2019东北三校联考(一、二、三次汇总)
- 格式:doc
- 大小:62.01 KB
- 文档页数:19
2019年东北三省三校高三第一次联合模拟考试文科数学答案一. 选择题1-6 DBCCBA 7-12 BBCADD二.填空题13. 3 14. 乙 15. 30 16. 4π三.解答题17.解:(Ⅰ)1()2cos 21sin(2)1226π=++=++f x x x x …………………2分 ∵[0,]2x π∈,∴72666πππ≤+≤x , …………………4分 ∴1sin(2)1226π≤++≤x ∴函数()f x 的值域为1,22⎡⎤⎢⎥⎣⎦; …………………6分(Ⅱ)∵3()sin(2)162π=++=f A A ∴1sin(2)62π+=A ∵0π<<A ,∴132666πππ<+<A ,∴5266ππ+=A ,即3π=A…………………8分 由余弦定理,2222cos =+-a b c bc A ,∴2642=+-c c ,即2220--=c c又0>c ,∴1=c …………………10分∴1sin 2∆==ABC S bc A …………………12分18. 解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件M设每周累计户外暴露时间不少于28小时的4为学生分别为A,B,C,D ,其中A 表示近视的学生, 随机抽取2名,所有的可能有AB,AC,AD,BC,BD,CD 共6种情况, 其中事件M 共有3种情况, 即AB,AC,AD, 所以()3162==P M故随机抽取2名,其中恰有一名学生不近视的概率为12. …………………4分(Ⅱ)根据以上数据得到列联表:KMFGDCBA P近视 …………………8分所以2K 的观测值2200(40406060)8.000 6.635(4060)(6040)(4060)(6040)k ⨯⨯-⨯==>++++, 所以能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.…………………12分19. 解:(Ⅰ)(方法一):由已知11183323P BCG BCG V S PG BG GC PG -∆=⋅=⋅⋅⋅= ∴4PG = …………………2分 ∵PG ⊥平面ABCD ,BG ⊂平面ABCD ,∴PG BG ⊥ ∴1124422PBG S BG PG ∆=⋅=⨯⨯= ∵13AG GD =∴3332442BDG BCG S S ∆∆=⋅=⨯= …………………4分设点D 到平面PBG 的距离为h , ∵D PBG P BDG V V --= 1133PBG BDG S h S PG ∆∆∴⋅⋅=⋅⋅, 11344332h ∴⋅⋅=⋅⋅32h ∴= …………………6分 (方法二):由已知11183323P BCG BCG V S PG BG GC PG -∆=⋅=⋅⋅⋅= ∴4PG = ………………2分 ∵PG ⊥平面ABCD ,PG ⊂平面PBG ∴平面PBG ⊥平面ABCD ∵平面PBG平面=A B CD B G在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K , 则DK ⊥平面PBG∴DK 的长就是点D 到平面PBG 的距离 …………………4分223434322===∴=BC AD GD BC 在∆DKG 中,DK =DG sin 45︒=23∴点D 到平面PBG 的距离为23…………………6分 (Ⅱ)在平面ABCD 内,过D 作DM ⊥GC 于M ,连结FM ,又因为DF ⊥GC ,DM DF D = ∴GC ⊥平面F M D ,⊂FM 平面F M D ∴GC ⊥FMPG ⊥平面ABCD ,⊂GC 平面ABCD ∴PG ⊥GC∴FM ∥PG由GM ⊥MD 得:3cos452GM GD ︒==…………………10分 32312PF GM FC MC ∴=== …………………12分20. 解:(Ⅰ)24y x =焦点为(1,0)F ,则1(1,0)F -,2(1,0).F122a PF PF =+=解得1,1a c b ===,所以椭圆E 的标准方程为22 1.2x y += …………............4分 (Ⅱ)由已知,可设直线l 方程为1x ty =+,1122(,),(,).A x y B x y联立2213x ty x y =+⎧⎨+=⎩ 得22(1)220,t y ty ++-= 易知0.∆>则1221222,12.1t y y t y y t ⎧+=-⎪⎪+⎨⎪=-⎪+⎩.........6分 ()()111212121211(2)(2)F A F B x x y y ty ty y y ⋅=+++=+++=221212222(1)2()41t t y y t y y t -++++=+.因为111F A F B ⋅=,所以22221t t -=+1,解得213t =. ……..................8分 联立22112x ty x y =+⎧⎪⎨+=⎪⎩,得22(2)210t y ty ++-=,()2810t ∆=+>设3344(,),(,)C x y B x y ,则3423422,21.2t y y t y y t ⎧+=-⎪⎪+⎨⎪=-⎪+⎩….....…….........10分112341273F CDS F F y y∆=⋅-===….....…….........12分21. 解:(Ⅰ)当ea=时,()e ext x x=-,'()e ext x=-, .....….................1分令'()0=t x则1=x列表如下:所以()(1)e e0极小值==-=t x t. ......….......…....5分(Ⅱ)设()()()ln e e ln exF x f x g x x a ax x a=-+-+=-+-+,(1)≥x1'()e xF x ax=-+,(1)≥x设1()e xh x ax=-+,2221e1()exxxh xx x⋅-'=-=, ...........…........7分由1x≥得,21,x≥2e10->xx,'()0>h x,()h x在(1,)+∞单调递增,即()F x'在(1,)+∞单调递增,(1)1F e a'=+-,①当10e a+-≥,即1a e≤+时,(1,)x∈+∞时,()0F x'>,()F x在(1,)+∞单调递增,又(1)0F=,故当1x≥时,关于x的方程()ln e=()f x xg x a+--有且只有一个实数解. ..........9分②当10e a+-<,即1a e>+时,由(Ⅰ)可知e x ex≥,所以11'()e,'()0xa a e eF x a ex a F e ax x e e a a=+-≥+-≥⋅+-=>,又11ae e>+故00(1,),()0ax F xe'∃∈=,当(1,)x x∈时,()0F x'<,()F x单调递减,又(1)0F=,故当(]01,x x∈时,()0F x<,在[)01,x内,关于x的方程()ln e=()f x xg x a+--有一个实数解1.又(,)x x∈+∞时,()0F x'>,()F x单调递增,且22()ln1a aF a e a a a e e a=+-+->-+,令2()1(1)xk x e x x=-+≥,'()()2x s x k x e x ==-,()220'=-≥->x s x e e ,故'()k x 在()1,+∞单调递增,又'(1)0k >1当时,∴>x'()0,>k x ()∴k x 在()1,+∞单调递增,故()(1)0>>k a k ,故()0F a >,又0aa x e>>,由零点存在定理可知,101(,),()0x x a F x ∃∈=, 故在()0,x a 内,关于x 的方程()ln e=()f x x g x a +--有一个实数解1x . 