七年级数学下册竞赛辅导资料二元一次方程组解的讨论
- 格式:doc
- 大小:83.00 KB
- 文档页数:4
七年级下册数学二元一次方程组知识点一元一次方程是指只有一个未知数的一次方程,例如:2x - 3 = 7。
而二元一次方程是指含有两个未知数的一次方程,例如:2x + 3y= 7。
在七年级下册的数学课程中,我们将学习关于二元一次方程组的知识。
方程组是一个由多个方程组成的集合,其中每个方程都有相同的未知数。
接下来,我们将学习以下知识点:1.二元一次方程组的概念:二元一次方程组是由两个二元一次方程组成的集合。
一般形式为:a1x + b1y = c1a2x + b2y = c22.解二元一次方程组的方法:a.消元法:通过某种操作使得方程组中的一个未知数的系数相等,然后将方程相加或相减,从而消去该未知数。
b.代入法:选取一个方程,将其中一个未知数表示成另一个未知数的式子,然后将其代入另一个方程,从而得到一个只含一个未知数的方程。
c.矩阵法:将方程组的系数分别放入矩阵中,计算矩阵的行列式,从而求得方程组的解。
3.解二元一次方程组的步骤:a.利用某种方法将方程组化简为易于求解的形式。
b.求解方程组中的一个未知数。
c.将求解得到的未知数代入另一个方程,求解另一个未知数。
d.检验所求解是否满足原方程组。
4.二元一次方程组的解的情况:a.唯一解:方程组有且仅有一个解。
b.无解:方程组没有解,即方程组的解不存在。
c.无穷多解:方程组有无数个解。
5.在解二元一次方程组时要注意的问题:a.方程组是否有解。
b.方程组是否有无穷多解。
c.是否可以进行消元操作。
d.是否正确地代入方程。
通过学习二元一次方程组的知识,我们可以解决一些实际问题,例如在解答题或应用题中,通过列方程组来求解问题。
希望以上简要介绍的二元一次方程组的知识点能对你的学习有所帮助!。
为公教育个性化辅导教案二元一次方程组知识点归纳及解题技巧把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。
有几个方程组成的一组方程叫做方程组。
如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。
二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:代入消元法例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y③把③带入②,得6(5-y)+13y=89y=59/7把y=59/7带入③,x=5-59/7即x=-24/7∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elim ination by substitution),简称代入法。
加减消元法例:解方程组x+y=9①x-y=5②解:①+②2x=14即x=7把x=7带入①得7+y=9解得y=-2∴x=7y=-2 为方程组的解像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。
二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。
七年级下册数学二元一次方程组解的讨论竞赛辅导资料本资料为woRD文档,请点击下载地址下载全文下载地址课件www.5yk 初中数学竞赛辅导资料(11)二元一次方程组解的讨论甲内容提要.二元一次方程组的解的情况有以下三种:①当时,方程组有无数多解。
(∵两个方程等效)②当时,方程组无解。
(∵两个方程是矛盾的)③当(即a1b2-a2b1≠0)时,方程组有唯一的解:(这个解可用加减消元法求得)2.方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3.求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
(见例2、3)乙例题例1. 选择一组a,c值使方程组①有无数多解,②无解,③有唯一的解解:①当5∶a=1∶2=7∶c时,方程组有无数多解解比例得a=10, c=14。
②当5∶a=1∶2≠7∶c时,方程组无解。
解得a=10, c≠14。
③当5∶a≠1∶2时,方程组有唯一的解,即当a≠10时,c不论取什么值,原方程组都有唯一的解。
例2. a取什么值时,方程组的解是正数?解:把a作为已知数,解这个方程组得∵∴解不等式组得解集是6答:当a的取值为6时,原方程组的解是正数。
例3. m取何整数值时,方程组的解x和y都是整数?解:把m作为已知数,解方程组得∵x是整数,∴m-8取8的约数±1,±2,±4,±8。
∵y是整数,∴m-8取2的约数±1,±2。
取它们的公共部分,m-8=±1,±2。
解得m=9,7,10,6。
经检验m=9,7,10,6时,方程组的解都是整数。
例4(古代问题)用100枚铜板买桃,李,榄橄共100粒,己知桃,李每粒分别是3,4枚铜板,而榄橄7粒1枚铜板。
问桃,李,榄橄各买几粒?解:设桃,李,榄橄分别买x, y, z粒,依题意得由(1)得x=100-y-z把(3)代入(2),整理得y=-200+3z-设得z=7k,y=-200+20k,x=300¬-27k∵x,y,z都是正整数∴解得(k是整数)∴10<k<, ∵k是整数,∴k=11即x=3(桃), y=20(李), z=77(榄橄)丙练习11.不解方程组,判定下列方程组解的情况:①②③2.a取什么值时方程组的解是正数?3.a取哪些正整数值,方程组的解x和y都是正整数?4.要使方程组的解都是整数,k应取哪些整数值?5.(古代问题)今有鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,鸡翁,鸡母,鸡雏都买,可各买多少?一下答案练习11.①无数多个解②无解③唯一的解2.a>13.a=14.–5,-3,-1,15.课件www.5yk。
