核辐射测量原理 (4)
- 格式:ppt
- 大小:2.01 MB
- 文档页数:14
实验二 γ射线的吸收一、实验目的:1、了解γ射线在物质中的吸收规律;2、测量γ射线在不同介质中的吸收系数。
二、实验器材:1、KZG03C 辐射检测仪一台;2、Cs137点放射源一个;3、铅准直器一个;4、40×40×dcm3的水泥、铝、铁、铜、铅吸收屏若干块(附屏支架);5、手套、长钳夹子、尺子、绳子各一套。
三、实验原理:天然γ射线与物质相互作用的三种主要形式:光电效应、康普顿散射和形成电子对效应。
由于三种效应的结果,γ射线通过物质时发生衰减(吸收),其总衰减系数应为三者之和:实验证明,γ射线在介质中的衰减服从指数规律:de I I μ-=0,mm d e I I μ-=0μ=(- Ln(I/I O ))/d , μm =(- Ln(I/I O ))/d m式中:I 为射线经过某一介质厚度的仪器净读数(减去本底);I 0为起始射线未经过介质的仪器净读数(减去本底); d 为介质厚度,单位为cm; d m 为介质面密度,单位为g/cm 2;μ 为γ射线经过介质的线吸收系数,单位为cm -1; μm 为γ射线经过介质的质量吸收系数,单位为g/cm 2; 半吸收厚度:为使射线强度减少一半时物质的厚度,即021I I =时,μ2ln 21=d 或 212ln d =四、实验内容: 1. 选择良好的测量条件(窄束),测量Cs 137源的γ射线在同一组吸收屏(水泥、铝、铁、铜、铅)中的吸收曲线,并由半厚度定出吸收系数; 2. 用最小二乘拟合的方法计算出吸收系数与1中的结果进行比较; 3.测量不同散射介质时(同一角度,同一厚度)γ射线的强度。
五、实验步骤: 1. 吸收实验1) 调整装置,使放射源、准直孔、探测器的中心在一条直线上; 2) 测量本底I 0’;3) 将源放入准直器中,测量无吸收屏时γ射线强度I 0”;4) 逐渐增加吸收屏,并按相对误差在N ±δ的要求测出对应厚度计数I d ’,每个点测三次取平均植; 5)更换一种吸收屏,重复步骤4,测量时注意测量条件不变。
核辐射测量基本概念及原理介绍
剂量是核辐射对物体的总能量沉积的度量,通常用戈瑞(Gray)表示。
剂量率是单位时间内物体所受核辐射的能量,以每小时为单位,通常用戈
瑞/小时表示。
活度是指核素单位时间内衰变所释放的辐射能量,通常用
贝克勒尔(Becquerel)表示,1贝克勒尔等于1次每秒的衰变。
爆发是
指核反应堆、核装置或核事故释放的大量能量,通常用吉(Sievert)表示。
核辐射的源:核辐射的源包括天然辐射和人工辐射。
天然辐射包括地
壳中的放射性物质、宇宙辐射和地下水中的放射性物质等。
人工辐射主要
来自核电站、医疗设备和工业应用等。
核辐射的传输:核辐射的传输包括空气传输、质料传输和电离辐射传输。
空气传输是指核辐射通过空气传播的过程,其强度与空气中的气体密
度和辐射源距离有关。
质料传输是指核辐射通过物体传递的过程,其强度
与物质的密度、厚度和组成有关。
电离辐射传输是指核辐射通过介质(如
气体、液体和固体)引起电离产生的辐射传播。
核辐射的检测:核辐射的检测主要包括电离室检测、闪烁探测器和固
态探测器等。
电离室检测是通过测量核辐射离子对气体的电离能力来检测
辐射水平的,可以测量α粒子、β粒子和伽马射线。
闪烁探测器是通过
测量辐射与闪烁物质相互作用产生的可见光或紫外线来检测辐射水平的,
适用于测量α粒子、伽马射线和中子。
固态探测器是通过测量核辐射与
特定材料相互作用产生的能量损失来检测辐射水平的,适用于测量α粒子、β粒子和伽马射线。
第一章 辐射源1、实验室常用辐射源有哪几类?按产生机制每一类又可细分为哪几种?2、选择放射性同位素辐射源时,需要考虑的几个因素是什么? 答题要点:射线能量、放射性活度、半衰期。