又在[)01,x 内,关于x 的方程()ln e=()f x x g x a +--有一个实数解1.综上,1a e ≤+. ........................12分22.解:(Ⅰ)22324103x x x y y αα⎧=+⎪∴-++=⎨=⎪⎩ ……..................2分所以曲线C 的极坐标方程为24cos 10ρρθ-+=. …….................4分 (Ⅱ)设直线l 的极坐标方程为[)11(,0,)R θθρθπ=∈∈,其中1θ为直线l 的倾斜角,代入曲线C 得214cos 10,ρρθ-+=设,A B 所对应的极径分别为12,ρρ.21211214cos ,10,16cos 40∴+==>∆=->ρρθρρθ…….................7分1212OA OB +=+=+=ρρρρ…….................8分1cos 2θ∴=±满足0∆>16πθ∴=或56π, l 的倾斜角为6π或56π, 则1tan 3k θ==或3-. …….................10分 23.解:(Ⅰ)因为a x a x x a x x f 444)(=--≥+-=,所以 a a 42≤,解得 44≤≤-a .故实数a 的取值范围为]4,4[-. .…….................4分 (Ⅱ)由(Ⅰ)知,4=m ,即424x y z ++=. 根据柯西不等式222)(z y y x +++[][]2222221)2(4)(211+-+⋅+++=z y y x []21164()22121x y y z ≥+-+= …….................8分 等号在z y y x =-=+24即884,,72121x y z ==-=时取得。
东北三三校2019高三3月第一次联考-数学理(解析版)理科数学全解析本试卷分为第I 卷〔选择题〕和第II 卷〔非选择题〕两部分,共150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回。
本卷须知1、答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2、选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。
3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4、作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷〔选择题 共60分〕【一】选择题:本大题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项符合题目要求。
1、全集U R =,集合{}|2A x x =≥,{|05}B x x =≤<,那么集合)U C A B ⋂=( 〔 〕A 、{|02}x x <<B 、{|02}x x <≤C 、{|02}x x ≤<D 、{|02}x x ≤≤解析:{}|2U C A x x =<){|02}U C A B x x ∴⋂=≤<(,应选CA 、假设1x >,那么0x ≤B 、假设1x ≤,那么0x >C 、假设1x ≤,那么0x ≤D 、假设1x <,那么0x <解析:、命题“假设1,x >那么0x >”的否命题是:假设1x ≤,那么0x ≤,应选C 3、在复平面内复数3+41i z i=-的对应点在〔〕A 、第一象限B 、第二象限C 、第三象限D 、第四象限解析:3+4(3+4)(1)1717+1(1)(1)222i i i i z ii i i +-+====---+,而点17(,)22-在第二象限,应选B4数列{}n a 是等差数列,且1472a a a π++=,那么35tan()a a +的值为〔〕AB、CD、解析:1472a a a π++=,43=2a π∴42=3a π∴3544tan()=tan 2=tan 3a a a π∴+应选C5、与椭圆:C 2211612y x +=共焦点且过点的双曲线的标准方程为〔〕A 、2213y x -=B 、2221y x -=C 、22122y x -=D 、2213y x -= 解析:由题知:焦距为4,排除B,又焦点在y 轴上排除A,将代入C 、D 可得C 正确,应选C6、将4名实习教师分配到高一年级的3个班实习,假设每班至少名教师,那么不同的分配方案的种数为〔〕A 、12B 、36C 、72D 、108 解析:先从4名实习教师选出2名教师有24C 种情形,再将选出的2名教师看成1名教师与余下的2名全排列有33A 种情形,所以不同的分配方案的种数为:2343=36C A ⋅,应选B7、按如下图的程序框图运行后,假设输出的结果是63,那么判断框的整数M 的值是〔〕A 、5B 、6C 、7D 、8解析:按框图推演可得:M 的值为:6,应选B 8、假设n的展开式中第四项为常数项,那么n =〔〕第10小题DCBO 1OAA 、4 B、5 C 、6 D、7解析:n的展开式中第四项为:35331332211()()22n n nn C xx C x---∙-∙=-,又第四项为常数项 所以52n -=,从而5n =,应选B9、函数sin()y A x k ωϕ=++的最大值为4,最小值为0,最小正周期为2π,直线3x π=是其图像的一条对称轴,那么下面各式中符合条件的解析式为〔〕 A 、4sin(4)6y x π=+B 、2sin(2)23y x π=++C 、2sin(4)23y x π=++D 、2sin(4)26y x π=++解析:由题得:40A k A k +=⎧⎨-+=⎩,解得:22A k =⎧⎨=⎩又函数sin()y A x k ωϕ=++最小正周期为2π242πωπ∴==()2sin(4)2f x x ϕ∴=++又直线3x π=是()f x 图像的一条对称轴432k ππϕπ∴⨯+=+5,6k k Zπϕπ∴=-∈ 故可得:2sin(4)26y x π=++符合条件,所以选D10、点A B C D 、、、在同一个球的球面上,AB BC ==,2AC =,假设四面体ABCD 体积的最大值为23,那么这个球的表面积为〔〕A 、1256π3B 、8πC 、254πD 、2516π解析:AB BC ==,2AC =,ABC ∴∆是直角三角形,ABC ∴∆的外接圆的圆心在边1AC 的中点O 如下图,假设使四面体ABCD 体积的最大值只需使点D 平面ABC 的距离最大,又1OO ⊥平面ABC ,所以点D 是直线1OO 与球的交点最大。
东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次联合模拟考试英语试题本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分。
考试结束,将本试卷和答题卡一并交回。
满分150分,考试时间120分钟。
第I 卷注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在本试卷上,否则无效。
