丰田转向扭矩传感器
- 格式:pdf
- 大小:2.02 MB
- 文档页数:33
一分钟学会丰田转向角传感器数据修复方法丰田转向角传感器很容易内部数据损坏,常报C1433内部故障。
这个故障很多时候不是车主正常使用引起的。
而是修理人员在断电瓶,换气囊游丝时候误触发了这个故障。
一般4S的维修方法,是整个换新,再做机械位置调整,费用要1K多。
下面俊翔分享它的数据修复方法。
不管什么丰田车型,不管什么编号,只要内部数据码片是24C02,数据结构一样。
我们就可以采用此方法修复,已验证很多辆车。
当你学会这个修复方法以后,就可以免去很多不必要损失,同时可以用这个修复方法赚钱。
下面是两组数据,分别是皇冠和锐志的转向角传感器数据,外观编号不一样,码片都是24C02,读出的数据都不一样。
但是它们的数据结构都是一致的。
我们用数码大师等编程器读出24C02数据,如下图。
皇冠锐志我们用原车数据,通过以下方法做数据修复:从040行蓝色标记部分开始,到0D0行都改F,其它地方保留,然后装回去,如下图。
修复好的数据然后装回去做机械调整,就可以了,具体机械位置的调整方法可以看俊翔之前写的两篇文章。
丰田转向角度传感器89245-74010初始化修复(调整方法和数据)丰田锐志转向角传感器内部故障C1433(解决方法和数据)经验所得,这种修复方法90%以上可以成功修复。
如果不行,可以到论坛下载一个全新数据试试。
还有一种丰田转向角传感器,内部码片是93C46的。
同样不用看它是什么车型的、什么编号。
可以直接套用ECU论坛中的全新93C46数据,刷进去。
然后正确安装回去即可。
俊翔教会大家就只用一分钟,但总结出这个方法,却要花大量时间和精力、还要实战。
你看别人开宝马,住别墅花园,表面很风光。
但人家在背后流血汗你却不知道。
就如,前几天有个车过来刷ecu,3.8L自然吸气的排量。
凭俊翔经验认为,这类大排量自然吸气车型,效果应该不错。
但是,一直从下午1点搞到晚上8点多,中间一共写了调了3套程序,都达不到理想效果。
车主期望值太高,要想刷了就变飞机一样快,7年车已经跑了22万公里,车况很一般。
扭矩传感器零点校正方向机扭矩传感器校正一、扭矩传感器简介扭矩传感器是电控动力转向系统的重要组成元件之一。
用来测量驾驶员作用在方向盘上力矩的大小和方向,并将其转换为电信号,动力转向ECU接收此信号及车速信号,决定辅助动力的方向和大小,从而在低速行驶时控制转向力矩变小。
在高速行驶时控制转向力矩适度增大。
有的扭矩传感器还能够测量方向盘转角的大小和方向。
扭矩测量系统比较复杂且成本高,很多元件都是集成在一起的,如丰田车系就把转向电动机、扭矩传感器和转向柱集成到一起构成转向柱总成,这样使转向控制更精确、更可靠。
扭矩传感器目前可分为接触式和非接触式两种,非接触式扭矩传感器又叫滑动可变电阻式扭矩传感器,接触式扭矩传感器是在转向轴与转向小齿轮之间安装了一个扭杆,当转向系统工作时利用滑环和电位计测量扭杆的变形量并转化为电压信号。
非接触式扭矩传感器中有两对磁极环,当输入轴和输出轴之间发生相对转动时,磁极环之间的空气间隙发生变化,从而引起电磁感应系数的变化,在线圈中产生感应电压,并将电压信号转化为扭矩信号。
非接触式扭矩传感器的优点是体积小精度高。
如丰田卡罗拉轿车就采用了非接触式扭矩传感器。
一般情况下,当扭矩传感器损坏或性能不佳时会导致转向系统出现以下故障:1 转向困难;2 左右转向力矩不同或转向力矩不均;3 行驶时转向力矩不随车速改变或方向盘不能正确回正;4 组合仪表上P/S警告灯亮起;5,产生故障码C1511、C1512、C1513、C1514、C1515、C1516。
由于扭矩传感器装于转向柱总成内,所以如果扭矩传感器损坏。
