计算方法(2)第二章 方程的近似解法
- 格式:ppt
- 大小:1.80 MB
- 文档页数:70
2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过31021-⨯至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10.2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过0.5×10-4的根要二分多少次?证明 令f (x )=1-x -sin x ,∵ f (0)=1>0,f (1)=-sin1<0∴ f (x )=1-x -sin x =0在[0,1]有根.又f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间[0,1]内有唯一实根.给定误差限ε=0.5×10-4,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14.2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式:(1)211x x +=,迭代公式2111kk x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。
计算方法第一章绪论1.1计算方法的任务与特点计算方法(又称数值计算方法,数值方法)定义:研究数学问题数值解法及其理论的一门学科1.2误差知识误差来源:模型误差、观测误差、截断误差、舍入误差绝对误差:|e(x*)|=|x-x*|相对误差:e r=e(x*)/x*x*=±10m(a1×10-1+a2×10-2+…+an×10-n)n为有效数字|x-x*|≤(1/2)×10m-n1.3选用算法时应遵循的原则要尽量简化计算步骤以减少运算次数、要防止大数“吃掉”小数、尽量避免相近的数相减、除法运算中应尽量避免除数的绝对值远远小于被除数的绝对值选用数值稳定性好的公式,以控制舍入误差的传播第二章方程的近似解法方程f(x)=a0+a1x+…+a m-1x m-1+a m的根的模小于u+1大于1/|1+v| (u=max{|a m-1|,…,|a1|,|a0|}v=1/|a0|max{1,||a m-1|,…,|a1|})2.1二分法解法步骤:第一步利用(b-a)/2n+1≤1/2×10-m解得n+1≥~得最小对分次数2.2迭代法解法步骤:第一步画图求的隔根区间第二步建立迭代公示并判别收敛性第三步令初始值计算2.3牛顿迭代法迭代公式:x n+1= x n -f(x n)/f’(x n)解法步骤:第一步列出迭代公式第二步判断收敛性3.1解线性方程组的直接法高斯消去法、列主元素消去法、总体选主元素消去法暂不介绍矩阵三角分解法Ly=b Ux=y以三行三列为例介绍u11=a11u12=a12u13=a13l21=a21/u11l31=a31/u11u22=a22-l21×u12u23=a23-l21×u13l32=(a32-l31u12)/u22u33=a33-l31×u13-l32×u233.2解线性方程组的迭代法简单迭代法(雅可比迭代法)x=Bx+g收敛性判断|E入-B T B|=0 max入<1赛德尔迭代法x(k+1)=B1x(k+1)+B2x(k)+g收敛性判断|E入-C T C|=0 max入<1 C=(E-B1)-1B2第五章插值法余项R n(x)=f(n+1)(~)∏(x-x i)5.1拉格朗日插值法l k(x)=[(x-x0)…(x-x k-1)(x-x k+1)…(x-x n)]/[(x k-x0)…(x k-x k-1)(x k-x k+1)…(x k-x n)] L n(x)=∑l k(x)y k第六章最小二乘法与曲线拟合A T Ax=A T b第七章数值积分与数值微分梯形公式∫f(x)dx=(b-a)/2[f(a)+f(b)]Rn=-(b-a)3/12f’’(m) (m∈(a,b))复化梯形公式Rn=-(b-a)h2/12f’’(m) (m∈(a,b))辛浦生公式∫f(x)dx=(b-a)/6[f(a)+f((a+b)/2)+f(b)]Rn=- (b-a)5/2880f’(4)(m) (m∈(a,b))Rn=- (b-a)h4/2880f’(4)(m) (m∈(a,b))柯特斯公式∫f(x)dx=(b-a)/90[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]Rn=-8(b-a)/945((b-a)/4)7f(6)(m) (m∈(a,b))Rn=-2(b-a)(h/4)6/945((b-a)/4)7f(6)(m) (m∈(a,b))龙贝格求积公式S N=(4T2N-T N)/(4-1)C N=(42S2N-S N)/(42-1)R N=(43C2N-C N)/(43-1)T梯形S辛浦生C柯特斯第八章常微分方程初值问题的数值解法欧拉法y n+1=y n+hf(x n,y n)梯形法y n+1=y n+h/2[f(x n,y n)+f(x n+1,y n+1)]欧拉预估-校正公式y n(0)=y n+hf(x n,y n) y n+1=h/2[f(x n,y n)+f(x n+1,y n+1(0))]。