《8.2.2加减消元法---解二元一次方程组》说课稿尊敬的各位领导,各位老师:大家好!我今天说课的题目是《加减消元法---解二元一次方程组》,下面我将从以下五个板块展开说课,分别是说教材分析、说教法学法、说教学过程、说板书设计等五个板块进行说课。
一、说教材分析1、教材的地位和作用本课选自人民教育出版社中学数学七年级下册第八章第二节第二课时,本课是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础。
2、教学目标通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:会用加减消元法解简单的二元一次方程组。
理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
(二)过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
3、教学重点、难点:由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。
而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下:重点:用加减法解二元一次方程组。
难点: 灵活运用加减消元法的技巧,把“二元”转化为“一元”二、说教法结合七年级学生的年龄特征和认知特点,这一阶段的学生有极强的求知欲,在教学中我主要评价激励法,对学生所反馈的学习情况,我将予以点评,并给予鼓励。
另类方法巧解方程组
代入法与加减法是解二元一次方程组的基本方法.在解方程组时若能仔细观察方程组的结构特征,根据它的特征选择合适的方法,不仅能使问题化繁为简,还有助于培养同学们的创新思维和探索精神。
下面举例说明解方程组的三种特殊方法,供大家参考。
一、整体代入法
例1 解方程组:
解析:由①可得x+1=2y③,把(x+1)看作一个整体,将③代入②,得3×2y+5y=11。
解得y=1。
再把y=1代入③,解得x=
1,从而得到原方程组的解为
二、整体加减法
例2 解方程组:
解析:此题数字较大,若按常规加减,运算量很大,仔细观察方程组未知数的系数,发现具有对称轮换的特征,可采用整体相加减,使系数绝对值减小,从而可以得到一个同解的简易方程组,新颖别致,简捷明快.
①+②,化简整理,得x+y=2;①﹣②,化简整理,得x﹣y=6.
将所得方程联立成方程组解得原方程组的解为
三、参数消元法
例3 解方程组:
解析:本题的常规解法是将①化简后再求解,但因为①是比例式的形式,可设(x+1)/3=错误!=k,可得x=3k﹣1,y=2k+3,代入②得9k﹣3+2k+3=11,解得k=1。
再把k=1代入x=3k﹣1,y=2k+3得x=2,y=5.
所以原方程组的解是
点评:在方程组中,当某个方程是比例式时,一般采用设比值
法,达到消元求解的目的.
解二元一次方程组其实还有一些其他解法,同学们可以在熟练掌握课本上两种最基本的方法的同时,通过做题来体会其他解法,从而提高自己灵活运用所学知识解决问题的能力.。
七下二元一次方程组应用答题技巧
在七年级数学学习中,二元一次方程组是一个重要的知识点。
学生们常常会遇到关于二元一次方程组的解题问题,因此掌握一些答题技巧对于解题非常重要。
首先,对于二元一次方程组,学生需要掌握代入法和消元法。
代入法是指将一个方程的解代入另一个方程中,通过代入求解另一个变量的值。
而消元法则是通过加减消去一个变量,从而求解另一个变量的值。
在实际解题中,根据具体情况选择代入法或消元法,能够更快速地求得方程组的解。
其次,学生需要注意方程组的解的唯一性。
当两个方程组成的二元一次方程组有唯一解时,这意味着两个方程所代表的直线在平面上相交于一个点,这个点就是方程组的解。
而如果方程组无解或者有无穷多解,也需要根据具体情况进行分析和判断。
另外,学生在解题时还需要注意方程组的应用问题。
例如,通过建立二元一次方程组来解决关于两个变量的实际问题,比如两个人的年龄之和、两个物品的价格之和等。
在这种情况下,学生需要将问题转化为数学形式,建立方程组,并通过求解方程组来得到问
题的解。
总的来说,七下二元一次方程组是一个需要掌握的重要知识点,学生们在解题时可以通过掌握代入法和消元法,注意方程组解的唯
一性,以及灵活运用方程组的应用问题来提高解题的效率和准确性。
希望学生们能够通过不断的练习和实践,掌握二元一次方程组的解
题技巧,提高数学解题能力。
专题15 解二元一次方程组知识网络重难突破知识点一消元的思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,即可先求出一个未知数,然后再求另一个未知数。
这种将未知数的个数由多化少、逐一解决的思想,叫做消元的思想。
代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
基本思路:未知数由多变少。
代入消元法解二元一次方程组的一般步骤:1.变:将其中一个方程变形,使一个未知数用含有另一个的未知数的代数式表示。
2.代:用这个代数式代替另一个方程中的相应未知数,得到一元一次方程。
3.解:解一元一次方程4.求:把求得的未知数的值带入代数式或原方程组中的任意一个方程中,求得另一个未知数的值。
5.写:写出方程组的解。