只能更换转向柱总成,因为扭矩传感器是一个精密元件,当更换了扭矩传感器后,要对其进行零点校正,如果未对其零点校正,即使更换了完好的扭矩传感器,转向系统仍会故障依旧,所以,更换扭矩传感器后进行扭矩传感器的零点校正就像组装发动机时要对正时一样重要。
二、扭矩传感器零点校正本文以丰田车系为例,讲解一下扭矩传感器零点校正的方法。
扭矩传感器原理及结构
扭矩传感器是一种用于测量旋转力矩的传感器,它可以将机械扭矩转换为电信号输出,从而实现对扭矩的测量和控制。
扭矩传感器的原理和结构是非常重要的,下面我们来详细了解一下。
扭矩传感器的原理是基于霍尔效应和应变测量原理。
当扭矩作用于传感器时,传感器内部的应变片会发生变形,这个变形会导致应变片上的霍尔元件发生磁场变化,从而产生电压信号。
这个电压信号与扭矩大小成正比,因此可以通过测量电压信号来确定扭矩大小。
扭矩传感器的结构主要由应变片、磁场发生器、霍尔元件和信号处理器组成。
应变片是扭矩传感器的核心部件,它是由金属材料制成的,具有高的弹性和导电性能。
磁场发生器是用来产生磁场的,通常采用永磁体或电磁铁。
霍尔元件是用来检测磁场变化的,它通常采用霍尔传感器或磁敏电阻。
信号处理器是用来处理电压信号的,它可以将电压信号转换为数字信号或模拟信号输出。
扭矩传感器的应用非常广泛,它可以用于汽车、航空、船舶、机械制造等领域。
在汽车领域,扭矩传感器可以用于发动机、变速器、转向系统等部件的控制和监测。
在航空领域,扭矩传感器可以用于飞机发动机、螺旋桨等部件的控制和监测。
在机械制造领域,扭矩传感器可以用于机床、压力机、钻床等设备的控制和监测。
扭矩传感器是一种非常重要的传感器,它可以实现对扭矩的测量和
控制,广泛应用于各个领域。
扭矩传感器的原理和结构是非常重要的,只有深入了解才能更好地应用和维护。
丰田转向角匹配方法转向角传感器损坏后,通常仪表内VSC,防滑指示灯和方向盘故障灯会同时点亮。
检测仪读内部故障C1433,C123,C120A读取ABS系统故障码为C1433:转向传感器内部电路故障。
遇到这种情况修复一下数据即可。
数据修复需要编程器改芯片程序,修改可以联系我,根据不同转向角传感器型号,89245-74010/0N020/0E020/06060/0D060/30110等型号,初始化数据修改数据修改之后装车,将转向角对0°,如果不对0°,跑一会数据还会损坏。
即使换新的转向角传感器,也需要正确匹配安装才能解决故障安装方法:把写好初始化数据的转角传感器和气囊游丝扣在一起,气囊游丝应该旋转到最中间位置。
(即例如,气囊游丝可以转6圈,我们应该转到第3圈位置,让气囊游丝可以左右旋转的圈数都相等,再和转向角传感器扣在一起。
如果不是扣在气囊游丝中间圈数,到时候向左或向右打尽方向就会把气囊游丝缆线拉断。
)传向角传感器把插头插好,点火开关必须处于关闭状态。
(游丝上不上都可以)转向角传感器角度调整:用431或其他解码器连接车辆,打开点火开关,进ABS看转向角度数据流,我们调整目标是0度,但实际上很难调整到0度,我们只要调整到正负偏差3度以内就可以了。
千万要记住,点火开关打开以后,我们只能通过431看度数,绝对不能碰传向角传感器。
如在点火开关打开的状态下调整,传向角传感器的数据又会损坏,必须在关闭点火开口后,拔掉插头,才能去调传向角传感器。
例如,现在看到显示是正40度,我们就关闭点火,拔掉插头,再去旋转转向角传感器一个角度,在插上,再打开点火,看角度数,反复这样操作,直到调整到接近正负3度以内。
最后安装上方向盘气囊完成。
(游丝装上)注意事项:这时候有又可能出现一个问题,气囊游丝的突出的插头位置和方向盘插头凹进去的位置对不上?这就说明气囊游丝里的大齿轮圈装错位置了,此时需要记住错误的位置,再拆卸气囊游丝,分开转向角传感器,调整大齿圈的位置,再用以上方法进行反复调整,让插头刚好在12点的位置,方向盘插头位置能对凹口上,转向角接近0度。
