管式加热炉的结构优化设计
- 格式:ppt
- 大小:1.38 MB
- 文档页数:19
管架式热水锅炉的设计改进集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-管架式热水锅炉的设计改进1 存在的问题及原因1.1 近年来,角管式管架热水锅炉在济南市特种锅炉厂一直作为主导产品,产品大部分销到我国西北地区。
该型锅炉原设计前拱较低、后拱较短较高,后拱内敷设了两个规格的后拱管。
后拱管内水的冷却作用使得后拱温度较低,起不到应有的高温辐射作用,加上受高原气候和煤质差、挥发分较低等因素影响,导致炉膛温度低,从而造成锅炉的脱火、着火困难、煤种适应性差、煤燃烧不完全等不良后果。
1.2 链条炉排的串风、漏风一直制约着该型锅炉的燃烧状况。
原设计的链条炉排是由4个以上的风室组成,为了达到密封和风压一致,把所有风室用隔板分别由纵向和横向隔开,单侧或双侧送风,每道隔板都采用了夹丝石棉板密封措施。
由于长期处于高温环境,夹丝石棉板内的钢丝强度和刚性很快退化,使密封性变差,造成风室之间的串风、漏风,降低了调风装置的灵敏性。
1.3 燃烧室水冷壁爆管是困扰该型热水锅炉的一大难题,特别是一些地方燃用的煤种挥发分相对较高,有的甚至燃用Ⅲ类烟煤。
例如莱芜鄂庄煤矿使用的济南市特种锅炉厂生产的一台QXL2.8-0.7/95/70-AⅡ型锅炉,由于燃用的是本矿自采煤种(发热值在25.08kJ以上),结果在不到一个采暖期的时间里就出现了前墙水冷壁管和后拱管爆管事故。
经分析,一是煤种不适应,二是存在热偏差,锅炉水分配不够合理,水流速偏低,加上水管外壁受炉膛高温火焰辐射,致使水中杂质在管壁上沉积结垢,水循环状况差,最终发生超温爆管。
1.4 排污时污垢和杂质不能有效排出。
角管锅炉下纵集箱一般都比较长,最短的也在4m以上,原设计排污管座只有1个,因此,离排污管座较远的污垢和杂质根本无法有效排出;同时,由于集箱设计为水平的,集箱直径与排污管座直径相差很大,即使快速排污,带走的也只是排污孔周围少量的污垢,如排污时间太长,会造成热量损失和补给水量增加。
加热炉调优原则与方法一、概述加热炉是炼油和化工生产过程中的重要设备,同时也是比较大的耗能设施,如何在不影响工艺安全稳定运行的基础上,通过对加热炉进行调整优化,挖掘节能潜力,以达到节能降耗的目的。
我们根据多年对加热炉的监测和了解,并结合相关文献和资料,总结了一些经验,通过对加热炉进行及时调整、适时控制、采用自控和必要改造等优化方法,达到方便控制、提高热效率、节约能源的效果。
对加热炉进行调优的方法和途径较多,我们从工艺、设备、调控和管理的角度出发,根据加热炉自身特点,归纳总结了如下4条调优的方法:提高加热炉热效率;加强日常控制和提高自动化的应用;加强设备的维护,合理配备监控仪表;提高人员素质,加强日常管理。
二、加热炉调优原则与方法(一)、提高加热炉热效率来实现加热炉调优的途径调优的目的是,加热炉要始终处于稳定的运行状态,同时各相关参数处于最佳配比状态,燃烧充分,换热良好,损失较低。
根据加热炉效率计算,从节能监测角度来分析,通常有以下4个提高加热炉效率的方法。
1、从装置自身的结构和工艺特点进行考虑,有以下措施。
优化换热、降低热负荷这主要通过对整个工艺系统换热流程进行优化,其效果非常明显,如炼油厂柴油加氢车间去年对汽柴油加氢装置的改造,就是通过换热流程的优化改造,提高了物料进入加热炉入口的温度,使炉子的热负荷降低,把炉膛温度降了下来,使排烟温度降低。
详见附件一。
●余热的回收根据每台加热炉的特点,采用不同的余热回收方案,系统进行考虑,如利用排放的烟气来预热进入加热炉的空气,可以提高预热空气的温度;还可利用物料的余热来预热空气。
通过我们的调查,目前石化公司还有近30%的加热炉没有采用余热回收。
●降低排烟温度主要有减小排烟温度与被加热介质的入对流段的差;需要的低温介质引入对流段顶部;能在条件允许的情况下预热空气;在必要时可以采用废热锅炉等方法来降低排烟温度。
目前公司加热炉排烟温度达不到控制指标或设计标准的有近50%以上。
管式加热炉温度温度串级控制系统的设计说明一、引言二、系统结构温度串级控制系统主要由上位机、温度传感器、控制器、执行机构等组成。