第二章 方程求根在许多实际问题中,常常会遇到方程f(x)=0求解的问题。
当f(x)为一次多项式时,f(x)=0称为线性方程,否则称为非线性方程。
对于非线性方程,由于f(x)的多样性,求其根尚无一般的解析方法可以使用,因此研究非线性方程的数值解法是十分必要的。
法、迭代法、牛顿法及割线法。
这些方法均是知道根的初始近似值后,进一步把根精确化,直到达到所要求的 精度为止。
也即求非线性方程根的数值方法。
第一节 第一节 增值寻根法与二分法2.1.1 增值寻根法设非线性方程f(x)=0的根为*x ,增值寻根法的基本思想是,从初始值0x 开始,按规定 的一个初始步长h 来增值。
令 1n x +=n x +h(n=0,1,2,…),同时计算f(1n x +)。
在增值的计算过程中可能遇到三种情形:(1) f(1n x +)=0,此时1n x +即为方 程的根*x 。
(2) f(n x )和f(1n x +)同符号。
这说明区间[n x , 1n x +]内无根。
(3) f(n x )和f(1n x +)异号,f(n x )·f(1n x +)<0此时当f(x)在区间[n x , 1n x +]上连续时,方程f(x)=0在[n x , 1n x +] 一定有根。
也即我们用增值寻根法找到了方程根的存在区间,n x 或1n x +均可以视为根的近似值。
下一步就是设法在该区间内寻找根 *x 更精确的近似值,为此再用增值寻根法 把n x 作为新的初始近似值,同时把步长缩小,例如选新步长1100h h =,这 样会得到区间长度更小的有根区间,从而也得到使f(x)n x ,作为*x 更 精确的近似值,若精度不够,可重复使用增值寻根法,直到有根区间的长度|1n x +-n x |<ε(ε为所要求的精度)为止。
此时f(n x )或f(1n x +)就可近似认为是零。
n x 或1n x +就是满足精度的方程的近似根(如图2-1).2—1例1 用增值寻根法求方程f(x)=324x x +-10=0的有根区间。
2.4.2 求函数零点近似解的一种计算方法—二分法整体设计教学分析求方程的解是常见的数学问题,这之前我们学过解一元一次、一元二次方程,但有些方程求精确解较难.本节从另一个角度来求方程的近似解,这是一种崭新的思维方式,在现实生活中也有着广泛的应用.用二分法求方程近似解的特点是:运算量大,且重复相同的步骤,因此适合用计算器或计算机进行运算.在教学过程中要让学生体会到人类在方程求解中的不断进步.三维目标1.让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.2.了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步了解算法思想.3.回忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣.重点难点教学重点:用二分法求方程的近似解.教学难点:二分法.课时安排1课时教学过程导入新课思路1.(情境导入)师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔10元降低报价.生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价.如果低了,每隔50元上升报价;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价……师:在现实生活中我们也常常利用这种方法.譬如,一天,我们华庄校区与锡南校区的线路出了故障(相距大约3 500米).电工是怎样检测的呢?是按照生1那样每隔10米或者按照生2那样每隔100米来检测,还是按照生3那样来检测呢?生:(齐答)按照生3那样来检测.师:生3的回答,我们可以用一个动态过程来展示一下(展示多媒体课件,区间逼近法).思路2.(事例导入)有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好.(让同学们自由发言,找出最好的办法)解:第一次,两端各放六个球,低的那一端一定有重球.第二次,两端各放三个球,低的那一端一定有重球.第三次,两端各放一个球,如果平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?推进新课新知探究 提出问题①解方程2x -16=0.②解方程x 2-x -2=0.③解方程x 3-2x 2-x +2=0.④解方程x 2-2x 2-3x +2=0.⑤我们知道,函数f x =lnx +2x -6在区间2,3内有零点.