3、252Cf 可作哪些辐射源?答题要点:重带电粒子源(α衰变和自发裂变均可)、中子源。
4、137Cs 和60Co 是什么辐射源?能量分别为多少? 答题要点:γ辐射源;137Cs :0.662MeV 或0.661MeV ; 60Co :1.17MeV 和1.33MeV ;第二章 射线与物质的相互作用1、某一能量的γ射线在铅中的线性吸收系数是0.6cm -1,它的质量吸收系数和原 子的吸收截面是多少?按防护要求,源放在容器中,要用多少厚度的铅容器才能 使容器外的γ强度减为源强的1/1000? 解:已知μ=0.6cm -1,ρ=11.34g/cm 3,则由μm =μ/ρ得质量吸收系数μm =0.6/11.34cm 2/g=0.0529 cm 2/g 由 得原子的吸收截面: A m N Aγμμσρ==232322070.0529 6.02101.8191018.19m A A N cm bγσμ-⎛⎫==⨯ ⎪⨯⎝⎭≈⨯=由 得:()000111000ln ln 33ln 10 2.311.50.60.6I I t I I cm μμ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭==⨯=或由 得01()1000I t I =时铅容器的质量厚度t m 为: ()()()000332111000ln ln11ln 10ln 100.052933 2.3ln 100.05290.0529130.435/m m m m I I t I I g cm μμμ--⎛⎫⎛⎫ ⎪=-=- ⎪ ⎪⎝⎭ ⎪⎝⎭=-=-⨯==≈10、如果已知质子在某一物质中的射程和能量关系曲线,能否从这一曲线求得d (氘核)与t (氚核)在物质中的射程值?如果能够求得,请说明如何计算? 答题要点:方式一:若已知能量损失率,从原理上可以求出射程: 整理后可得:在非相对论情况下:()m m t I t I e μ-=0()t I t I e μ-=0001(/)RE E dE R dx dxdE dE dE dx ===-⎰⎰⎰0202404πE m v R dEz e NB=⎰22E v M =0024'02πE m E R dE z e NM B=⎰212E Mv =则在能量相同的情况下:从而得:方式二:若已知能量损失率,从原理上可以求出射程: 整理后可得:在非相对论情况下:从而得: 在速度v 相同的情况下,上式积分项相同,则12、当10MeV 氘核与10MeV 电子穿过铅时,请估算他们的辐射损失之比是多少?当20MeV 电子穿过铅时,辐射损失与电离损失之比是多少? 答题要点:已知辐射能量损失率理论表达式为:对于氘核而言,m d =1875.6139MeV ;对于电子而言,m e =0.511MeV ,而它们的电荷数均为1,则10MeV 的氘核与10MeV 的电子穿过铅时,它们的辐射损失率之比为:22222228222220.5117.42101857.6139d e d e de e d Z Z Z m Z NE Z NE m m Z m -==≈⨯222NZm E z dx dE S radrad∝⎪⎭⎫ ⎝⎛-=00001(/)R E E dE R dx dx dEdEdE dx ===-⎰⎰⎰0202404πE m v R dEz e NB =⎰212E Mv =dE Mvdv =21222211R M z R M z =0302404πv m Mv R dv z e N B=⎰222222aa ab ab b b ab a ba bb aM R M z z M R M z z M z R R M z ==⋅=⋅⋅22212211M z R R M z =E e =20MeV 时,在相对论区,辐射损失和电离损失之比有如下表达式:()()700re ZE dE dx dE dx -=-则 20MeV 的电子穿过铅时,辐射损失和电离损失之比为:20822.34700⨯≈第三章 核辐射测量的统计误差和数据处理3 本底计数率是10±1s -1,样品计数率是50±2s -1, 求净计数率及误差。