丰田卡罗拉电动助力转向故障分析与排除摘要:本文主要介绍卡罗拉电动转向装置(EMPS)转向沉重的故障排除。
为了确定最终故障点,减少维修成本,结合本人在工作中的实践,阐述对整个系统的故障现象、检修思路、分析与诊断到故障排除的整个过程。
综合运用了数据流分析和波形对比等电控系统常用的检查分析方法,最后确定故障点为扭矩传感器线路。
1 故障现象2012年产丰田卡罗拉车,进厂维修时拆卸过仪表台后转向出现沉重。
在维修之前转向正常,过后出现转动方向盘转向盘沉重,偶尔能有一下助力,其他时间与车辆熄火时转动方向盘感觉相同。
此车配备的电动助力系统是转向轴助力式。
2 故障检查发现此车出现故障后,先对其进行试车,发出情况相符,偶尔能有一下助力。
确认故障现象后做如下检查。
(1)检查仪表板上的P/S灯,灯常亮。
打开点火钥匙,P/S灯应在几秒钟后就自动熄灭,但是常亮说明系统有故障。
(2)询问维修过程中都进行过哪些操作,只是对仪表台、方向盘进行过拆装,没进行过其他操作,随后检查相关插头无松动脱落现象,连接良好。
(3)使用丰田专用诊断仪对底盘系统(EMPS)进行检测读取故障码,发现有一新故障码“C1512扭矩传感器2”,进行清除,重新读取仍然存在,确定了故障代码。
3 故障分析及系统原理3.1故障分析出现这种故障的原因是扭矩传感器自然损坏,还是线路故障?查看车辆公里数不多,传感器自然损坏概率较小。
将故障确定为相关线路故障,但是在询问使用情况时,不曾对助力转向系统进行过操作,为了使检查更加准确,再次对所有相关的部件插头进行外观检查均未发现异常。
为查证故障重新使用诊断仪进入,读取故障码同时读取数据流,检查各项数据及打方向时的数据变化。
数据流中的第2项和第3项(即供给转向电机的电流值和转向电机所需的电流值)数据没有,显示都为0A。
由于系统存在故障,ECU不对电机供电,电动助力不起作用,因此无电流值。
将数据流中的电压值与维修手册(图1)进行对比,发现扭矩传感器2无电压值输出。
33图1丰田卡罗拉车型EPS 系统图汽车维修2017.6一、故障现象有1辆丰田卡罗拉GL 车型轿车,行驶里程3.5万km ,在行驶过程中出现转向发紧、沉重,PS 故障指示灯常亮,电动助力转向系统不起作用等故障现象。
二、EPS 系统结构及其工作原理如图1所示,丰田卡罗拉轿车EPS (电动助力转向)系统主要由EPS ECU 、转向盘、转向柱总成、转向器总成和左右横拉杆等组成,其中转向柱总成包括三相无刷电机(带转动角度传感器)、减速机构和霍尔IC 型扭矩传感器。
卡罗拉轿车EPS 系统是通过安装在转向柱轴上的电动机和减速齿轮的运动,产生扭矩以增大转向力矩。
根据车速信号和内置于转向柱总成的扭矩传感器信号,动力转向ECU 决定辅助动力的方向和大小。
从而在低速行驶时控制转向辅助力矩变大,在高速行驶时控制转向辅助力矩适度减小。
三、EPS 系统电路及其技术参数丰田卡罗拉轿车EPS 系统电路主要是由动力转向ECU 电源电路,动力转向扭矩传感器电路,动力转向电机电路和动力转向警告灯电路组成,如图2所示。
1.动力转向ECU 电源电路当点火开关置于ON (IG )挡位置,电源经保险丝ECU-IG 10A ,通过绿色线供电动力转向ECU 总成E326号端子,其电压为12V 。
2.动力转向扭矩传感器电路扭矩传感器检测转向盘转动时产生的转向力矩,并将其转换为电信号,然后通过a1-5(TRQ1)和a1-7(TRQ2)发送至动力转向ECU ,再结合来自防滑控制ECU 的车速信号,计算出转向辅助力。
如图3所示,动力转向ECU 通过插接器a1-6(TRQV )向传感器提供7.5~8.5V 电源,a1-8(TRQG )负极搭铁。
a1-5(TRQ1)、a1-7(TRQ2)和a1-8(TRQG )测量电压如表1所示。