进一步的问题是,如何找出这个零点的近似值?⑥“取中点”后,怎样判断所在零点的区间? ⑦什么叫二分法?⑧试求函数f x =lnx +2x -6在区间2,3内零点的近似值.⑨总结用二分法求函数零点近似值的步骤.,⑩思考用二分法求函数零点近似值的特点. 讨论结果: ①x=8.②x=-1,x =2.③x=-1,x =1,x =2 ④x=-2,x =2,x =1,x =2.⑤如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围.〔“取中点”,一般地,我们把x =a +b 2称为区间(a ,b)的中点〕⑥比如取区间(2,3)的中点2.5,用计算器算得f(2.5)<0,因为f(2.5)·f(3)<0,所以零点在区间(2.5,3)内.⑦对于在区间[a ,b]上连续不断且f(a)·f(b)<0的函数y =f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值.像这样每次取区间的中点,将区间一分为二,再经比较,按需要留下其中一个小区间的方法称为二分法.⑧因为函数f(x)=lnx +2x -6,用计算器或计算机作出函数f(x)=lnx +2x -6的对应值表. x 1 2 3 4 5 6 789f(x)-4-1.306 91.098 63.386 35.609 47.791 89.945 9 12.079 4 14.197 2由表可知,f(2)<0,f(3)>0,则f(2)·f(3)<0,这说明f(x)在区间(2,3)内有零点x 0,取区间(2,3)的中点x 1=2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)·f(3)<0,所以x 0∈(2.5,3).同理,可得表(下表)与图象(如下图).区间 中点的值 中点函数近似值(2,3) 2.5 -0.084 (2.5,3) 2.75 0.512 (2.5,2.75) 2.625 0.215 (2.5,2.625) 2.562 5 0.066 (2.5,2.562 5) 2.531 25 -0.009 (2.531 25,2.562 5)2.546 8750.029(2.531 25,2.546 875) 2.539 062 5 0.010 (2.531 25,2.539 062 5)2.535 156 250.001由于(2,3) (2.5,3) (2.5,2.75),所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小(见上表).这样,在一定的精确度下,我们可以在有限次重复相同步骤后,将所得的零点所在区间内的任意一点作为函数零点的近似值.特别地,可以将区间端点作为函数零点的近似值.例如,当精确度为0.01时,由于|2.539 062 5-2.531 25|=0.007 812 5<0.01,所以,我们可以将x =2.531 25作为函数f(x)=lnx +2x -6零点的近似值.⑨用二分法求函数零点的一般步骤如下:第一步 在D 内取一个闭区间[a 0,b 0] D ,使f(a 0)与f(b 0)异号,即f(a 0)·f(b 0)<0.零点位于区间[a 0,b 0]中.第二步 取区间[a 0,b 0]的中点(如下图),则此中点对应的坐标为x 0=a 0+12(b 0-a 0)=12(a 0+b 0).计算f(x 0)和f(a 0),并判断:(1)如果f(x 0)=0,则x 0就是f(x)的零点,计算终止;(2)如果f(a 0)·f(x 0)<0,则零点位于区间[a 0,x 0]中,令a 1=a 0,b 1=x 0; (3)如果f(a 0)·f(x 0)>0,则零点位于区间[x 0,b 0]中,令a 1=x 0,b 1=b 0. 第三步 取区间[a 1,b 1]的中点,则此中点对应的坐标为x 1=a 1+12(b 1-a 1)=12(a 1+b 1).计算f(x 1)和f(a 1),并判断:(1)如果f(x 1)=0,则x 1就是f(x)的零点,计算终止;(2)如果f(a 1)·f(x 1)<0,则零点位于区间[a 1,x 1]上,令a 2=a 1,b 2=x 1; (3)如果f(a 1)·f(x 1)>0,则零点位于区间[x 1,b 1]上,令a 2=x 1,b 2=b 1. ……继续实施上述步骤,直到区间[a n ,b n ],函数的零点总位于区间[a n ,b n ]上,当a n 和b n按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数y =f(x)的近似零点,计算终止.这时函数y =f(x)的近似零点满足给定的精确度.⑩由函数的零点与相应方程的关系,我们可用二分法来求方程的近似解.由于计算量较大,而且是重复相同的步骤,因此,我们可以通过设计一定的计算程序,借助计算器或计算机完成计算.应用示例思路1例1求函数f(x)=x 3+x 2-2x -2的一个正实数零点(精确到0.1).