第一部分听力(共两节,满分30分)第一节(共5小题;每小题 1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Why didn't the woman wake the man up?A. She thought he had wound the clock.B. She didn't know his exact departure time.C. She has no idea of his schedule.2. What does the man remind the woman to take? tA.A bathing suit.B.A camera.C.Sunglasses.3. What is the relationship between the two speakers?A. Roommates.B.Brother and sister.C.Customer and house agent.4.What does the man think of his job?A.Challenging.B.Encouraging.C.Boring.5. Where is the second bank the man recommends?A. Next to the supermarket.B.Opposite the railway station.C.Beside the railway station.笫二节(共15小题;每小题 1.5分,满分22.5分)听下面5段对话或独白。
东北三三校2019高三3月第一次联合重点考试--数学(文)数学〔文〕〔辽宁省实验中学、东北师大附中、哈师大附中〕本试卷分为第I卷〔选择题〕和第II卷〔非选择题〕两部分,共150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回。
本卷须知1、答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2、选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。
3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4、作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I卷〔选择题,共60分〕【一】选择题〔本大题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1、设全集U= R,集合{|2}=≤<,那么集合()B x x=≥,{|05}A x xC A B=U〔〕A、{|02}<≤x x<<B、{|02}x xC、{|02}≤≤x x≤<D、{|02}x xA 、假设1x >,那么0x ≤B 、假设1x ≤,那么0x >C 、假设1x ≤,那么0x ≤D 、假设1x <,那么0x <3、在复平面内,复数31z i-=+对应的点在〔〕 A 、第一象限B 、第二象限C 、第三象限D 、第四象限4、函数1()(0,1)x f x a a a -=>≠的图象恒过点A ,以下函数中图象不经过点A 的是〔〕A.yB.y =|x -2|C.y =2x -1D.y =2log (2)x 5、与椭圆22:11612y x C +=共焦点且过点的双曲线的标准方程为〔〕 A 、2213y x -= B 、2221y x -=C 、22122y x -= D 、2213y x -=6、向量a ,b 是夹角为60°的两个单位向量,向量a +λb 〔λ∈R 〕与向量a -2b 垂直,那么实数λ的值为〔〕 A.1B.-1C.2D.07、按如下图的程序框图运行后,输出的结果是63,那么判断框中的整数M 的值是〔〕 A 、5B 、6C 、7D 、88、函数sin()y x ωϕ=+的最小正周期为2π,直线3x π=是其图象的一条对称轴,那么下面各式中符合条件的解析式为〔〕 A 、4sin(4)6y x π=+B 、sin(2)3y x π=+C 、sin(4)3y x π=-D 、15sin()412y x π=+9、点A 、B 、C 、D 在同一个球的球面上,AB =BC,AC =2,假设四面体ABCD 体积的最大值为23,那么这个球的表面积为〔〕A 、1256πB 、8πC 、254πD 、2516π10.函数()1,()ln f x g x a x =+=,假设在14x =处函数f 〔x 〕与g 〔x 〕的图象的切线平行,那么实数a 的值为() A.14B.12C.1D.411、假设点P 在抛物线24y x =上,那么点P 到点A 〔2,3〕的距离与点P 到抛物线焦点的距离之差〔〕A 、有最小值,但无最大值B 、有最大值,但无最小值C 、既无最小值,又无最大值D 、既有最小值,又有最大值12、函数132,0()log ,0x a x f x x x ⎧≤⎪=⎨>⎪⎩,假设关于x 的方程f 〔f 〔x 〕〕=0有且仅有一个实数解,那么实数a 的取值范围是〔〕 A.〔-∞,0〕B.〔-∞,0〕∪〔0,1〕 C.〔0,1〕D.〔0,1〕∪〔1,+∞〕第II 卷〔非选择题,共90分〕本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题要求考生必须作答,第22题~第24题为选考题,考生根据要求作答。
东北三三校2019高三3月第一次联合重点考试--数学(理)数学〔理〕〔辽宁省实验中学、东北师大附中、哈师大附中〕本试卷分为第I卷〔选择题〕和第II卷〔非选择题〕两部分,共150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回。
本卷须知1、答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2、选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。
3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4、作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I卷〔选择题,共60分〕【一】选择题〔本大题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1、设全集U = R,集合{|2}=≤<,那么集合B x x=≥,{|05}A x xC A B=( )()UA、{|02}<≤x x<<B、{|02}x xC、{|02}≤≤x x≤<D、{|02}x xA 、假设1x >,那么0x ≤B 、假设1x ≤,那么0x >C 、假设1x ≤,那么0x ≤D 、假设1x <,那么0x <3、在复平面内,复数341i z i+=-对应的点在() A 、第一象限B 、第二象限C 、第三象限D 、第四象限4、数列{}n a 是等差数列,且1232a a a π++=,那么的值为() AB、CD、5、与椭圆22:11612y x C +=共焦点且过点的双曲线的标准方程为() A 、2213y x -= B 、2221y x -=C 、22122y x -= D 、2213y x -=6、将4名实习教师分配到高一年级的3个班实习,假设每班至少1名教师,那么不同的分配方案种数为() A 、12B 、36C 、72D 、1087、按如下图的程序框图运行后,输出的结果是63,那么判断框中的整数M 的值是() A 、5 B 、6 C 、7 D 、8 8、假设n的展开式中第四项为常数项,那么n =()A 、4B 、5C 、6D 、79、sin()y A x k ωϕ=++函数的最大值为4,最小值为0,最小正周期为2π,直线3x π=是其图象的一条对称轴,那么下面各式中符合条件的解析式为() A 、4sin(4)6y x π=+B 、2sin(2)23y x π=++ C 、2sin(4)23y x π=++D 、2sin(4)26y x π=++10、点A 、B 、C 、D 在同一个球的球面上,AB =BCAC =2,假设四面体ABCD 体积的最大值为23,那么这个球的表面积为()A 、1256πB 、8πC 、254πD 、2516π11、假设点P 在抛物线24y x =上,那么点P 到点A 〔2,3〕的距离与点P 到抛物线焦点的距离之差()A 、有最小值,但无最大值B 、有最大值,但无最小值C 、既无最小值,又无最大值D 、既有最小值,又有最大值12、ln ()ln 1xf x xx=-+,()f x 在0x x =处取得最大值,以下各式正确的序号为()①00()f x x <②00()f x x =③00()f x x >④01()2f x <⑤01()2f x >A 、①④B 、②④C 、②⑤D 、③⑤第II 卷〔非选择题,共90分〕本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题要求考生必须作答,第22题~第24题为选考题,考生根据要求作答。