核辐射剂量检测仪原理
核辐射剂量检测仪原理是通过测量环境中的核辐射剂量来保护人员和环境免受
核辐射的影响。
它可以用于核电厂、医学设施、核实验室、辐射监测站等场所。
核辐射剂量检测仪的原理基于核辐射与物质的相互作用。
当核辐射通过物质时,它会与物质中的原子相互作用,导致原子的电离和激发。
检测仪可以测量核辐射所产生的电离或激发的粒子或能量,从而确定辐射剂量。
常见的核辐射剂量检测仪有三种类型:电离室、闪烁体和半导体探测器。
电离室是最常用的核辐射剂量检测仪。
它基于气体中的电离现象来测量核辐射
剂量。
当核辐射通过气体时,它会电离气体分子,产生带电粒子和电离的气体分子。
电离室中有两个电极,通过测量电离室中的电流来确定核辐射的剂量。
闪烁体核辐射剂量检测仪使用一种特殊的晶体来测量核辐射。
当核辐射通过闪
烁体时,它会激发晶体内的原子或分子,使其跃迁到一个高能级。
跃迁过程中,晶体会发出可见光或紫外光。
检测仪使用光电倍增管或光电二极管来测量闪烁体发出的光信号,从而确定核辐射的剂量。
半导体探测器是最先进的核辐射剂量检测仪器之一。
它使用半导体材料来测量
核辐射。
当核辐射通过半导体材料时,它会激发半导体中的电子和空穴,产生电流。
检测仪通过测量电流来确定核辐射的剂量。
核辐射剂量检测仪的原理是基于核辐射与物质的相互作用,并利用不同的检测
技术来测量核辐射剂量。
它在核能行业、医学领域和环境监测中起着至关重要的作用,保护人类和环境免受核辐射的损害。
核辐射探测的原理核辐射探测是一种用于探测和测量核辐射的技术,它在核能、医学、环境保护等领域具有重要的应用价值。
核辐射是指放射性物质在衰变过程中释放出的能量和粒子,包括α粒子、β粒子和γ射线。
核辐射探测的原理是基于核辐射与物质的相互作用。
核辐射与物质相互作用的方式有多种,其中包括电离作用、激发作用和散射作用。
电离作用是指核辐射与物质中的原子或分子相互作用,将电子从原子或分子中脱离出来;激发作用是指核辐射与物质中的原子或分子相互作用,使其电子跃迁到较高的能级;散射作用是指核辐射与物质中的原子或分子相互作用,改变其传播方向。
核辐射探测的常用方法包括计数法、能谱法和图像法。
计数法是通过对核辐射进行计数来测量辐射剂量率或活度水平。
计数器是核辐射探测中常用的仪器,它可以对核辐射进行计数和测量。
能谱法是通过分析核辐射的能量分布来确定其成分和能量水平。
能谱仪是能谱分析的主要工具,它可以将核辐射的能量分布转化为能谱图,从而得到核辐射的详细信息。
图像法是通过核辐射与物质相互作用的位置分布来获取核辐射的空间分布信息。
放射性显像仪是图像法的主要工具,它可以将核辐射的位置分布转化为图像,从而实现对核辐射的图像化显示。
核辐射探测的应用非常广泛。
在核能领域,核辐射探测可以用于核电站的辐射监测和核燃料的检验;在医学领域,核辐射探测可以用于放射治疗的剂量监控和核医学诊断;在环境保护领域,核辐射探测可以用于核废料的处理和环境辐射监测。
此外,核辐射探测还可以应用于核安全、核材料检测和核辐射防护等方面。
为了确保核辐射探测的准确性和可靠性,需要进行仪器校准和质量控制。
仪器校准是通过与标准源进行比对,确定仪器的灵敏度和响应特性;质量控制是通过定期检查和维护仪器,确保其性能和工作状态处于良好的状态。
此外,还需要进行辐射防护措施,保护操作人员和周围环境不受核辐射的伤害。
核辐射探测是一种重要的技术手段,可以用于核能、医学、环境保护等领域的辐射监测和剂量测量。
核辐射监测仪工作原理一、核辐射监测仪的作用核辐射监测仪是一种用于检测和测量周围环境中的核辐射水平的仪器。
它主要用于核电站、医疗机构、核工业企业、辐射实验室等场所,用于保护工作人员和公众的安全。
