001)(110)(111),并标记以下晶体方向[210] [111] [101]。
2.14氯化铯(CsCl)晶体属于简单的立方结构,假设铯+和氯-沿立方对角线接触。
计算了氯化铯晶体结构中离子的堆积密度,并结合致密堆积结构的堆积密度讨论了其堆积特性。
根据面心立方,2.15氧化锂(Li2O)的晶体结构可视为O2的致密堆积。
Li+占据四面体空间。
如果Li+的半径为0.074nm,O2-的半径为0.140nm,则尝试计算li2o的单元电池常数II O2-的密集堆积所形成的空隙的最大半径,以容纳正离子2.16氧化镁具有氯化钠晶体结构。
第二章晶体结构2.1名词解释晶体由原子(或离子分子等)在空间作周期性排列所构成的固态物质晶胞是能够反应晶体结构特征的最小单位, 晶体可看成晶胞的无间隙堆垛而成。
晶体结构中的平行六面体单位点阵(空间点阵) 一系列在三维空间按周期性排列的几何点.对称:物体相同部分作有规律的重复。
对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合,又叫点群.空间群:是指一个晶体结构中所有对称要素的集合布拉菲格子把基元以相同的方式放置在每个格点上,就得到实际的晶体结构。
基元只有一个原子的晶格称为布拉菲格子。
范德华健分子间由于色散、诱导、取向作用而产生的吸引力的总和配位数:晶体结构中任一原子周围最近邻且等距离的原子数.2.2试从晶体结构的周期性论述晶体点阵结构不可能有5次和大于6次的旋转对称?2.3金属Ni具有立方最紧密堆积的结构试问: I一个晶胞中有几个Ni原子? II 若已知Ni原子的半径为0.125nm,其晶胞边长为多少?2.4金属铝属立方晶系,其边长为0.405nm,假定其质量密度为2.7g/m3试确定其晶胞的布拉维格子类型2.5某晶体具有四方结构,其晶胞参数为a=b,c=a/2,若一晶面在x y z轴上的截距分别为2a 3b 6c,试着给出该晶面的密勒指数。
2.6试着画出立方晶体结构中的下列晶面(001)(110)(111)并分别标出下列晶向[210] [111] [101].2.14氯化铯(CsCl)晶体属于简立方结构,假设Cs+和Cl-沿立方对角线接触,且Cs+的半径为0.170nm Cl-的半径为0.181nm,试计算氯化铯晶体结构中离子的堆积密度,并结合紧密堆积结构的堆积密度对其堆积特点进行讨论。
2.15氧化锂(Li2O)的晶体结构可看成由O2-按照面心立方密堆,Li+占据其四面体空隙中,若Li+半径为0.074nm,O2-半径为0.140nm试计算I Li2O的晶胞常数 II O2-密堆积所形成的空隙能容纳阳正离子的最大半径是多少。
第二章晶体结构【例2-1】计算MgO和GaAs晶体中离子键成分的多少。
【解】查元素电负性数据得,则,,,MgO离子键%=GaAs离子键%=由此可见,MgO晶体的化学键以离子键为主,而GaAs则是典型的共价键晶体。
【提示】除了以离子键、共价键结合为主的混合键晶体外,还有以共价键、分子间键结合为主的混合键晶体。
且两种类型的键独立地存在。
如,大多数气体分子以共价键结合,在低温下形成的晶体则依靠分子间键结合在一起。
石墨的层状单元内共价结合,层间则类似于分子间键。
正是由于结合键的性质不同,才形成了材料结构和性质等方面的差异。
从而也满足了工程方面的不同需要。
【例2-2】 NaCl和MgO晶体同属于NaCl型结构,但MgO的熔点为2800℃, NaC1仅为80l℃,请通过晶格能计算说明这种差别的原因。
【解】根据:晶格能(1)NaCl晶体:N0=6.023×1023 个/mol,A=1.7476,z1=z2=1,e=1.6×10-19 库仑,,r0===0.110+0.172=0.282nm=2.82×10-10 m,m/F,计算,得:EL=752.48 kJ/mol (2)MgO晶体:N0=6.023×1023 个/mol,A=1.7476,z1=z2=2,e=1.6×10-19库仑,r0==0.080+0.132=0.212 nm=2.12×10-10 m,m/F,计算,得:EL=3922.06 kJ/mol则:MgO晶体的晶格能远大于NaC1晶体的晶格能,即相应MgO的熔点也远高于NaC1的熔点。
【例2-3】根据最紧密堆积原理,空间利用率越高,结构越稳定,但是金刚石的空间利用率很低,只有34.01%,为什么它也很稳定?【解】最紧密堆积的原理只适用于离子晶体,而金刚石为原子晶体,由于C-C共价键很强,且晶体是在高温和极大的静压力下结晶形成,因而熔点高,硬度达,很稳定。
《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。
其中一次键的结合力较强,包括离子键、共价键和金属键。
一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。
二次键的结合力较弱,包括范德瓦耳斯键和氢键。
二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。
6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。
一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。
相反,对于离子键或共价键结合的材料,原子排列不可能很致密。
共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。