哈尔滨师大附中 东北师大附中 辽宁省实验中学2024年高三第一次联合模拟考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,定在.本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四选项中,只有一项是符合题目要求的.1.已知集合{}1,2M =,(){}2log 212N x x =∈−≤R ,则M N = ( ) A .{}1B .{}2C .{}1,2D .∅2.已知复数z 的共轭复数是z ,若i 1i z ⋅=−,则z =( ) A .1i −+B .1i −−C .1i −D .1i +3.已知函数()y f x =是定义在R 上的奇函数,且当0x <时,()2af x x x=+,若()38f =−,则a =( ) A .3−B .3C .13D .13−4.已知平面直角坐标系xOy 中,椭圆C :22221x y a b+=(0a b >>)的左顶点和上顶点分别为A ,B ,过左焦点F 且平行于直线AB 的直线交y 轴于点D ,若2OD DB =,则椭圆C 的离心率为( )A .12B C .13D .235.()521x x y y −−的展开式中32x y 的系数为( ) A .55B .70−C .30D .25−6.已知正四棱锥P ABCD −各顶点都在同一球面上,且正四棱锥底面边长为4,体积为643,则该球表面积为( ) A .9πB .36πC .4πD .4π37.已知函数()22e e xx f x ax −=−−,若0x ≥时,恒有()0f x ≥,则a 的取值范围是( )A .(],2−∞B .(],4−∞C .[)2,+∞D .[)4,+∞8.设1033e a =,11ln 10b =,ln 2.210c =,则( ) A .a b c <<B .c b a <<C .b c a <<D .a c b <<二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.等差数列{}n a 中,10a >,则下列命题正确的是( ) A .若374a a +=,则918S =B .若150S >,160S <,则2289a a > C .若211a a +=,349a a +=,则7825a a += D .若810a S =,则90S >,100S <10.在平面直角坐标系xOy 中,抛物线C :24y x =的焦点为F ,点P 在抛物线C 上,点Q 在抛物线C 的准线上,则以下命题正确的是( ) A .PQ PF +的最小值是2 B .PQ PF ≥C .当点P 的纵坐标为4时,存在点Q ,使得3QF FP =D .若PQF △是等边三角形,则点P 的橫坐标是311.在一个只有一条环形道路的小镇上,有2家酒馆A ,一个酒鬼家住在D ,其相对位置关系如图所示.小镇的环形道路可以视为8段小路,每段小路需要步行3分钟时间.某天晚上酒鬼从酒馆喝完酒后离开,因为醉酒,所以酒鬼在每段小路的起点都等可能的选择顺时针或者逆时针的走完这段小路。
2019年东北三省三校第一次模拟考试文综地理详解答案1.D2.C3.B4.C5.D6.A7.C8.A9.C 10.B 11.D1.D 【解析】A选项电子商务取代传统商业叙述过于绝对,电子商务只是部分取代了传统商业;B选项物流业先于电子商务产生,目前两者关系是相辅相成的。
C选项区域经济联系目前正在逐渐增强。
D选项商业布局区位因素,如市场、交通等因素对商业的影响正在减弱,所以影响商业布局的区位因素发生了变化。
2.C 【解析】电子商务发展依赖于信息、流通等部门,导致商业网络组织形式发生变化的主要因素是科技信息的发展。
3.B 【解析】 A选项云南全年的蔬菜总产量据图计算应为1880万吨左右,而广西为2780万吨左右,故云南产量小于广西。
B选项经计算海南省总蔬菜产量为600万吨左右,是三省区最低的省(区)。
C选项广西冬春菜产量占比高主要是北方消费市场的季节差的需求。
D选项海南与云南种植蔬菜的热量差异不大。
4.C 【解析】“南菜北运”可以促进生产地区与市场的融合,丰富农产品的种类,促进市场供应,提高人民生活水平,被称为“菜篮子”工程,但不可能促进全国各地均衡发展,故不属于选项为C选项。
5.D 【解析】从题干可知,河口地区是径流和潮流相互作用的区域,在径流势力比潮流势力强的河口,会导致泥沙大量堆积,则形成三角洲式河口;在河流势力比潮流势力弱时,会导致海水强烈冲刷河口地区,形成三角港式河口。
甲乙两河口都有可能出现咸潮现象,但乙河口为三角港式河口,则乙河口地区潮流势力更强,更易出现海水倒灌,形成咸潮,故A选项错误;甲河口径流势力比潮流势力强,更容易泥沙堆积,形成三角洲,B选项错误;试题中能反映出河口地区径流与潮流的相互作用关系,但无法判断河流输沙量的大小,C错误;乙河口为三角港式河口,受海水的侵蚀更严重,D选项正确。
6.A 【解析】近几年甲河口区“前缘急坡”后退明显,说明河口地区泥沙沉积减少,海水侵蚀速度大于河流沉积速度,中上游修水库会导致河流携带的泥沙在库区沉积,而入海泥沙减少,A选择正确;流域植被破坏会导致河流含沙量增加,河口地区泥沙沉积量增加,会使“前缘急坡”向海洋扩展,C选项错误;地壳运动和全球变暖导致的海平面上升,都是极其缓慢的过程,不会出现近几年“前缘急坡”的明显后退,B、D选项错误。
2019年东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(文科)一、选择题(本大题共12小题,共60.0分) 1. 复数(1-i )(3+i )的虚部是( )A. 4B. −4C. 2D. −2 2. 若集合A ={x |-1≤x ≤2},B ={x |log 3x ≤1},则A ∩B =( )A. {x|−1≤x ≤2}B. {x|0<x ≤2}C. {x|1≤x ≤2}D. {x|x ≤−1或x >2}3. 已知向量a ⃗ ,b ⃗ 的夹角为60°,|a⃗ |=1,|b ⃗ |=2,则|3a ⃗ +b ⃗ |=( ) A. √5 B. √17 C. √19 D. √214. 设直线y =x -√2与圆O :x 2+y 2=a 2相交于A ,B 两点,且|AB |=2√3,则圆O 的面积为( )A. πB. 2πC. 4πD. 8π 5. 等差数列{a n }的前n 项和为S n ,且a 2+a 10=16,a 8=11,则S 7=( )A. 30B. 35C. 42D. 566. 已知α∈(0,π2),tan (α+π4)=-3,则sinα=( )A. 2√55B. √55C. 45D. 357. 执行两次如图所示的程序框图,若第一次输入的x 的值为4,第二次输入的x 的值为5,记第一次输出的a 的值为a 1,第二次输出的a 的值为a 2,则a 1-a 2=( )A. 0B. −1C. 1D. 28. 设a =(57)37,b =(37)57,c =(37)37,则a ,b ,c 的大小关系为( )A. a <b <cB. b <c <aC. a <c <bD. c <a <b9. 