3.动力转向电机电路动力转向ECU 通过电动机电路向动力转向电动机提供电流产生辅助转向转矩,并通过改变电动机电流的方向实现辅助转向方向的转变。
电动助力转向系统用扭矩传感器综述摘要:扭矩传感器是汽车电动助力转向系统(EPS)的重要组成部分,其性能的优劣直接影响到EPS系统性能的优劣。
本文介绍了目前具有代表性的几种扭矩传感器,同时预测了电动助力转向系统用扭矩传感器的发展趋势。
关键词:电动助力转向系统;扭矩传感器;电位计式;霍尔式;电感耦合式;光电式1 概述随着人们对环保问题的日益重视以及汽车电子的迅猛发展,电动助力转向系统(Electric Power Steering,EPS)这个集环保、节能、安全、舒适为一体的产品正越来越受到汽车厂商的重视。
EPS与技术成熟的HPS 相比,市场份额已初具规模。
目前全球汽车工业发展势头良好,尤其是在中国市场。
汽车电子能够极大提升汽车性能,多数汽车部件已经实现了电子化。
转向系统作为汽车的重要组成部件,电子化也必将成为今后的必然趋势。
目前,在全世界汽车行业中,EPS系统每年正以9%-10%的增长速度发展。
国家发展改革委新修订的《产业结构调整指导目录(2011年本)》于2011年6月1日起开始实施。
与上一版(2005年本)相比,新目录在汽车产业相关部分做了较大调整。
其中,汽车业的政策优待程度“鼓励类”中新增加了电动转向系统,这表明未来EPS将得到国家相关政策的大力扶持。
[1]电动助力转向系统中,通过扭矩传感器探测司机在转向操作时方向盘产生的扭矩或转角的大小和方向,并将所需信息转化成数字信号输入控制单元,再由控制单元对这些信号进行运算后得到一个与行驶工况相适应的力矩,最后发出指令驱动电动机工作,电动机的输出转矩通过传动装置的作用而助力。
因此扭矩传感器是EPS系统中最重要的器件之一。
2 电动助力转向系统用扭矩传感器分类按传感器的敏感元件来分类,扭矩传感器主要有接触式和非接触式两大类。
其中接触式扭矩传感器应用较广泛的主要有两种,一种是新跃仪表厂生产的悬臂梁式传感器,一种是美国BI公司生产的双圆盘式传感器。
非接触式传感器主要有基于MMT公司技术的霍尔式传感器,代表性的公司有BOSCH公司、LG公司、BI公司、Valeo公司,另外还有Hella公司设计的电感耦合式传感器,Methode electronics公司设计的电容式传感器,Lucas公司设计的光电式传感器。
混合动力汽车电子动力转向系统主要元件结构及其工作原理(1)转矩传感器转矩传感器检测扭转杆扭转变形,并将其转变为电子信号并输出至动力转向ECU,是电子动力转向系统的关键部件之一。
转矩传感器由分相器单元1、分相器单元2及扭转杆组成。
转子部分的分相器单元1固定于转向主轴,转子部分的分相器单元2固定于转向小齿轮轴。
当静止或直线行驶时分相器单元的转子部分输出定值信号,动力转向ECU不对动力转向电机提供电压;扭转杆扭转后,使两个分相器单元产生一个相对角度,动力转向ECU根据两个分相器的相对位置决定对动力转向电机提供多少电压。
(2)动力转向电机。
动力转向电机与齿条轴共轴,由转角传感器、定子及转子组成。
其工作原理是将无刷动力转向电机和减速机构布置在齿条处,并直接驱动齿条实现助力。
通过转角传感器检测电机的旋转角度防止转矩波动。
(3)减速机构减速机构采用滚珠式减速齿轮机构,将其固定在动力转向电机的转子上。
动力转向电机的转动传到减速机构,经过滚珠及蜗杆传到齿条轴上。
滚珠在机构内部经过导向进行循环。
为降低动力转向电机的转速,以获得更大的转矩,采取了与电机转子内壳配套的循环滚珠式减速装置。
极小的钢珠在四个极光滑的槽内循环滚动减速,将动力传递给齿条轴做直线运动,推动两个转向轮左右摆动,以驱动汽车进行转向。
由于钢珠极小,在精细加工的导槽内循环滚动,故传动噪声极微。
