典型冲压件冲压工艺设计实例
- 格式:pdf
- 大小:280.86 KB
- 文档页数:7
冲压工艺设计是针对具体的冲压零件,首先从其生产批量、形状结构、尺寸精度、材料等方面入手,进行冲压工艺性审查,必要时提出修改意见;然后根据具体的生产条件,并综合分析研究各方面的影响因素,制定出技术经济性好的冲压工艺方案。
其设计流程如图8.1.1所示,它主要包括冲压件的工艺分析和冲压工艺方案制定两大方面的内容。
一般按以下步骤进行:1.收集并分析有关设计的原始资料冲压工艺设计的原始资料主要包括:冲压件的产品图及技术条件;原材料的尺寸规格、性能及供应状况;产品的生产批量;工厂现有的冲压设备条件;工厂现有的模具制造条件及技术水平;其他技术资料等。
图8.1.1 冲压工艺设计流程其中,产品图是工艺设计最直接的原始依据;其他技术资料是冲压模设计的参考资料;而其余原始资料对确定冲压件的加工方法、制定冲压工艺方案和选择模具的结构类型均有着直接的影响。
2.产品零件的冲压工艺性分析与审查冲压工艺性是指冲压件对冲压工艺的适应性,即冲压件的结构形状、尺寸大小、精度要求及所用材料等方面是否符合冲压加工的工艺要求。
一般说来,工艺性良好的冲压件,可保证材料消耗少,工序数目少,模具结构简单,产品质量稳定,成本低,还能使技术准备工作和生产的组织管理做到经济合理。
冲压工艺性分析的目的就是了解冲件加工的难易,为制定冲压工艺方案奠定基础。
在产品零件冲压工艺性分析之前,应先进行冲压生产经济性分析。
因为模具成本较高,约占冲压件总成本的10%~30%,冲压加工的优越性主要体现在批量生产情况下,而生产量小时,采用其他加工方法可能比冲压方法更经济。
因此零件的生产批量是决定零件采用冲压加工是否较为经济合理的重要因素。
产品零件冲压工艺性分析以产品零件图为依据,认真分析研究该零件的形状特点、尺寸大小及精度要求,所用材料的冲压成形性能,分析冲压生产产生各种质量问题的可能性。
特别要注意零件的极限尺寸(如最小冲孔尺寸,最小窄槽宽度,最小孔间距和孔边距,最小弯曲半径,最小拉深圆角半径等)、尺寸公差、设计基准及其他特殊要求。
例8.2.1冲裁模设计与制造实例工件名称:手柄工件简图:如图8.2.1所示。
生产批量:中批量材料:Q235-A钢1.冲压件工艺性分析此工件只有落料和冲孔两个工序。
材料为Q235-A钢,具有良好的冲压性能,适合冲裁。
工件结构相对简单,有一个φ8mm的孔和5个φ5mm的孔;孔与孔、孔与边缘之间的距离也满足要求,最小壁厚为3.5mm(大端4个φ5mm的孔与φ8mm孔、φ5mm的孔与R16mm外圆之间的壁厚。
工件的尺寸全部为自由公差,可看作IT14级,尺寸精度较低,普通冲裁完全能满足要求。
2.冲压工艺方案的确定该工件包括落料、冲孔两个基本工序,方案一:先落料,后冲孔。
采用单工序模生产。
方案二:落料-冲孔复合冲压。
采用复合模生产。
方案三:冲孔-落料级进冲压。
采用级进模生产。
方案一模具结构简单,但需两道工序两副模具,成本高而生产效率低,难以满足中批量生产要求。
方案二只需一副模具,工件的精度及生产效率都较高,但工件最小壁厚3.5mm接近凸凹模许用最小壁厚3.2mm,模具强度较差,制造难度大,并且冲压后成品件留在模具上,在清理模具上的物料时会影响冲压速度,操作不方便。
方案三也只需一副模具,生产效率高,操作方便,工件精度也能满足要求。
通过对上述三种方案的分析比较,该件的冲压生产采用方案三为佳。
3.主要设计计算(1)排样方式的确定及其计算设计级进模,首先要设计条料排样图。
手柄的形状具有一头大一头小的特点,直排时材料利用率低,应采用直对排,如图8.2.2所示的排样方法,设计成隔位冲压,可显著地减少废料。
隔位冲压就是将第一遍冲压以后的条料水平方向旋转180°,再冲第二遍,在第一次冲裁的间隔中冲裁出第二部分工件。