已知α,β是不重合的平面,m ,n 是不重合的直线,则m ⊥α的一个充分条件是( )A. m ⊥n ,n ⊂αB. m//β,α⊥βC. n ⊥α,n ⊥β,m ⊥βD. α∩β=n ,α⊥β,m ⊥n10. 圆周率是圆的周长与直径的比值,一般用希腊字母π表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年.在生活中,我们也可以通过设计下面的实验来估计π的值:从区间[-1,1]内随机抽取200个数,构成100个数对(x ,y ),其中满足不等式y >√1−x 2的数对(x ,y )共有11个,则用随机模拟的方法得到的π的近似值为( )A. 7825B. 7225C. 257D. 22711. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左焦点为F (-√5,0),点A 的坐标为(0,2),点P 为双曲线右支上的动点,且△APF 周长的最小值为8,则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √512. 若函数f (x )=e x -ax 2在区间(0,+∞)上有两个极值点x 1,x 2(0<x 1<x 2),则实数a 的取值范围是( ) A. a ≤e2B. a >eC. a ≤eD. a >e2二、填空题(本大题共4小题,共20.0分)13. 已知x ,y 满足约束条件:{x +2y −1≤0x −y −2≤0x ≥−1,则z =2x +y 的最大值是______.14. 甲、乙、丙三人中,只有一个会弹钢琴.甲说:“我会”,乙说:“我不会”,丙说:“甲不会”.如果这三句话只有一句是真的,那么会弹钢琴的是______.15. 等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=______.16. 四面体A -BCD 中,AB ⊥底面BCD ,AB =BD =√2,CB =CD =1,则四面体A -BCD 的外接球的表面积为______.三、解答题(本大题共7小题,共82.0分) 17. 设函数f (x )=sin (2x -π6)+2cos 2x .(Ⅰ)当x ∈[0,π2]时,求函数f (x )的值域;(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且f (A )=32,a =√6,b =2,求△ABC 的面积.18. 世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据: 每周累计户外暴露时间 (单位:小时) [0,7) [7,14) [14,21) [21,28) 不少于28小时 近视人数 21 39 37 2 1 不近视人数3375253(Ⅰ)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;(Ⅱ)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(Ⅱ)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?近视 不近视足够的户外暴露时间 不足够的户外暴露时间附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d) P (K 2≥k 0) 0.050 0.010 0.001 k 03.8416.63510.82819. 如图,四棱锥P -ABCD 中,底面ABCD 是平行四边形,P 在平面ABCD 上的射影为G ,且G 在AD 上,且AG =13GD ,BG ⊥GC ,GB =GC =2,E 是BC 的中点,四面体P -BCG 的体积为83.(Ⅰ)求异面直线GE 与PC 所成的角余弦值; (Ⅱ)求点D 到平面PBG 的距离;(Ⅲ)若F 点是棱PC 上一点,且DF ⊥GC ,求PFFC 的值.20. 已知F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,点P (-1,√22)在椭圆E 上,且抛物线y 2=4x 的焦点是椭圆E 的一个焦点.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)过点F 2作不与x 轴重合的直线l ,设l 与圆x 2+y 2=a 2+b 2相交于A ,B 两点,且与椭圆E 相交于C ,D 两点,当F 1A ⃗⃗⃗⃗⃗⃗⃗ ⋅F 1B⃗⃗⃗⃗⃗⃗⃗ =1时,求△F 1CD 的面积.21. 已知函数f (x )=e x (e 为自然对数的底数),g (x )=ax (a ∈R ).(Ⅰ)当a =e 时,求函数t (x )=f (x )-g (x )的极小值;(Ⅱ)若当x ≥1时,关于x 的方程f (x )+ln x -e =g (x )-a 有且只有一个实数解,求实数a 的取值范围. 22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =2+√3cosαy =√3sinα(α为参数),直线l 的方程为y =kx ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)曲线C 与直线l 交于A ,B 两点,若|OA |+|OB |=2√3,求k 的值.23. 已知函数f (x )=|x -4a |+|x |,a ∈R .(Ⅰ)若不等式f (x )≥a 2对∀x ∈R 恒成立,求实数a 的取值范围;(Ⅱ)设实数m 为(Ⅰ)中a 的最大值,若实数x ,y ,z 满足4x +2y +z =m ,求(x +y )2+y 2+z 2的最小值.答案和解析1.【答案】D【解析】解:∵(1-i)(3+i)=4-2i.∴复数(1-i)(3+i)的虚部是-2.故选:D.再利用复数代数形式的乘除运算化简得答案.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.【答案】B【解析】解:B={x|0<x≤3};∴A∩B={x|0<x≤2}.故选:B.可解出集合B,然后进行交集的运算即可.考查描述法的定义,对数函数的单调性,以及交集的运算.3.【答案】C【解析】解:∵向量,的夹角为60°,||=1,||=2,∴==1,则|3+|====,故选:C.由已知结合向量数量积的定义可求,然后根据向量数量积的性质|3+|=,展开后可求.本题主要考查了向量数量积的定义及性质的简单应用,属于基础试题.4.【答案】C【解析】解:根据题意,圆O:x2+y2=a2的圆心为(0,0),半径r=|a|,圆心到直线y=x-的距离d==1,又由弦长|AB|=2,则有a2=1+()2=4,则圆O的面积S=πa2=4π;故选:C.根据题意,求出圆O的圆心与半径,求出圆心O到直线的距离,由直线与圆的位置关系可得a2=1+()2=4,结合圆的面积公式计算可得答案.本题考查直线与圆的位置关系,涉及弦长的计算,属于基础题.5.【答案】B【解析】解:∵等差数列{a n}的前n项和为S n,且a2+a10=16,a8=11,∴,解得a1=,d=,∴S7=7a1+==35.故选:B.利用等差数列通项公式列方程组,能求出a1=,d=,由此再利用等差数列前n项和公式能求出S7.本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.6.【答案】A【解析】解:∵利用两角和的正切公式得tan ()==-3,∴tanα=2.∵α∈(0,),∴.再根据sin2α+cos2α=1,解得.故选:A.利用两角和的正切公式求出tanα,再结合角的范围及同角三角函数基本关系即可求出sinα.本题考查两角和的正切公式,考查同角三角函数基本关系式的应用,是基础题.7.