1.上位机:负责启动和监控系统运行,提供温度设定值和参考模型,按照系统控制算法生成控制指令发送给下位控制器。
2.温度传感器:负责实时采集管式加热炉内的温度数据,并将其传输给控制器进行处理。
3.控制器:根据上位机提供的设定值和参考模型,根据传感器采集到的温度数据进行处理,生成控制指令并发送给执行机构。
4.执行机构:根据控制器发送的控制指令,调节管式加热炉内的加热功率或其他参数,以实现温度控制。
三、温度控制策略1.温度设定值的调整:上位机会根据需要设定管式加热炉内的目标温度,并将其发送给控制器。
控制器会根据设定值和参考模型,生成合适的控制指令来调节温度。
2.温度比例控制:控制器会根据当前温度和设定值之间的差异,生成一个控制量来调节加热功率,使加热炉内的温度趋近于设定值。
3.温度积分控制:为了消除静态误差,控制器会根据温度偏差的积分值生成一定的控制量,以提高系统的稳定性。
4.温度微分控制:为了快速响应温度变化,控制器还会根据温度变化的速率生成相应的控制量。
四、系统性能指标1.温度响应时间:系统需要具备较快的响应时间,即加热炉内的温度能够尽快达到设定值。
2.温度稳定度:系统应当保持较好的温度稳定度,即经过一定时间后,温度偏差应尽可能小。
3.抗干扰能力:系统需要具备较好的抗干扰能力,对于外界干扰因素的影响应尽可能小。
五、系统设计优化1.选择合适的温度传感器:合适的温度传感器能够提供准确的温度数据,为控制系统提供可靠的输入信号。
2.高性能控制器的选择:通过选用性能较好的控制器,能够提高控制系统的稳定性和响应速度。
3.优化控制策略:通过合理选择温度比例、积分和微分参数,能够提高控制系统的性能。
4.加入滤波器和抗干扰装置:通过加入合适的滤波器和抗干扰装置,能够降低系统对外界干扰的敏感度,提高系统的抗干扰能力。
管式炉的一般结构和零部件管式加热炉如图2.5.17所示,一般由辐射室、对流室、余热回收系统、燃烧器及通风系统五部分组成。
图2.5.17 管式加热炉l. 辐射室辐射室是通过火焰或高温烟气进行辐射传热的部分。
这个部分直接受到火焰冲刷,温度最高,必须充分考虑所用材料的强度、耐热性等。
这个部分是热交换的主要场所,全炉热负荷的70—80%是由辐射室承担的,它是全炉最重要的部位。
可以说,一个炉的优劣主要是看它的辐射室性能如何。
1.1. 辐射室尺寸辐射室的尺寸主要是从以下三个方面来考虑的:①辐射室热负荷及辐射管外表面平均热强度;②管心距和管墙距;③燃烧器的能量(发热量)型式和布置以及炉管至火焰的距离。
1.2. 辐射室零配件的设置为了便于操作和保证安全运行,管式炉辐射室应设置下列配件:看火门、人孔门、防爆门、热电偶套管、测压管、灭火蒸汽管等。
✧看火门看火门主要是用来观察炉内火焰状况和辐射管运行情况,因此看火门的数量和位置应能看到所有燃烧器燃烧状况,并能观察到所有的辐射管。
✧人孔门及检修孔门为了能进入辐射室进行检修,需要设置人孔门和检修门。
当辐射室内有隔墙分开并且不能通行时,每间内必须设置一个人孔门。
对于炉底无法安装人孔门的小圆筒炉,检修时可拆下燃烧器,其开孔兼作人孔。
✧防爆门当炉内积存可燃气体和空气的混合物时,就有发生爆炸的危险,因此辐射室应设置防爆门,以便在发生爆炸事故时,能及时卸压。
防爆门的位置应能保证卸压时喷出的热气流不致危及人员和临近设备的安全.为了能及时卸压,防爆门的数量应与辐射室的空间成比例,多室炉膛每室至少应有一个防爆门。
✧热电偶套管和测压表烟气出辐射室的温度是必须测量的特性温度。
对于圆筒炉和立式炉,烟气出辐射室的温度测点设在辐射室至对流定的过渡处。
斜顶炉和方箱炉,该测温点设在火墙上方,因此该点温度通常又称为火墙温度。
管式炉都是在负压下操作的,为了保证炉内各点均处于负压下,以避免烟气外溢而损坏钢结构,通常要求炉顶(辐射室顶)负压保持在2mmH2O柱左右,因此,在辐射室顶部设置测压管。
管式加热炉的优化与维护作者:苗壮来源:《智富时代》2018年第08期【摘要】管式加热炉是石油化工行业中十分常用的加热设备,如何维护使用好管式加热炉是每一个石油化工企业生产管理的一项关键问题。
因为加热炉是直接关系到装置生产稳定的设备。
并且一个企业的能耗能否控制好与加热炉的合理优化节能有直接关系。
本文针对管式加热炉的结构、维护与优化进行介绍,希望能够在管式加热炉的管理和使用方面提供帮助。