搭边值取2.5mm和3.5mm,条料宽度为135mm,步距离为53 mm,一个步距的材料利用率为78%(计算见表8.2.1)。
查板材标准,宜选950mm×1500mm的钢板,每张钢板可剪裁为7张条料(135mm×1500mm),每张条料可冲56个工件,故每张钢板的材料利用率为76%。
冲压工艺论文举例及总结1、边支柱的另一种冲压工艺摘要:胶带输送机是矿山,电厂,港口等场合实现连续运输的主要设备,边支柱是胶带输送机托辊架的主要零部件。
在大型胶带输送机上边支柱可达数千个,随着宽型皮带机的不断应用,边支柱的外形尺寸也不断加大,用普通冲床难以实现对边支柱的加工要求,本文讨论使用预热法冲压工艺以便使用现有普通冲床能够对较大边支柱的加工技术要求。
关键词:托辊架;边支柱;冲压工艺;延展性;高温蠕变;有限元分析背景内容:托辊架是带式输送机主要部件,而边支柱是托辊架的主要零件。
随着大功率宽型皮带机的不断应用,边支柱的外形尺寸包括边支柱的立面也不断加大。
当边支柱尺寸加大时使用液压压力机加工可以减小冲压件的变形速率,但是由于边支柱的立面过于加大,超出了材料的变形极限,发生部分断裂,而且液压压力机工作效率较低,在大批量生产冲压件时并不适用。
而使用冲床可以提高加工效率,但是由于使材料在短时间发生较大变形,所以多数工件都发生材料的脆断。
如何使用现有的冲床设备,以较快的加工速度,而使工件边缘不发生断裂,仍能达到托辊架的使用功能呢?经过现场分析和实践,发现使用预热法可以较好达到这一预想。
结论:由于预热和冲压是同时进行,所以其生产率较高。
因为是使用氧气-乙炔加热,成本较低,加热速度较快且不用增加其他设备,所以相对经济实用。
经过有限元分析软件分析及大型电厂胶带运输机实际使用,用此种工艺方法加工的托辊架完全可以达到设计要求。
作者谷玉峰(1974,12~),助理工程师,中国矿业大学机械设计与自动化本科毕业,从事胶带运输机设计与制造工作。
这篇文章讨论使用预热法冲压工艺以便使用现有普通冲床能够对较大边支柱的加工技术要求2、轴承盖冲压工艺分析及模具设计摘要:通过对轴承盖零件冲压成形工艺进行了分析,介绍了零件的工艺参数的计算及设备的选择,同时介绍了模具结构及模具的工作过程,分析了零件引伸过程中产生拉裂现象的原因,并给出了解决措施,实现了该零件引伸的顺利进行,得出了垫旧报纸可以解决零件拉裂现象的方法。
冲压磨具结构设计的十大经典案例案例一:汽车车身冲压件的多工位磨具汽车车身冲压件的磨具设计具有独特的特点和挑战。
为了提高生产效率和质量,设计师通常需要设计多工位磨具。
多工位磨具可以在一次夹紧的情况下完成多个冲压工序,大大提高了冲压生产线的效率。
案例二:飞机翼罩冲压模具飞机翼罩是航空领域中关键的部件之一,其冲压模具设计要求非常高。
翼罩的形状复杂且精度要求高,需要考虑到翼罩的强度、刚度和表面光洁度等因素。
设计师经过精心的磨具结构设计,保证了飞机翼罩的质量和性能。
案例三:家电外壳冲压磨具家电外壳冲压磨具的设计要求外壳的造型美观,同时要满足耐用性和制造成本的要求。
设计师通过合理的冲压工艺和磨具结构设计,实现了家电外壳的高效生产和质量控制。
案例四:电子产品金属外壳冲压模具电子产品金属外壳的冲压模具设计要考虑到外壳的精度、尺寸稳定性和表面处理要求。
设计师通过合理的模具结构设计和冲压工艺,实现了电子产品外壳的高质量和高效生产。
案例五:手机壳冲压模具手机壳的冲压模具设计要考虑到外观要求,如曲面和切割边缘的处理。
设计师通过创新的磨具结构设计和冲压工艺,实现了手机壳的设计复杂性和高质量要求。
案例六:钢铁行业冲压磨具设计钢铁行业的冲压磨具设计要考虑到材料的硬度和可加工性。
设计师通过合理的磨具结构设计和冲压工艺,提高了钢铁行业的生产效率和产品质量。