【答案】B【解析】解:当输入的x值为4时,b=2,第一次,不满足b2>x,不满足x能被b整数,故输出a=0;当输入的x值为5时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,满足b2>x,故输出a=1;即第一次输出的a的值为a1的值为0,第二次输出的a的值为a2的值为1,则a1-a2=0-1=-1.故选:B.根据已知中的程序框图,模拟程序的执行过程,可得答案.本题考查的知识点是程序框图,难度不大,属于基础题.8.【答案】B【解析】解:由函数y=()x为减函数,可知b<c,由函数y=x为增函数,可知a>c,即b<c<a,故选:B.根据指数函数和幂函数的单调性即可求出.本题考查了指数函数和幂函数的单调性,属于基础题.9.【答案】C【解析】解:当n⊥β,m⊥β时,m∥n,当n⊥α时,m⊥α,即充分性成立,即m⊥α的一个充分条件是C,故选:C.根据空间直线和平面垂直的判定定理以及性质结合充分条件和必要条件的定义进行求解即可.本题主要考查充分条件和必要条件的判断,结合空间直线和平面垂直的位置关系是解决本题的关键.10.【答案】A【解析】解:从区间[-1,1]内随机抽取200个数,构成100个数对(x,y),其中满足不等式y >的数对(x,y)共有11个,即从区间[-1,1]内随机抽取200个数,构成100个数对(x,y),其中满足不等式y≤的数对(x,y)共有100-2×11=78个,由几何概型中的面积型可得:=,所以π==,故选:A.由不等式表示的平面区域得:不等式y >的平面区域为正方形内位于第一,二象限圆x2+y2=1外的区域,由几何概型中的面积型得:=,即π==,得解本题考查了几何概型中的面积型,及不等式表示的平面区域,属中档题11.【答案】D【解析】解:由|AF|==3,三角形APF的周长的最小值为8,可得|PA|+|PF|的最小值为5,又F'为双曲线的右焦点,可得|PF|=|PF'|+2a,当A,P,F'三点共线时,|PA|+|PF'|取得最小值,且为|AF'|=3,即有3+2a=5,即a=1,c=,可得e==.故选:D.由题意可得|AF|=3,可得|PA|+|PF|的最小值为5,由双曲线的定义可得|PA|+|PF'|+2a的最小值为5,当A,P,F'三点共线时,取得最小值,可得a=1,由离心率公式可得所求值.本题考查双曲线的定义、方程和性质,主要是离心率的求法,考查三点共线取得最小值的性质,考查方程思想和运算能力,属于中档题.12.【答案】D【解析】解:f′(x)=e x-2ax,若f(x)在(0,+∞)上有两个极值点x1,x2(0<x1<x2),则y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),则y′=e x,y′|x=m=e m,故y-e m=e m(x-m),即y=e m x+(1-m)e m=2ax,故(1-m)e m=0,解得:m=1,故A(1,e),故2a=e,a=,故直线y=2ax和y=e x相交时,a >,故选:D.求出函数的导数,问题转化为y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),求出临界值,求出a的范围即可.本题考查了切线方程,考查函数的单调性,极值问题,考查导数的应用以及转化思想,是一道综合题.13.【答案】3【解析】解:作出x,y满足约束条件:对应的平面区域如图:(阴影部分),由z=2x+y得y=-2x+z,平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,此时z最大.由,解得A (,),代入目标函数z=2x+y得z=3.即目标函数z=2x+y的最大值为3.故答案为:3.作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.14.【答案】乙【解析】解:①设会弹钢琴的是甲,则甲、乙说的是真话,与题设矛盾,故会弹钢琴的不是甲,②设会弹钢琴的是乙,则丙说的是真话,与题设相符,故会弹钢琴的是乙,③设会弹钢琴的是丙,则乙、丙说的时真话,与题设矛盾,故会弹钢琴的不是丙,综合①②③得:会弹钢琴的是乙,故答案为:乙先理解题意,再进行简单的合情推理,逐一进行检验即可得解.本题考查了进行简单的合情推理,属简单题.15.【答案】30【解析】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q ),=16,解得a1=q=2.则S4==30.故答案为:30.利用等比数列的通项公式与求和公式即可得出.本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.【答案】4π【解析】解:如图,在四面体A-BCD中,AB⊥底面BCD,AB=BD=,CB=CD=1,可得∠BCD=90°,补形为长方体,则过一个顶点的三条棱长分别为1,1,,则长方体的对角线长为,则三棱锥A-BCD的外接球的半径为1.其表面积为4π×12=4π.故答案为:4π.由题意画出图形,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求.本题考查多面体外接球表面积的求法,补形是关键,是中档题.17.【答案】(本题满分为12分)解:(Ⅰ)f(x)=sin(2x-π6)+2cos2x=√32sin2x+12cos2x+1=sin(2x+π6)+1,…………………(2分)∵x∈[0,π2],∴π6≤2x +π6≤7π6,…………………(4分)∴1 2≤sin(2x+π6)+1≤2,∴函数f(x)的值域为[12,2];…………………(6分)(Ⅱ)∵f(A)=sin(2A+π6)+1=32,∴sin(2A+π6)=12,∵0<A<π,∴π6<2A+π6<13π6,∴2A+π6=5π6,即A=π3,…………………(8分)由余弦定理,a2=b2+c2-2bc cos A,∴6=4+c2-2c,即c2-2c-2=0,又c>0,∴c=1+√3,…………………(10分)∴S△ABC=12bc sin A=12×2×(1+√3)×√32=32+√32.…………………(12分)【解析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2x+)+1,由已知可求范围≤2x+≤,利用正弦函数的性质可求其值域.(Ⅱ)由已知可求sin(2A+)=,可求范围<2A+<,从而可求A=,由余弦定理解得c的值,即可根据三角形的面积公式计算得解.本题主要考查了三角函数恒等变换的应用,正弦函数的性质,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件A,则P(A)=C31C11C42=12故随机抽取2名,其中恰有一名学生不近视的概率为12.(Ⅱ)根据以上数据得到列联表:近视不近视足够的户外暴露时间4060不足够的户外暴露时间6040所以K2的观测值k2=200×(40×40−60×60)2(40+60)×(60+40)×(40+60)×(60+40)=8.000>6.635,故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.【解析】(Ⅰ)根据古典概型概率公式计算可得;(Ⅱ)先得2×2列联表,再根据表格中数据计算k2,再根据临界值表作答.本题考查了独立性检验,属中档题.19.【答案】解:(I )由已知V P−BGC =13S △BCG ⋅PG =13⋅12BG ⋅GC ⋅PG =83,∴PG =4.在平面ABCD 内,过C 点作CH ∥EG 交AD 于H ,连接PH ,则∠PCH (或其补角)就是异面直线GE 与PC 所成的角.