解:由于f(1)=-2<0,f(2)=6>0,可以确定区间[1,2]作为计算的初始区间.用二法逐步计算,列表如下:端点或中点横坐标 计算端点或中点的函数值 定区间 a 0=1,b 0=2 f(1)=-2,f(2)=6 [1,2] x 0=(1+2)/2=1.5 f(x 0)=0.625>0 [1,1.5] x 1=(1+1.5)/2=1.25 f(x 1)=-0.984<0 [1.25,1.5] x 2=(1.25+1.5)/2=1.375 f(x 2)=-0.260<0 [1.375,1.5] x 3=(1.375+1.5)/2=1.437f(x 3)=0.162>0[1.375,1.437 5]1.4,因此1.4就是所求函数的一个正实数零点的近似值.函数f(x)=x3+x2-2x-2的图象如下图.实际上还可用二分法继续算下去,进而得到这个零点精确度更高的近似值.点评:以上求函数零点的二分法,对函数图象是连续不间断的一类函数的零点都有效.如果一种计算方法对某一类问题(不是个别问题)都有效,计算可以一步一步地进行,每一步都能得到唯一的结果,我们常把这一类问题的求解过程叫做解决这一类问题的一种算法.算法是刻板的、机械的,有时要进行大量的重复计算,算法的优点是一种通法,只要按部就班地去做,总会算出结果.算法更大的优点是,它可以让计算机来实现.例如,我们可以编写程序,快速地求出一个函数的零点.有兴趣的同学,可以在“Scilab”界面上调用二分法程序,对上例进行计算,求出精确度更高的近似值.本套书的一个重要特点是,引导同学们认识算法思想的重要性,并希望同学们在学习前人算法的基础上,去寻求解决各类问题的算法.在思路2例1求方程2x3+3x-3=0的一个实数解(精确到0.01).解:考察函数f(x)=2x3+3x-3,从一个两端函数值反号的区间开始,应用二分法逐步缩小方程实数解所在区间.经试算,f(0)=-3<0,f(2)=19>0,所以函数f(x)=2x3+3x-3在[0,2]内存在零点,即方程2x3+3x-3=0在[0,2]内有解.取[0,2]的中点1,经计算,f(1)=2>0,又f(0)<0,所以方程2x3+3x-3=0在[0,1]内有解.3至此,可以看出,区间[0.742 187 5,0.744 140 625]内的所有值,若精确到0.01,都是0.74.所以0.74是方程2x3+3x-3=0精确到0.01的实数解.点评:利用二分法求方程近似解的步骤:①确定函数f(x)的零点所在区间(a,b),通常令b-a=1;②利用二分法求近似解.,发现x1∈(2,2.5)(如上图),这样可以进一步缩小,先画出函数图象的简图,如上图.=2>0,x2-2x-1=0有一解,记为x1.,因为f(2.5)=0.25>0,所以2<x<2.5.知能训练1.函数f(x)=x3-2x2-x+2的零点个数是( )A.0 B.1 C.2 D.3答案:D2.在26枚崭新的金币中,有一枚外表与真币完全相同的假币(重量轻一点),现在只有一台天平,请问:应用二分法的思想,最多称__________次就可以发现这枚假币?解析:将26枚金币平均分成两份,放在天平上,则假币在轻的那13枚金币里面;将这13枚金币拿出1枚,将剩下的12枚平均分成两份,放在天平上,若天平平衡,则假币一定是拿出的那一枚,若不平衡,则假币一定在轻的那6枚金币里面;将这6枚平均分成两份,放在天平上,则假币一定在轻的那3枚金币里面;将这3枚金币任拿出2枚放在天平上,若平衡,则剩下的那一枚就是假币,若不平衡,则轻的那一枚就是假币.综上可知,最多称4次就可以发现这枚假币.答案:43.求方程x 3-3x -1=0的一个正的近似解(精确到0.1).解:设f(x)=x 3-3x -1,设x 1为函数的零点,即方程x 3-3x -1=0的解.作出函数f(x)=x 3-3x -1的图象如下图.因为f(1)=-3<0,f(2)=1>0,所以在区间(1,2)内方程x 3-3x -1=0有一个解,记为x 1.取1与2的平均数1.5,因为f(1.5)=-2.125<0,所以1.5<x 1<2.再取2与1.5的平均数1.75,因为f(1.75)=-0.890 625<0,所以1.75<x 1<2. 如此继续下去,得f(1)<0,f(2)>0 ⇒x 1∈(1,2), f(1.5)<0,f(2)>0 ⇒x 1∈(1.5,2), f(1.75)<0,f(2)>0 ⇒x 1∈(1.75,2), f(1.875)<0,f(2)>0 ⇒x 1∈(1.875,2),f(1.875)<0,f(1.937 5)>0 ⇒x 1∈(1.875,1.937 5),因为区间[1.875,1.937 5]内的所有值,如精确到0.1都是1.9,所以1.9是方程x 3-3x -1的实数解. 拓展提升从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查接点的个数为多少?