【关键词】管式加热炉;结构;优化;维护一、管式加热炉的组成部分及介绍管式加热炉一般由辐射室、对流室、余热回收系统、燃烧器和通风系统等五部分组成,如下图所示。
其结构通常包括:钢结构、炉管、炉墙(内衬)、燃烧器、孔类配件等。
下面针对各个部件进行逐一介绍:1、基本结构、炉膛与部件炉膛与炉墙(炉衬)炉膛即是加热炉对炉管内介质加热的地方。
其主要由炉墙、炉顶和炉底组成。
这三个地方又被叫做炉衬,只有保证炉衬完的好,才能够保证加热炉的平稳运行。
炉衬要具备在高温的情况下抗烟气腐蚀的能力,同时还要有良好的保温和密闭性。
管式炉的炉墙结构由三部分构成,它们分别是耐火砖结构、耐火混凝土结构和耐火纤维结构。
其中耐火砖结构又分为砌砖炉墙、挂砖炉墙和拉砖炉墙。
拉砖炉墙是目前应用比较广泛的炉墙,尤其是温度较高的管式加热炉,如裂解炉和转化炉。
2、辐射室管式加热炉的热量传导主要在辐射室内进行。
整个加热炉的热负荷有七成以上在辐射室内。
位于辐射室内的炉管通常也被称为辐射管。
辐射室是加热炉中直接与火焰相接触的地方,所以,对其使用的材料的耐高温,耐腐蚀和稳定性有很高的要求。
3、对流室对流室通常位于辐射室的上方,也被设计放置于地面的形式。
在对流室内均匀的布置着加热炉管,这些炉管通过吸收辐射室内的烟气热量来对炉管内的介质进行加热。
为提高这些炉管的加热效果,通常采用接触面积大的顶头炉管或翅片炉管。
对流室内的炉管所吸收的热负荷约为总炉热效率的二到三成。
二、管式加热炉的技术指标管式加热炉的技术指标主要包括:热负荷、炉膛体积热强度、辐射表面热强度、对流表面热强度、热效率、火墙温度。
【完美升级版】炼油厂管式加热炉工艺设计_毕业论文设计摘要对于石油化工等行业,管式加热炉是使用最普遍的加热设备。
在石油加工的各项工作之中,管式加热炉都起着重要作用。
使用管式加热炉技术,除了可以降低生产成本外,还能够有效地节约能源。
但在当今节能减排的大形势之下,管式加热炉的耗能过大缺点还是日显突出。
在本设计中,通过优化管式加热炉的整体结构,并根据装置的操作情况和特点制定出一套改善方案,来提高管式加热炉的热效率,从而实现节能作用。
本设计适用于使用常减压工艺技术的管式加热炉,通过对整个工艺过程的仔细分析,及对各种优化方案的选择,最终确定了使用两台辐射-对流型圆筒加热炉共同工作的设计方案。
除此之外,通过对管式加热炉的工艺进行计算,包括辐射室及对流室的结构尺寸、燃料用量、炉内压力等参数的计算,以达到管式加热炉结构优选的目的。
通过使用螺杆膨胀机以实现烟气余热二次利用,进一步提高热效率,实现能源的节约。
关键词:热效率;结构优选;辐射—对流型加热炉;余热二次利用AbstractTube heating furnace is the most widely used heating equipment in the petrochemical industry. Tube heating furnace play a most significant role in the works of petroleum processing. Using the technology of Tube heating furnace can not only reduce the cost of production, but also can reserve energy effectively .however,in the trend of saving energy nowadays, the drawbacks of Tube heating furnace that it cost so much energy becomes more and more obvious each day . In this design, I made a optimized plan by optimizing the Overall Structure of Tube heating furnace and also according to operating conditions and characteristics of the device. With the help of the