在△PCH 中,CH =√2,PC =√20,PH =√18,由余弦定理得,cos ∠PCH =√1010,∴异面直线GE 与PC 所成的角的余弦值为√1010.(II )∵PG ⊥平面ABCD ,PG ⊂平面PBG ∴平面PBG ⊥平面ABCD ,在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K ,则DK ⊥平面PBG ∴DK 的长就是点D 到平面PBG 的距离.∵BC =2√2∴GD =34AD =34BC =32√2.在△DKG ,DK =DG sin45°=32,∴点D 到平面PBG 的距离为32.(III )在平面ABCD 内,过D 作DM ⊥GC ,M 为垂足,连接MF , 又因为DF ⊥GC ,∴GC ⊥平面MFD ,∴GC ⊥FM .由平面PGC ⊥平面ABCD ,∴FM ⊥平面ABCD ∴FM ∥PG ; 由GM ⊥MD 得:GM =GD •cos45°=32. ∵PFFC =GMMC =3212=3,∴由DF ⊥GC 可得PFFC =3.【解析】(1)先利用等体积法求出PG 的长,在平面ABCD 内,过C 点作CH ∥EG 交AD 于H ,连接PH ,则∠PCH (或其补角)就是异面直线GE 与PC 所成的角,在△PCH 中利用余弦定理求出此角即可; (2)在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K ,则DK ⊥平面PBG ,DK 的长就是点D 到平面PBG 的距离,在△DKG 利用边角关系求出DK 长;(3)在平面ABCD 内,过D 作DM ⊥GC ,M 为垂足,连接MF ,先证明FM ∥PG ,然后利用三角形相似对应边成比例建立等量关系即可.本题主要考查四棱锥的有关知识,以及求异面直线所成角的问题,以及分析问题与解决问题的能力.简单几何体是立体几何解答题的主要载体,特别是棱柱和棱锥.20.【答案】解:(Ⅰ)y 2=4x 焦点为F (1,0),则F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|=2√2解得a =√2,c =1,b =1,所以椭圆E 的标准方程为x 22+y 2=1,(Ⅱ)由已知,可设直线l 方程为x =ty +1,设A (x 1,y 1),B (x 2,y 2), 联立{x 2+y 2=3x=ty+1得(t 2+1)y 2+2ty -2=0 易知△>0, 则y 1+y 2=-2t t 2+1,y 1y 2=-2t 2+1,所以F 1A ⃗⃗⃗⃗⃗⃗⃗ •F 1B ⃗⃗⃗⃗⃗⃗⃗ =(x 1+1)(x 2+1)+y 1y 2=(ty 1+2)(ty 2+2)+y 1y 2=(t 2+1)y 1y 2+2t (y 1+y 2)+4=2−2t 2t 2+1 因为F 1A ⃗⃗⃗⃗⃗⃗⃗ ⋅F 1B ⃗⃗⃗⃗⃗⃗⃗ =1, 所以2−2t 2t 2+1=1,解得t 2=13.联立{x =ty +1x 22+y 2=1,得(t 2+2)y 2+2ty -1=0 易知△=8(t 2+1)>0,设C (x 3,y 3),B (x 4,y 4),则y 3+y 4=-2t t 2+2,y 1y 2=-1t 2+2,∴|y 3-y 4|=√(y 3+y 4)2−4y 3y 4=√8(1+t 2)t 2+2∴△F 1CD 的面积S =12|F 1F 2|•|y 3-y 4|=√8(1+t 2)t 2+2=√8×4373=4√67 【解析】(Ⅰ)y 2=4x 焦点为F (1,0),则F 1(-1,0),F 2(1,0),2a=|PF 1|+|PF 2|=2,求解a ,b 即可得到椭圆方程.(Ⅱ)设直线l 的方程为x=ty+1,A (x 1,y 1),B (x 2,y 2),利用联立 可得(t 2+1)y 2+2ty-2=0,通过韦达定理以及向量的数量积推出解得t 2=.联立,得(t 2+2)y 2+2ty-1=0.设C (x 3,y 3),D (x 4,y 4),利用韦达定理,求解三角形的面积.本题考查椭圆的简单性质,考查直线与椭圆的位置关系的应用,考查三角形的面积计算公式,把面积比转化为长度比是解题的关键,考查了运算求解能力,转化与化归能力,属于中档题.21.【答案】解:(Ⅰ)当a =e 时,t (x )=e x -ex ,t ′(x )=e x -e ,………(1分)令t ′(x )=0,则x =1,x ,t ′(x ),t (x )的变化列表如下: x (-∞,1) 1 (1,+∞) t ′(x ) - 0 + t (x )单调递减极小值单调递增………(3分)所以t(x)极小值=t(1)=e-e=0……………(5分)(Ⅱ)设F(x)=f(x)-g(x)+ln x-e+a=e x-ax+ln x-e+a,(x≥1),F′(x)=e x-a+1x,(x≥1),设h(x)=e x-a+1x ,h′(x)=x2⋅e x−1x2,………(7分)由x≥1得,x2≥1,x2e x-1>0,h′(x)>0,h(x)在(1,+∞)单调递增,即F′(x)在(1,+∞)单调递增,F′(1)=e+1-a,①当e+1-a≥0,即a≤e+1时,x∈(1,+∞)时,F′(x)>0,F(x)在(1,+∞)单调递增,又F(1)=0,故当x≥1时,关于x的方程f(x)+ln x-e=g(x)-a有且只有一个实数解…(9分)②当e+1-a<0,即a>e+1时,由(Ⅰ)可知e x≥ex,所以F′(x)=e x+1x -a≥ex+1x-a,F′(ae)≥e•ae+ea-a=ea>0,又ae>1e=1,故∃x0∈(1,ae),F′(x0)=0,当x∈(1,x0)时,F′(x)<0,F(x)单调递减,又F(1)=0,故当x∈(1,x0]时,F(x)<0,在[1,x0)内,关于x的方程f(x)+ln x-e=g(x)-a有一个实数解1.又x∈(x0,+∞)时,F′(x)>0,F(x)单调递增,且F(a)=e a+ln a-a2+a-e>e a-a2+1,令k(x)=e x-x2+1(x≥1),s(x)=k′(x)=e x-2x,s′(x)=e x-2≥e-2>0,故k′(x)在(1,+∞)单调递增,又k′(1)>0,故x>1时,k′(x)>0,k(x)在(1,+∞)单调递增,故k(a)>k(1)>0,故F(a)>0,又a>ae>x0,由零点存在定理可知,∃x1∈(x0,a),F(x1)=0,故在(x0,a)内,关于x的方程f(x)+ln x-e=g(x)-a有一个实数解x1,又在[1,x0)内,关于x的方程f(x)+ln x-e=g(x)-a有一个实数解1.综上,a≤e+1…(12分)【解析】(Ⅰ)代入a的值,解关于导函数的不等式,求出函数的单调区间,求出函数的极小值即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,结合方程的解的个数确定a 的范围即可.本题考查了函数的单调性,极值,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.22.【答案】解:(Ⅰ)∵{x=√3cosα+2y=√3sinα,∴x2-4x+y2+1=0所以曲线C的极坐标方程为ρ2-4ρcosθ+1=0.(Ⅱ)设直线l的极坐标方程为θ=θ1(ρ∈R,θ1∈[0,π)),其中θ1为直线l的倾斜角,代入曲线C得ρ2-4ρcosθ1+1=0,设A,B所对应的极径分别为ρ1,ρ2.ρ1+ρ2=4cosθ1,ρ1ρ2=1>0,△=16cosθ12-4>0 ∴|QA|+|QB|=|ρ1|+|ρ2|=|ρ1+ρ2|=2√3∴cosθ1=±√32满足△>0∴θ1=π6或5π6∴l的倾斜角为π6或5π6,则k=tanθ1=√33或-√33.【解析】(Ⅰ)先消去α得C的普通方程,再化成极坐标方程;(Ⅱ)设直线l的极坐标方程为θ=θ1(ρ∈R,θ1∈[0,π)),其中θ1为直线l的倾斜角,代入C的极坐标方程,利用韦达定理可求得.本题考查了参数方程化成普通方程,属基础题.23.【答案】解:(Ⅰ)因为f(x)=|x-4a|+|x|≥|x-4a-x|=4|a|,所以a2≤4|a|,解得:-4≤a≤4.故实数a的取值范围为[-4,4];(Ⅱ)由(1)知,m=4,即4x+2y+z=4,根据柯西不等式(x+y)2+y2+z2=121[(x+y)2+y2+z2]•[42+4+1]≥121[4(x+y)-2y+z]2=1621等号在x+y4=y−2=z即x=87,y=-821,z=421时取得.所以(x+y)2+y2+z2的最小值为1621.【解析】(Ⅰ)根据基本不等式的性质得到关于a的不等式,解出即可;(Ⅱ)根据柯西不等式的性质求出代数式的最小值即可.本题考查了解绝对值不等式,考查基本不等式以及柯西不等式的性质,是一道常规题.。