6.验:将方程组的解带入到原方程组中的每个方程中,若各方程均成立,则这对数值就是原方程组的解,负责解题有误。
加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
加减消元法解二元一次方程组的一般步骤:1.变形:将两个方程中其中一个未知数的系数化为相同(或互为相反数)。
2.加减:通过相减(或相加)消去这个未知数,得到一个一元一次方程。
3.求解:解这个一元一次方程,得到一个未知数的值。
4.回代:将求得的未知数的值代入原方程组中的任意一个方程,求出另一个未知数的值。
5.写解:写出方程组的解。
6.检验:将方程组的解带入到原方程组中的每个方程中,若各方程均成立,则这对数值就是原方程组的解,负责解题有误。
整体消元法:根据方程组各系数的特点,可将方程组中的一个方程或方程的一部分看成一个整体,带入另一个方程中,从而达到消去其中一个未知数的目的,并求得方程的解。
初中数学竞赛辅导资料二元一次方程组解的讨论
甲内容提要
1. 二元一次方程组⎩⎨⎧=+=+222
111c y b x a c y b x a 的解的情况有以下三种: ① 当2
12121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当2
12121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2
121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=12212
1121
2211
221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得)
2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要
求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当
己知数),再解含待定系数的不等式或加以讨论。
(见例2、3)
乙例题
例1. 选择一组a,c 值使方程组⎩
⎨⎧=+=+c y ax y x 275 ① 有无数多解, ②无解, ③有唯一的解
解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解
解比例得a=10, c=14。
② 当 5∶a =1∶2≠7∶c 时,方程组无解。
解得a=10, c ≠14。
③当 5∶a ≠1∶2时,方程组有唯一的解,
即当a ≠10时,c 不论取什么值,原方程组都有唯一的解。
例2. a 取什么值时,方程组⎩⎨⎧=+=+31
35y x a y x 的解是正数?
解:把a 作为已知数,解这个方程组 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331a y a x ∵⎩⎨⎧>>00y x ∴⎪⎪⎩⎪⎪⎨⎧>->-02
31502331a a 解不等式组得⎪⎪⎩
⎪⎪⎨⎧><531331a a 解集是6311051<<a 答:当a 的取值为63
11051<<a 时,原方程组的解是正数。
例3. m 取何整数值时,方程组⎩⎨
⎧=+=+1442y x my x 的解x 和y 都是整数?
解:把m 作为已知数,解方程组得⎪⎪⎩
⎪⎪⎨⎧-=--=82881m y m x ∵x 是整数,∴m -8取8的约数±1,±2,±4,±8。
∵y 是整数,∴m -8取2的约数±1,±2。
取它们的公共部分,m -8=±1,±2。
解得 m=9,7,10,6。
经检验m=9,7,10,6时,方程组的解都是整数。
例4(古代问题)用100枚铜板买桃,李,榄橄共100粒,己知桃,李每粒分别是3,4枚铜板,而榄橄7粒1枚铜板。
问桃,李,榄橄各买几粒? 解:设桃,李,榄橄分别买x, y, z 粒,依题意得
⎪⎩
⎪⎨⎧=++=++)2(1007143)1(100z y x z y x 由(1)得x= 100-y -z (3)
把(3)代入(2),整理得
y=-200+3z -
7
z
设k z =7
(k 为整数) 得z=7k, y=-200+20k, x=300-27k ∵x,y,z 都是正整数∴⎪⎩⎪⎨⎧>>+->-07020200027300k k k 解得⎪⎪⎩
⎪⎪⎨⎧>><0.10.9100k k k (k 是整数)
∴10<k<9
111, ∵k 是整数, ∴k=11 即x=3(桃), y=20(李), z=77(榄橄) (答略)
丙练习11
1. 不解方程组,判定下列方程组解的情况:
① ⎩⎨⎧=-=-96332y x y x ②⎩⎨⎧=-=-3
2432y x y x ③⎩⎨⎧=-=+153153y x y x
2. a 取什么值时方程组⎪⎩⎪⎨⎧+-=--+=+229691322a a y x a a y x 的解是正数?
3. a 取哪些正整数值,方程组⎩⎨⎧=--=+a
y x a y x 24352的解x 和y 都是正整数?
4. 要使方程组⎩
⎨⎧=-=+12y x k ky x 的解都是整数, k 应取哪些整数值? 5. (古代问题)今有鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,
百钱买百鸡,鸡翁,鸡母,鸡雏都买,可各买多少?
一下答案(2)
练习11
1. ①无数多个解 ②无解 ③唯一的解
2. a>1
3. a=1
4. –5,-3,-1,1
5. ⎪⎩⎪⎨⎧78154鸡雏=鸡母=鸡翁=⎪⎩⎪⎨⎧81118鸡雏=鸡母=鸡翁=⎪⎩⎪⎨⎧84412鸡雏=鸡母=鸡翁=。