optimizedplan, we can rise the thermal efficiency of Tube heating furnace ,and then reach the goal of Energy conservation. The tube heating furnace in this design is applied to the atmospheric-vacuum technology,after a careful analysis of the entire process and the choices of a variety of optimizations, I finally made the combined operation scheme of two sets of radiation-convection cylindrical heating furnaces. Besides, in the process calculation of the tube furnace, which include the calculation of the structural dimensions of the radiation chamber and convection room, the calculation of furnace pressure, the calculation of fuel consumption, to reach the appointment of optimizing the structure of Tube heating furnace. By using the screw expander as the waste heat recycling equipment of flue gas can improve thermal efficiency and saves energy much better.Key words:Thermal efficiency ;structure optimizing; Radiation-convection type heating furnace; heat Recycling 目录摘要........................................................................................................................... (I)Abstract .............................................................................................................. ............. II 1 引言.. (1)1.1 课题的选择依据及其意义 (1)1.2 当今国内外炼化加热炉的节能技术应用现状及发展 (1)1.2.1 当今国内外炼化加热炉的节能技术应用现状 (1)1.2.2 我国炼化加热炉节能技术的应用情况 (2)1.2.3管式加热炉节能技术的发展趋势 (3)1.3节能设计的新型技术 (3)1.4 确定设计方案 (4)2 管式加热炉工艺计算 (5)2.1 计算设计热负荷及加热炉选型 (5)2.1.1 计算设计热负荷 (5)2.2 燃烧过程计算 (7)2.2.1计算燃料的热值 (8)2.2.2 计算理论空气量 (9)2.2.3 选取过剩空气系数及加热炉排烟温度 (9)2.2.4 计算加热炉热设计效率 (10)2.2.5 燃料气用量 (11)2.2.6 计算烟气流量 (12)2.3 辐射室热力计算 (12)2.3.1 估算辐射段热负荷 (13)2.3.2 选取辐射室炉管表面热强度 (14)2.3.3 估算辐射室炉管管壁温度 (15)2.3.5 确定辐射室炉管管程数、管径及管心距 (17) 2.4 辐射室炉体尺寸 (18)2.4.1 辐射炉管的节圆直径、有效长度 (18)2.4.2 辐射炉管根数 (18)2.4.3 辐射段炉膛直径 (19)2.4.4 辐射段炉膛高度 (20)2.5对流室炉体尺寸 (21)2.5.1 