东北三三校2019高三3月第一次联考-数学文(解析版)文科数学全解析本试卷分为第I 卷〔选择题〕和第II 卷〔非选择题〕两部分,共150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回。
本卷须知1、答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2、选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。
3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4、作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷〔选择题,共60分〕【一】选择题〔本大题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1、全集U R =,集合{}|2A x x =≥,{|05}B x x =≤<,那么集合)U C A B ⋂=( 〔 〕A 、{|02}x x <<B 、{|02}x x <≤C 、{|02}x x ≤<D 、{|02}x x ≤≤解析:{}|2U C A x x =<){|02}U C A B x x ∴⋂=≤<(,应选CA 、假设1x >,那么0x ≤B 、假设1x ≤,那么0x >C 、假设1x ≤,那么0x ≤D 、假设1x <,那么0x <解析:、命题“假设1,x >那么0x >”的否命题是:假设1x ≤,那么0x ≤,应选C 3、在复平面内复数-31+z i=的对应点在〔〕A 、第一象限B 、第二象限C 、第三象限D 、第四象限解析:-3-3(1-)3333+1+2222i i z i i -+====-,而点33(,)22-在第二象限,应选B 4、函数1()(0,1)x f x a a a -=>≠的图象恒过点A ,以下函数中图象不经过点A 的是〔〕 A 、y、y =|x -2|C 、y =2x -1D 、y =2log (2)x解析:由题知:点(1,1)A ,经验证可得:y (1,1)A ,应选A5、与椭圆:C 2211612y x +=共焦点且过点的双曲线的标准方程为〔〕A 、2213y x -=B 、2221y x -=C 、22122y x -=D 、2213y x -= 解析:由题知:焦距为4,排除B,又焦点在y 轴上排除A,将代入C 、D 可得C 正确,应选C6、向量a b 、是夹角为60°的两个单位向量,向量λa b +〔λ∈R 〕与向量2-a b 垂直,那么实数λ的值为〔〕 A 、1B 、-1C 、2D 、0 解析:向量λa b +〔λ∈R 〕与向量2-a b 垂直()(2)=0λ∴∙-a b a b +又向量a b 、是夹角为60°的两个单位向量=0λ∴,应选D7按如下图的程序框图运行后,假设输出的结果是63,那么判断框的整数M 的值是〔〕A 、5B 、6C 、7D 、8解析:按框图推演可得:M 的值为:6,应选B第9小题DC BO 1OA函数sin()y x ωϕ=+的最小正周期为2π,直线3x π=是其图像的一条对称轴,那么下面各式中符合条件的解析式为〔〕 A 、sin(4)6y x π=+B 、sin(2)3y x π=+C 、sin(4-)3y x π=D 、15sin()412y x π=+解析:由题得:242πωπ==()sin(4)f x x ϕ∴=+又直线3x π=是()f x 图像的一条对称轴432k ππϕπ∴⨯+=+5,6k k Zπϕπ∴=-∈ 故可得:sin(4)6y x π=+符合条件,所以选A9、点A B C D 、、、在同一个球的球面上,AB BC ==,2AC =,假设四面体ABCD 体积的最大值为23,那么这个球的表面积为〔〕A 、1256π3B 、8πC 、254πD 、2516π解析:AB BC ==,2AC =,ABC ∴∆是直角三角形,ABC ∴∆的外接圆的圆心在边1AC 的中点O 如下图,假设使四面体ABCD 体积的最大值只需使点D 平面ABC 的距离最大,又1OO ⊥平面ABC ,所以点D 是直线1OO 与球的交点最大。
2019东北三校联考(一、二、三次汇总)
篇一:2019东北三省三校联合考试二模参考答案(语文)
东北三省三校联考二模答案(语文)
1.D(以偏概全,原文中“对人的处境有真切的关心,对人生在这个世界上的命运有深刻周彻的肯认,对人内心经验有感同身受的体谅,并精骛八极,鞭辟入里”是许多人文社科类著作,包括一部分自然科学著作成为经典的原因,依据原文不能作为“衡量著作是不是经典”的标准。
)
2.C(曲解原文,“它们都可以诠释和演绎人生”曲解文意。
)3.C(强加因果,卡夫卡将巴尔扎克“我摧毁了每一个障碍”置换成“每一个障碍都摧毁了我”,是“人生到处无往而非问题”的例子,二者并非因果关系。
)
4.B
5.B江东,指长江以东地区,古人以东为左,故又称江左。
6.C“他建议朝廷让有关官吏专门批阅奏折”错。
原文是“应当命令有关部门详细审察奏章”。
7.(1) 君主遭忧是臣子的耻辱,按道义应当如此(或“这样”),反而凭借这个接受赏赐吗?(“主忧臣辱”译为判断句;“义”译为“按道义、道义上”;“尔”译为“如此”、“这样”;“顾??邪”译为“反而(难道)??吗?”以上四处,每译对一处给1分,译出大意给1分。
)
(2) 高宗不断告知辅弼大臣宽慰爱惜民力,大概是惩戒于秦桧的苛刻政治,希望这样使百姓安定。
(“宽恤”译为“宽慰体恤、宽慰爱惜”;“盖”译为“大概”;“期”译为“希望”;“安”译为“使??安定”;以上四处,每译对一处给1分,译出大意给1分。
)【参考译文】
张纲,字彦正,润州丹阳人。
进入太学,凭借上舍生成绩进士及第。
出仕,宋徽宗知道张纲三次都考中第一,特别授予太学正,升迁为博士,授予校书郎。
进入朝廷对策,论道:“君子小人混淆,询问言语试验政事就自然能分开邪正。
小人得志就会争功闹事,祸害是说不尽的,现今掌权的人说大话欺瞒君主,社会风气奢侈糜烂,背弃根本追逐末流,一天比一天厉害。
应当用祖宗亲身推行的教训为法度,天下是不难于教化的。
”皇上称好。
当初,朝廷议论派遣童贯、蔡攸出使朔方,张纲极力论述不可以出兵的情状,没有答复。
等到金人背叛盟约进犯京师,命令张纲分工守卫四面城墙,不久解除戒严。
下诏登城守卫满一个月的升官。
张纲说:“君主遭忧是臣子的耻辱,按道义应当如此(或“而已”),反而凭借这个接受赏赐吗?”最终不自报功。
出为两浙提刑,调任江东。
池州守将王进骁勇狂暴,属官因为小过错违逆他,就被钉手在门上,事情被(皇上)听说,下诏张纲乘传车去追究责任。
当时国家势力不稳,诸将官往往轻视朝廷,王进簇拥带甲骑兵数百人突然冲到张纲面前,张纲大声呵斥王进到阶下,当即审问,罪状立即完备,从此没有违法的人。
自从战争兴起后,小人大多乘机生乱,经过五年而仇家互相揭发的人很多。
张纲说这不是推。