(此例既体现了二分法的应用价值,也有利于发展学生的应用意识) 答案:至少需要检查接点的个数为4. 课堂小结①掌握用二分法求方程的近似解,及二分法的其他应用. ②思想方法:函数方程思想、数形结合思想. 作业课本习题2—4 A 7.设计感想 “猜价格”的游戏深受人们的喜欢,它是二分法的具体应用,用它引入拉近了数学与生活的距离.二分法是科学的数学方法,它在求方程的近似解和现实生活中都有着广泛的应用.本节设计紧紧围绕这两个中心展开,充分借助现代教学手段,用多种角度处理问题,使学生充分体会数学思想方法的科学性与完美性.备课资料基本初等函数的零点个数 结合基本初等函数的图象得:①正比例函数y =kx(k≠0)仅有一个零点0; ②反比例函数y =kx (k≠0)没有零点;③一次函数y =kx +b(k≠0)仅有一个零点;④二次函数y =ax 2+bx +c(a≠0),当Δ>0时,二次函数有两个零点-b ±Δ2a ;当Δ=0时,二次函数仅有一个零点-b2a;当Δ<0时,二次函数无零点.。
用二分法求方程的近似解知识点二分法是一种常用的求方程近似解的数值计算方法,运用这种方法可以找到函数方程f(x)=0在给定区间[a,b]上的一个根。
本文将对二分法的原理、步骤及其应用进行详细介绍。
一、原理二分法的原理基于数学中的零点定理,也叫做中间值定理。
该定理表明:如果一个连续函数f(x)在区间[a,b]上有f(a)和f(b)异号,即f(a)·f(b)<0,则在该区间内至少存在一个根。
基于这一定理,我们可以通过不断将给定区间一分为二,并判断中点函数值与零的位置关系,从而确定新的区间,直到满足精度要求或者迭代次数达到指定值。
这样可以在给定的精度范围内逐步缩小根的位置。
二、步骤下面是使用二分法求解方程根的一般步骤:1.选择一个区间[a,b],确保f(a)·f(b)<0。
这样可以保证函数在区间[a,b]内至少有一个根。
2.计算区间中点m=(a+b)/23.计算函数在中点处的值f(m)。
4.判断f(m)和0的关系:a.如果f(m)等于0,那么m就是方程的一个根;b.如果f(m)与f(a)异号,那么存在根的区间变为[a,m],重复步骤2-4;c.如果f(m)与f(b)异号,那么存在根的区间变为[m,b],重复步骤2-45.重复步骤2-4,直到达到所需的精度要求或者迭代次数达到指定值。
三、应用二分法在解决方程问题中有广泛的应用,特别是对于无法用解析法求解的非线性方程、高次多项式等复杂函数,二分法可以提供一个近似解。
此外,二分法还可以用于其他数值计算问题。
例如,在一些求极值的问题中,我们可以通过求解函数导数方程的根来找到极值点。
这时,同样可以使用二分法来近似求解。
四、注意事项在使用二分法求解方程时,需要注意以下几点:1.确保函数在给定区间上是连续且有定义的。
2.选择合适的初始区间[a,b]。
如果起始区间过大,则可能导致求解时间过长;如果起始区间过小,则可能无法找到根。
通常情况下,可以通过分析函数图像或者利用已知的条件进行初步估计。
用二分法求方程的近似解的方法二分法(又称折半法)是一种常用于求解方程近似解的数值计算方法。
它基于一个非常重要的思想:如果在一个区间内的函数值在两个端点处取值的符号不同,那么在该区间内一定存在一个根,即方程在该区间内至少有一个解。
二分法的基本原理是将求解的区间不断缩小,每次将区间一分为二,并找出中间点的函数值。
根据中间点的函数值与两个端点的函数值的符号关系,确定新的区间。
通过不断缩小区间的范围,最终找到一个满足精度要求的近似解。
下面将详细介绍二分法的步骤及相关注意事项。
步骤1:选择一个区间[a,b],其中a和b是方程的根的近似区间。
确保方程在a和b点的函数值异号,即f(a)*f(b)<0。
如果不满足这个条件,需要重新选择一个区间。
步骤2:求出区间的中点c,计算f(c)的值。
步骤3:根据f(c)的符号与f(a)的符号的关系,更新区间。
如果f(c)与f(a)的符号相同,则新的区间是[c,b]。
如果f(c)与f(a)的符号不同,则新的区间是[a,c]。
步骤4:重复步骤2和步骤3,直到满足精度要求为止。
一般可以设置一个容差范围eps,当区间的长度小于eps时,即认为求解已经足够精确。
注意事项:1.在选择初始区间[a,b]时,需要确保方程在这个区间内有一个解。
通常可以通过画出函数曲线或分析函数的性质来确定初始区间。
2.在每次更新区间时,要保证新的区间仍然满足f(a)*f(b)<0。
如果不满足,需要选择一个新的区间,并重新开始算法。
3. 二分法是一种迭代算法,需要根据精度的要求来设置迭代次数。
通常可以通过判断区间长度是否小于eps来确定迭代的终止条件。
4.二分法并不能保证找到方程在给定区间内的所有解,而只能找到一个解。
如果方程有多个解,需要根据需要修改初始区间,并多次运行二分法来找到所有的解。
总结:二分法是一种简单而有效的求解方程近似解的方法。
通过不断缩小区间的范围,并利用函数值的符号关系来确定新的区间,可以找到一个满足精度要求的近似解。