(4)电机转角传感器该传感器属于电磁感应式传感器,能将转向电机的转向角度信号输出到控制单元。
这个传感器转子为凸极式,转子与电机转子是连成一体的。
定子线圈呈圆环状,套在转子外,通过电磁感应原理,检测出转子的转角。
扭矩传感器工作原理一种常见的扭矩传感器是基于电感式原理的。
该传感器由导线、磁环和传感器外壳组成。
导线绕制在磁环上,使得磁通线圈(磁场)通过磁环和导线。
当物体扭矩施加在传感器绕制的导线上时,导线产生转向力矩,使得导线出现微小的形变。
导线上的微小形变会改变导线的电感,即导线所绕制的磁通线圈的感应电动势。
因此,通过测量导线电感的变化,可以确定施加在传感器上的扭矩大小。
具体来说,扭矩传感器在构建时通常会选择一种材料,该材料在扭转时会发生形变。
这种材料可以是金属,塑料或复合材料。
当扭矩施加到传感器的轴上时,该材料会产生弹性形变。
导线通常直接连接到轴上。
因此,当材料弹性形变时,导线也会跟随形变,导致电感发生变化。
这种电感变化通过预先校准,可以用来确定施加在传感器轴上的扭矩值。
另一种常见的扭矩传感器原理是压电效应。
压电材料是一类在受到力或压力作用下,会产生电荷分布的材料。
压电材料通常被用作传感器的感应元件。
在压电扭矩传感器中,压电材料通常被安装在轴上。
当物体施加扭矩时,轴上的压电材料会发生微小的形变,进而产生电荷积累。
这些电荷通过电极引出,并与外部电路连接。
当压电材料上形成电荷后,通过测量电荷的大小和极性,可以确定施加在传感器轴上的扭矩大小。
由于压电效应是一个可逆过程,因此扭矩传感器可以双向测量扭矩。
总之,扭矩传感器的工作原理基于导线的电感变化或压电材料的电荷积累。
通过测量这些变化,可以准确地测量物体施加在传感器上的扭矩大小。
这些扭矩传感器广泛应用于工程和科学领域,用于测量和调整扭矩的性能和效率。
丰田锐志电动助力故障检测与排除2010年09月14日08:24慧聪汽车维修保养网字号:T|T新款锐志乘用车装备的是目前较新型的电动转向装置。
现代汽车的动力转向,有液压式和电动式两种类型,绝大多数汽车采用液压动力转向。
由于电动助力转向系统具有一系列的优点,所以在现代汽车上使用日益增多。
电动助力转向有两种基本形式,即电液转向系统和电动助力转向系统。
锐志乘用车电动转向助力系统由电机提供动力。
该电动转向的结构比较复杂,技术含量较高。
本文对该系统的结构及基本原理及其常见故障进行分析,希望对同行能有所帮助。
一、锐志乘用车电动助力转向系统的基本组成电动助力转向系统是由转向控制单元控制转向电机工作来实现助力的转向系统(如图1所示)。
驾驶员操纵方向盘的转向力矩,通过转向齿轮和转向拉杆传到汽车的转向轮上;与此同时,电子控制单元再根据目前驾驶员操纵方向盘的转向力矩、当时行驶的车速和一定的设计要求,计算出所需要的转向助力。
而所需的转向助力是通过调整电机的电压和电流来实现的,所以转向轮上最终得到的转向力矩,是驾驶员转向力矩和转向电动助力之和(后者远大于前者)。
电动转向助力系统直接使用电源,它不消耗发动机的机械动力,故不会直接影响发动机的运转,从而比传统的液压助力转向系统节省燃油。
二、转向助力系统的主要部件该电动助力转向系统主要包括:由方向盘直接驱动的转矩传感器,其下部的小齿轮驱动齿条;转向电机,装于转向管柱的中部;减速装置,采取与电机转子内壳配套的循环滚珠式减速齿轮;转角传感器,反映助力电机的转角和转向;齿条轴的外壳及左右横拉杆。
其结构如图2所示。
1.转向扭矩传感器结构与工作原理转向扭矩传感器包括两部分,分别安装在方向盘的输入轴和转向小齿轮的输出轴上。
(1)转子部分由上下两层构成,且均装有转矩传感器(如图2所示)。
输入轴和输出轴是由一根细金属销连接成一体,转子部分上方有销孔(如图3所示)。
输入轴和输出轴两者上部是钢性连接,由汽车方向盘的转轴即输入轴驱动。