二、核辐射的种类核辐射主要分为三种类型:α射线、β射线和γ射线。
其中,α射线带有正电荷,能被一张纸或几厘米的空气层阻挡;β射线带有负电荷,能被几毫米到几十米的物质层阻挡;γ射线没有电荷,穿透能力强,能被厚重的混凝土或铅层阻挡。
三、核辐射监测仪的组成核辐射监测仪主要由探头、放大器、计数器、显示器和报警系统等部分组成。
1. 探头:探头是核辐射监测仪的核心部分,用于接收并转换核辐射为电信号。
根据不同的辐射类型,探头分为α、β、γ探头,并根据需要选择不同的探头进行测量。
2. 放大器:放大器用于放大探头接收到的微弱信号,使其能够被后续电路处理。
3. 计数器:计数器用于计算单位时间内探头接收到的辐射粒子数量,以达到对辐射水平的测量。
4. 显示器:显示器用于显示测量结果,通常以计数率(单位时间内辐射粒子的数量)或剂量率(单位时间内辐射剂量的大小)的形式呈现。
5. 报警系统:核辐射监测仪通常还配备有报警系统,当辐射水平超过设定的安全阈值时,会发出声音或光信号,提醒操作人员注意。
四、核辐射监测仪的工作原理核辐射监测仪的工作原理是基于核辐射与物质的相互作用。
当核辐射通过探头时,会与探头中的物质发生相互作用,产生电离效应。
这些电离效应会导致探头中的电子获得能量,从而产生微弱的电流信号。
探头接收到的微弱电流信号经过放大器放大后,进入计数器进行计数。
计数器会根据单位时间内探头接收到的辐射粒子数量,计算出辐射的计数率或剂量率。
计数率或剂量率通过显示器显示出来,以提供给操作人员参考。
如果辐射水平超过设定的安全阈值,报警系统会发出警报,提醒人们采取相应的防护措施。
五、核辐射监测仪的使用注意事项1. 核辐射监测仪的探头需要定期校准和检测,以确保测量结果的准确性和可靠性。
核辐射探测仪器基本原理及及指标1.光电效应探测:当γ射线入射到闪烁晶体或闪烁闪耀液体中时,会产生光电效应,即γ射线与物质相互作用,产生能量沉积,并使物质中的电子跃迁到高能级。
高能级的电子会向下跃迁,释放出能量,产生光子。
通过光电倍增管放大光信号,可以得到γ射线的能量和强度信息。
2.离子化室探测:当粒子入射到离子化室中时,会引起气体分子的电离,产生正离子和电子。
正离子在电场的作用下向阳极漂移,电子则向阴极漂移。
通过测量电离室中的电荷量,可以得到电离室中的粒子辐射强度。
3.闪烁探测:当粒子入射到闪烁晶体或液体中时,会产生能量沉积,激发晶体中的原子或分子。
激发态的原子或分子会向基态跃迁,释放出能量,产生光子。
通过光电倍增管或光电乘成功能,可以放大闪烁光信号,得到探测粒子的能量和强度信息。
1.探测效率:指探测器对入射辐射的探测能力。
即单位时间内探测器能探测到的辐射事件数与实际入射辐射事件数的比值。
探测效率高表示探测器对辐射事件的敏感度高。
2.清除时间:指探测器上的靶核或电子由高激发态跃迁回稳定态的时间,也即探测器释放出的光子停止闪烁的时间。
清除时间短表示探测器能快速恢复可探测状态。
3.能量分辨率:指探测器对不同能量辐射的分辨能力。
当辐射能量变化时,能量分辨率低会导致探测器无法准确测量。
4.阈值:指探测器开始探测辐射的最小能量。
低阈值可使探测器对低能辐射更敏感。
5.线性范围:指探测器能够准确测量的辐射强度范围。
超出线性范围可能导致读数不准确。
6.响应时间:指探测器从辐射入射到输出响应的时间。
响应时间短表示探测器对短脉冲辐射的探测能力强。
7.选择性:指探测器对不同类型辐射的选择能力。
选择性好意味着探测器能够区分不同类型的辐射。
综上所述,核辐射探测仪器的基本原理是根据辐射粒子与物质相互作用的方式来进行探测和测量,主要包括光电效应、离子化室和闪烁探测。
其指标主要有探测效率、清除时间、能量分辨率、阈值、线性范围、响应时间和选择性。