对流室炉管管径、管心距 (21)2.5.2 对流室炉管管长及对流室宽度 (22)2.6 辐射段传热核算 (25)2.6.1 当量冷平面 (25)2.6.2 总辐射交换因数 (26)2.6.3 辐射段热平衡 (28)2.6.4 辐射段烟气出口温度 (29)2.6.5 核算辐射段热负荷 (30)2.6.6 核算辐射段表面热强度 (30)2.6.7 核算辐射段油料入口温度及辐射段炉管壁温 (31)2.7 对流段的传热计算 (32)2.7.1 对流段热负荷 (32)2.7.2 对流段内的传热平均温差 (32)2.7.3 对流室炉管内膜传热系数 (33)2.7.4 对流室炉管外膜传热系数 (35)2.7.5 对流管的总传热系数 (38)2.7.6 对流室内炉管表面积及管排数 (39)2.8 过热蒸汽段计算 (40)2.8.1 过热蒸汽段烟气平均温度 (41)2.8.2 过热蒸汽段两种介质换热的平均温差 (41)2.8.3 管内介质的质量流速 (42)2.8.4 过热蒸汽管的对流传热系数 (43)2.8.5 过热蒸汽段炉管表面积及管排数 (45)2.9 炉管压降计算(有相变化) (47)2.9.1 汽化段压力降 (47)2.9.2 加热段压力降 (54)2.9.3 加热炉炉管总压力降 (56)2.9.4 加热炉炉管入口压力 (56)2.10 烟囱计算 (56)2.10.1 烟气通过对流段的阻力 (57)2.10.2 烟气由辐射段到对流段的阻力 (59)2.10.3 烟气由过热蒸汽段到烟囱的阻力 (60)2.10.4 烟气在烟囱挡板处的阻力 (61)2.10.5 烟气在烟囱内的摩擦损失 (61)2.10.6 烟气在烟囱内的动能损失 (63)2.10.7 烟囱高度 (63)2.11工艺计算结果汇总 (64)3 辐射—对流型圆筒加热炉配件及炉管系统的选用 (67) 3.1 炉管材料的选择 (67)3.2 钉头管 (67)3.3 炉管吊钩 (68)3.4 炉管拉钩 (68)3.5 看火门 (69)3.6人孔门 (69)3.7 防爆门 (71)3.8 清扫门和吹灰器 (72)4 辐射—对流型圆筒加热炉结构的选用 (72)4.1 加热炉主体结构 (74)4.1.1 辐射室结构 (74)4.1.2 对流室结构 (74)5 优化烟气余热再利用方案 (76)结论 (77)谢辞 (78)参考文献 (79)炼厂管式加热炉工艺设计1 引言1.1 课题的选择依据及其意义在近些年中,我国的经济发展形式日益壮大,与此同时,我们对能源的需求与依赖也日益凸显。
管式加热炉的结构及工作原理管式加热炉是一种常用的工业炉,其结构和工作原理如下:一、结构管式加热炉主要由炉体、炉管、燃烧器、空气预热器、温度控制系统等部分组成。
1.炉体:炉体是加热炉的主要部分,通常采用耐高温材料如耐火砖、浇注料等制成。
炉体形状和大小根据实际需要和生产工艺要求确定,一般呈长方形或圆形。
2.炉管:炉管是管式加热炉的核心部件,通常由不锈钢、合金钢等耐高温材料制成。
炉管一般呈蛇形或圆形,用于装载待加热的物料,同时将热量传递给物料。
3.燃烧器:燃烧器是加热炉的热源,通常位于炉体底部或侧部。
根据加热工艺要求,可以选择不同的燃料,如天然气、石油气、轻油、重油等。
4.空气预热器:空气预热器用于预热燃烧所需的空气,提高燃烧效率。
空气预热器通常位于加热炉的顶部或侧部,与燃烧器相连。
5.温度控制系统:温度控制系统是管式加热炉的重要组成部分,用于控制加热温度和物料受热均匀性。
温度控制系统通常包括温度传感器、调节阀、控制仪表等。
二、工作原理管式加热炉的工作原理是利用燃料燃烧产生的高温烟气,通过炉管传导热量,将待加热的物料加热到所需温度。
具体过程如下:1.燃料在燃烧器中燃烧,产生高温烟气。
2.高温烟气通过炉管,将热量传递给炉管内的待加热物料。
3.物料在受热过程中,温度逐渐升高,达到所需的工艺要求。
4.加热后的物料从炉管末端排出,进入下一生产环节。
5.部分高温烟气通过引风机引入空气预热器中,预热燃烧所需的空气。
6.预热后的空气与燃料在燃烧器中混合燃烧,产生高温烟气继续加热物料。
7.高温烟气和物料产生的蒸汽一同从炉管末端排出,进入下一生产环节。
在实际生产过程中,管式加热炉的操作和控制是非常关键的。