案例七:航天器零部件冲压模具航天器零部件的冲压模具设计要求非常高,需要考虑到零部件的材料性能、结构复杂度和重量要求等因素。
设计师通过优化的磨具结构设计和精细的制造工艺,实现了航天器零部件的高质量和可靠性。
案例八:新能源汽车零部件冲压模具新能源汽车零部件的冲压模具设计要考虑到其特殊材料和结构要求。
设计师通过创新的磨具结构设计和精细的制造工艺,实现了新能源汽车零部件的高质量和可靠性。
案例九:家具五金件冲压模具家具五金件的冲压模具设计要考虑到五金件的形状复杂度和表面质量要求。
设计师通过合理的磨具结构设计和冲压工艺,实现了家具五金件的高质量和高效生产。
弯曲模零件简图:如图3-11所示零件名称:汽车务轮架加固板材料:08钢板厚度:4mm生产批量:大量生产要求编制工艺方案。
图3-11 汽车备轮架加固板零件图一. 冲压件的工艺分析该零件为备轮架加固板,材料较厚,其主要作用是增加汽车备轮架强度。
零件外形对称,无尖角、凹陷或其他形状突变,系典型的板料冲压件。
零件外形尺寸无公差要求,壁部圆角半径,相对圆角半径为,大于表相关资料所示的最小弯曲半径值,因此可以弯曲成形。
的八个小孔和两个腰圆孔分别均布在零件的三个平面上,孔距有们置要求,但孔径无公差配合。
圆孔精度不高,弯曲角为,也无公差要求。
通过上述工艺分析,可以看出该零件为普通的厚板弯曲件,尺寸精度要求不高,主要是轮廓成形问题,又属大量生产,因此可以用冲压方法生产。
二. 确定工艺方案(1)计算毛坯尺寸该零件的毛坯展开尺寸可按式下式计算:上式中圆角半径;板料厚度;为中性层系数,由表查得;,为直边尺寸,由图3-13可知,将这些数值代入,得毛坯宽度方向的计算尺寸考虑到弯曲时板料纤维的伸长,经过试压修正,实际毛坯尺寸取。
同理,可计算出其他部位尺寸,最后得出如图3-14所示的弯曲毛坯的形状和尺寸。
(2)确定排样方式和计算材料利用率图3-14的毛坯形状和尺寸较大,为便于手工送料,选用单排冲压。
有三种排样方式,见图3-15a、b、c。
由表查得沿送料进方向的搭边,侧向搭边,因此,三种单排样方式产材料利用率分别为64%、64%和70%。
第三种排样方式,落料时需二次送进,但材料利用率最高,为此,本实例可选用第三种排样方法。
图3-14 加固板冲压件展开图a)材料利用率64% b)材料利用率64%c)材料利用率70%图3-15 加固板的排样方式(3)冲压工序性质和工序次数的选择冲压该零件,需要的基本工序和次数有:(a)落料;(b)冲孔6个;(c)冲底部孔2个;(d)冲孔;(e)冲2个腰圆孔;(f)首次弯曲成形;(g)二次弯曲成形。
(1)工序组合及其方案比较根据以上这些工序,可以作出下列各种组合方案。
冲压模课程设计指导--设计实例1冲裁、弯曲、拉深及成形是冷冲压的基本工序,下面以常见的冲裁件、弯曲件及拉深件为例介绍冲裁、弯曲及拉深的冲压工艺分析、工艺方案拟订、工艺计算及模具设计。
冲裁模零件简图:如图3-1所示.名称:垫圈生产批量:大批量材料:Q235钢材料厚度:2mm要求设计此工件的冲裁模。
图3-1 零件图一. 冲压件工艺分析该零件形状简单、对称,是由圆弧和直线组成的.由表2-10、2-11查得,冲裁件内外所能达到的经济精度为IT14,孔中心与边缘距离尺寸公差为±0.2mm.将以上精度与零件简图中所标注的尺寸公差相比较,可认为该零件的精度要求能够在冲裁加工中得到保证.其它尺寸标注、生产批量等情况,也均符合冲裁的工艺要求,故决定采用利用导正销进行定位、刚性卸料装置、自然漏料方式的冲孔落料模进行加工.方案一采用复合模加工。
复合模的特点是生产率高,冲裁件的内孔与外缘的相对位置精度高,冲模的轮廓尺寸较小。
但复合模结构复杂,制造精度要求高,成本高。
复合模主要用于生产批量大、精度要求高的冲裁件。