9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。
答:单相组织,顾名思义是具有单一相的组织。
即所有晶粒的化学组成相同,晶体结构也相同。
两相组织是指具有两相的组织。
单相组织特征的主要有晶粒尺寸及形状。
晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。
单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。
等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。
对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。
如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。
如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。
第二章晶体结构2.1名词解释晶体由原子(或离子分子等)在空间作周期性排列所构成的固态物质晶胞是能够反应晶体结构特征的最小单位, 晶体可看成晶胞的无间隙堆垛而成。
晶体结构中的平行六面体单位点阵(空间点阵) 一系列在三维空间按周期性排列的几何点.对称:物体相同部分作有规律的重复。
对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合,又叫点群.空间群:是指一个晶体结构中所有对称要素的集合布拉菲格子把基元以相同的方式放置在每个格点上,就得到实际的晶体结构。
基元只有一个原子的晶格称为布拉菲格子。
范德华健分子间由于色散、诱导、取向作用而产生的吸引力的总和配位数:晶体结构中任一原子周围最近邻且等距离的原子数.2.2试从晶体结构的周期性论述晶体点阵结构不可能有5次和大于6次的旋转对称?2.3金属Ni具有立方最紧密堆积的结构试问: I一个晶胞中有几个Ni原子? II 若已知Ni原子的半径为0.125nm,其晶胞边长为多少?2.4金属铝属立方晶系,其边长为0.405nm,假定其质量密度为2.7g/m3试确定其晶胞的布拉维格子类型2.5某晶体具有四方结构,其晶胞参数为a=b,c=a/2,若一晶面在x y z轴上的截距分别为2a 3b 6c,试着给出该晶面的密勒指数。
2.6试着画出立方晶体结构中的下列晶面(001)(110)(111)并分别标出下列晶向[210] [111] [101].2.14氯化铯(CsCl)晶体属于简立方结构,假设Cs+和Cl-沿立方对角线接触,且Cs+的半径为0.170nm Cl-的半径为0.181nm,试计算氯化铯晶体结构中离子的堆积密度,并结合紧密堆积结构的堆积密度对其堆积特点进行讨论。
2.15氧化锂(Li2O)的晶体结构可看成由O2-按照面心立方密堆,Li+占据其四面体空隙中,若Li+半径为0.074nm,O2-半径为0.140nm试计算I Li2O的晶胞常数 II O2-密堆积所形成的空隙能容纳阳正离子的最大半径是多少。
北京科技大学材料科学与工程专业814 材料科学基础主讲人:薛老师第二章固体结构例题讲解1.什么是晶面族?立方晶系{111}晶面族包含哪些晶面?答:在晶体内凡是晶面间距和晶面上的原子分布完全相同,只是空间位向不同的晶面我们可以把它们归并为同一个晶面族中,即晶面族,用{hkl}表示。
立方晶系{111}包括:(111)(111)(111)(111)(111)(111)(111)(111),这八个晶面构成一个八面体,因此晶面族{111}也成为八面体的面。
2.面心立方结构(100)和(111)晶面的夹角是多少?{100}的面间距是多少?答:(1) 所以:222222321321332211,cos b b b a a a b a b a b a ba b a b a ++⨯++++=⨯⨯>=<31111001101011cos 222222=++++⨯+⨯+⨯=ϕ︒==7.5431cos arc ϕ晶面的位向表示方法!!(2)面心立方,晶面间距:晶面为{100},则带入公式,得到d=a,(a 最好自己设一下)因为是立方晶系需要对晶面进行判断是否需要修复!!面心立方h 、k 、l 不全为奇数或者偶数时,需要修正,可知,该晶面需要修正所以:d=a/2.222)()()h (d l k a hkl ++=3.晶带定律的应用例:已知晶体中两个不平行的晶面(h1k1l1)(h2k2l2),证明(h3k3l3)与这两个晶面属于同一晶带,其中h3=h2+h1,k3=k2+k1,l3=l2+l1.答:设两个不平行的晶面所属晶带的晶带轴为[uvw]。
根据晶带定律,带入已知条件得到:h1u+k1v+l1w=0,h2u+k2v+l2w=0移项相加,得:(h1+h2)u+(k1+k2)v+(l1+l2)w=0,带入题目中的已知条件,可以得到h3u+k3v+l3w=0所以,第三个晶面与前面两个晶面属于同一个晶带。
例:在体心立方晶胞中画出一个最密排方向,并标明晶向指数,再画出过该方向的两个不同的低指数晶面,写出对应的晶面指数,这两个晶面与晶向构成什么关系?xzy G FE DOCBA注意点:1.画图一定要清洗,最好分开类画2.选取晶向的时候一定要选择对后期选择晶面有利的晶向3.回答晶带时,最好加上什么是晶带定律?4.六方晶系晶面、晶向指数例:写出图中六方晶胞EFGHIJE的晶面指数,以及EF,FG,GH,HI,IJ,JE 各晶向的晶向指数。