为了确保物料的受热均匀性和生产效率,操作人员需要根据工艺要求和实际生产情况进行调整。
例如,可以通过调节燃烧器的火焰大小、改变炉管的进料速度、调整空气预热器的进风量等方式来控制加热炉的工作状态和加热效果。
此外,为了保证加热炉的安全运行和环保达标排放,还需要进行废气处理和热量回收利用等方面的措施。
1管式加热炉的技术改造及节能措施贾芳成天利实业总公司技术项目部摘要; 针对早期建造的炼油厂和化工厂在役管式加热炉热负荷和热效率低以及热源损失大等状况,提出了若干技术改造和节能措施,包括增大对流管表面积以增大对流段的热负荷;增加辐射管的换热面积;修正烟囱高度;换用新型燃烧器,变自然通风为强制供风,以增大燃烧器的发热量,减小过剩空气系数,节省燃料2%~3%;在对流段和烟囱之间增设空气预热器以提高空气入炉温度;采用高温辐射涂料增强辐射换热效果,从而增加热源对炉壁的辐射传热量和炉管的传热量.通过工艺、设备、余热回收和正常操作的调整来节能等。
关键词; 管式加热炉 技术改造 热效率 节能 措施1.引言炼油工业采用管式加热炉始于上世纪初,经历了以下几个主要阶段:1.1 堆形炉它吸热面为一组管束,管子间的联接弯头也置于炉中,由于燃烧器直接装在管束下方,因此炉子各排管子的受热强度不均匀,当最底一排管受热强度高达50000-70000kcal/m 2.h 时,最顶排管子却不到800-1000kcal/m 2.h ,因此底排管常常烧穿,管间联接弯头也易松漏引起火灾。
1.2纯对流炉炉管烧穿的情况当时认为是因为辐射热太强,于是改为用纯对流炉。
全部炉管都装在对流室内,用隔墙把对流室与燃烧室分开,避免炉管受到火焰的直接冲刷。
然而,操作中又发现,对流室顶排管经常烧坏,而且炉管受热仍然很不均匀。
这是因为高温燃烧烟气在进入对流室之前没有和任何一个吸热面换热,在对流室入口处温度高达1000多℃所造成的。
1.3辐射对流炉后来人们发现,在燃烧室内安装一些炉管,一方面可取走部分热量降低烟气温度,解决对流室顶管的过热烧坏问题,同时可利用高温辐射传热强度大的特点,节省上炉管,缩小炉子体积。
这样,具有辐射室和对流室的管式加热炉便出现了,其初期代表为箱式炉。
目前管式加热炉技术发展很快,它对于石油炼制和化工工艺的进步起到了很大的推动作用。
可以说,管式加热炉几乎参与了各类工艺过程。
管式加热炉结构、分类、检修和腐蚀防治都在这总为找不到管式加热炉电子资料而为难,今天就来给大家发福利了。
今天为大家整理了管式加热炉的结构和分类详细解析以及检修过程和腐蚀防治的应对措施,这么全的资料都在这里了。
说吧,你还想要啥?管式加热炉分类管式加热路通常可以按照外形分类可分为以下几种:箱式炉1横管和立管大型箱式炉如图7-2、图7-3所示,这两种炉型结构基本一致,只是一为横管、一为立管。
它们的优点是只要增加中央的隔墙数目,可在炉膛体积热强度不变的前提下,积木组合式“把炉子放大。
该炉型适用于大型炉,其主要缺点是敷管率低,炉管需要合金吊挂,造价高,需设独立烟囱等。
2顶烧式炉图7-4为顶烧式炉。
这种炉子的燃烧器和辐射炉管交错排列,单排列双面辐射,管子沿整个圆周的热均匀分布,燃烧器顶烧,对流室和烟囱在地面。
它的缺点是炉子体积大,造价较高,用于单纯加热不经济,目前在合成氨厂常用它作为大型轻烃蒸汽转化炉的炉型。
3斜顶炉斜顶炉是由箱式炉演变而来,常用的是双斜顶炉,如图7-5所示。
由于改成斜顶,使箱式炉受热不均性有所改善,处理量也可加大。
其对流室在中间,烟气下行经地下或地面烟道排入烟囱内,也可在烟道处加装空气预热器,提高炉子效率。
这种炉子没有克服箱式炉的其它缺点,除原有老装置使用外,新建装置很少采用。
立式炉1底烧横管立式炉图7-6为底烧横管立式炉,传热方式与箱式炉相似,辐射室保持了立式炉的特点。
炉管布置在两侧,中间是一列底烧的燃烧器,烟气由辐射室经对流室、烟囱一直上行。
其燃烧器能量小、数量多,在炉子中央形成一道火焰膜,以提高辐射传热效果。
目前使用的立式炉多采用这一形式。
2附墙火焰立式炉图7-7为附墙火焰立式炉,这种立式炉炉膛中有火墙,它可增加炉膛内辐射面积,提高炉管受热强度,同时将辐射室分成两室,每室可各走一路油品,分别调节温度。
3环形管立式炉图7-8为环形管立式炉,这种炉子用多根U型炉管把火焰包围起来,适用于炉管路数多、管内压力降小的场合。