《核辐射测量方法》课件一、课件概述本课件旨在介绍核辐射的基本概念、测量方法及其应用。
通过本课件的学习,使学员掌握核辐射的性质、测量原理和常用的测量方法,为核辐射防护和核事故应急处理提供技术支持。
二、课件内容1. 核辐射的基本概念1.1 辐射1.2 核辐射1.3 辐射剂量2. 核辐射的性质2.1 辐射类型2.2 辐射能量2.3 辐射穿透性3. 核辐射测量原理3.1 辐射与物质的相互作用3.2 辐射探测原理3.3 辐射测量仪器4. 核辐射测量方法4.1 放射性核素测量4.1.1 活度测量4.1.2 核素识别4.2 射线辐射测量4.2.1 剂量率测量4.2.2 射线成像4.3 辐射环境监测4.3.1 环境辐射水平监测4.3.2 放射性废物监测5. 核辐射测量技术应用5.1 核能利用5.2 医学诊断与治疗5.3 地质勘探5.4 生物示踪6. 核辐射防护与应急处理6.1 辐射防护原则6.2 辐射防护措施6.3 核事故应急处理三、课件结构1. 课件首页:核辐射测量方法简介2. 章节页面:核辐射的基本概念、性质、测量原理、测量方法、应用、防护与应急处理3. 图片及动画:生动展示核辐射测量过程和防护措施4. 练习题:巩固所学知识四、课件制作要求1. 文字:清晰、简洁、易懂,符合学员阅读习惯2. 图片:选用高质量的图片,具有代表性,便于学员理解3. 动画:生动形象,展示核辐射测量过程和防护措施4. 练习题:具有针对性,帮助学员巩固所学知识五、课件使用建议1. 结合课程安排,合理安排课件内容的学习顺序2. 充分利用课件中的图片、动画等多媒体元素,提高学习兴趣3. 针对课件中的练习题,进行自我测试,巩固所学知识4. 如有疑问,及时与讲师或其他学员沟通交流,提高学习效果核辐射测量方法是核能利用、医学诊断与治疗、地质勘探等领域的重要技术手段。
通过本课件的学习,希望学员能够掌握核辐射的基本概念、性质、测量原理和应用,提高核辐射防护和应急处理能力。
核辐射探测原理pdf全文共四篇示例,供读者参考第一篇示例:核辐射是一种高能辐射,常见的核辐射包括α、β、γ射线以及中子辐射。
核辐射对人体健康有较大危害,因此在核辐射探测方面起着非常重要的作用。
本文将探讨核辐射探测原理以及其在实际应用中的重要性。
一、核辐射探测原理核辐射探测原理是利用辐射入射到某些物质中,通过测量辐射对物质的作用产生的电离效应,来探测并测定核辐射的性质、强度和能量分布。
核辐射探测的基本原理可以分为以下几种方法:1. 光电探测技术光电探测技术是通过光电倍增管等光电器件,将入射的γ射线能量转化为光子,并经过电子乘法器件,使得原始的能量能够被测量出来。
光电探测技术具有高分辨率、高灵敏度和较好的线性响应等优点,是目前较为常用的核辐射探测方法之一。
2. 闪烁探测技术闪烁探测技术利用某些晶体或液闪材料,当核辐射入射到其表面时,会产生闪烁光,通过测量闪烁光的强度和时间等参数,来确定核辐射的性质。
闪烁探测技术具有高抗干扰能力和高能量分辨率等优点,被广泛应用于核辐射测量。
3. 半导体探测器技术二、核辐射探测在实际应用中的重要性核辐射探测在核工业、医疗诊断、环境监测等领域都有着重要应用。
下面将分别探讨核辐射探测在不同领域中的应用重要性:1. 核工业核工业是核能应用的主要领域之一,核辐射探测在核电站、核燃料生产及辐射监测等方面发挥着重要作用。
通过核辐射探测可以对核反应堆进行状态监测和辐射剂量测量,确保核电站的运转安全。
核辐射探测还可以用于核燃料的检测、测定和辐射保护等工作。
2. 医疗诊断核辐射在医疗领域的应用主要是核医学,如正电子发射断层扫描(PET)和单光子发射计算机断层摄影(SPECT)等。
核辐射探测可以用于医学显像和诊断,帮助医生准确判断患者的病情和疾病发展的情况,提高医疗治疗的准确性。
3. 环境监测核辐射探测在环境监测中的应用主要是通过辐射监测站测定环境中的核辐射水平,对环境的辐射水平进行监测和评估。