方案二采用级进模加工。
级进模比单工序模生产率高,减少了模具和设备的数量,工件精度较高,便于操作和实现生产自动化。
对于特别复杂或孔边距较小的冲压件,用简单模或复合模冲制有困难时,可用级进模逐步冲出。
但级进模轮廓尺寸较大,制造较复杂,成本较高,一般适用于大批量生产小型冲压件。
比较方案一与方案二,对于所给零件,由于两小孔比较接近边缘,复合模冲裁零件时受到壁厚的限制,模具结构与强度方面相对较难实现和保证,所以根据零件性质故采用级进模加工。
二. 模具设计计算1.排样、计算条料宽度及确定步距采用单排方案,如图3-2。
由表2-18确定搭边值,根据零件形状两式件间按矩形取搭边值,侧边取搭边值。
则进距:条料宽度:查表2-19图3-22.计算冲压力该模具采用钢性卸料和下出料方式1)落料力查表8-72)冲孔力中心孔:2个小孔:3)冲裁时的推件力查表2-37取表2-38,序号1的凹模刃口形式,,则个故为避免各凸模冲裁力的最大值同时出现,且考虑到凸模相距很近时避免小直径凸模由于承受材料流动挤压力作用而产生倾斜或折断故把三冲孔凸模设计成阶梯凸模如图3-3图3-3则最大冲压力:3.确定模具压力中心如图3-4,根据图形分析,因为工件图形对称,故落料时F落的压力中心在上O1;冲孔时F孔1、F孔2的压力中心在O2上。
冲压模具设计与制造实例例:图1所示冲裁件,材料为A3,厚度为2mm,大批量生产.试制定工件冲压工艺规程、设计其模具、编制模具零件的加工工艺规程. 零件名称:止动件 生产批量:大批 材料:A3 材料厚度:t=2mm一、 冲压工艺与模具设计1.冲压件工艺分析①材料:该冲裁件的材料A3钢是普通碳素钢,具有较好的可冲压性能. ②零件结构:该冲裁件结构简单,并在转角有四处R2圆角,比较适合冲裁. ③尺寸精度:零件图上所有未注公差的尺寸,属自由尺寸,可按IT14级确定工件尺寸的公差.孔边距12mm 的公差为,属11级精度.查公差表可得各尺寸公差为:零件外形:65 mm 24 mm 30 mm R30 mm R2 mm零件内形:10 mm孔心距:37±0.31mm 结论:适合冲裁. 2.工艺方案及模具结构类型该零件包括落料、冲孔两个工序,可以采用以下三种工艺方案:+①先落料,再冲孔,采用单工序模生产.②落料-冲孔复合冲压,采用复合模生产.③冲孔-落料连续冲压,采用级进模生产.方案①模具结构简单,但需要两道工序、两套模具才能完成零件的加工,生产效率较低,难以满足零件大批量生产的需求.由于零件结构简单,为提高生产效率,主要应采用复合冲裁或级进冲裁方式.由于孔边距尺寸12 mm有公差要求,为了更好地保证此尺寸精度,最后确定用复合冲裁方式进行生产.工件尺寸可知,凸凹模壁厚大于最小壁厚,为便于操作,所以复合模结构采用倒装复合模及弹性卸料和定位钉定位方式.3.排样设计查冲压模具设计与制造表 2.5.2,确定搭边值:两工件间的搭边:a=2.2mm工件边缘搭边:a1=2.5mm步距为:32.2mm条料宽度B=D+2a1=65+2=70确定后排样图如2所示一个步距内的材料利用率η为:η=A/BS×100%=1550÷70××100%=%查板材标准,宜选900mm×1000mm的钢板,每张钢板可剪裁为14张条料70mm×1000mm,每张条料可冲378个工件,则η为:η=nA1/LB×100%=378×1550/900×1000×100%=%即每张板材的材料利用率为%4.冲压力与压力中心计算⑴冲压力落料力 F总=τ=××2×450=KN其中τ按非退火A3钢板计算.冲孔力 F冲=τ=×2π×10×2×450=KN其中:d 为冲孔直径,2πd为两个圆周长之和.卸料力 F卸=K卸F卸=×=KN推件力 F推=nK推F推=6××=KN其中 n=6 是因有两个孔.总冲压力:F总= F落+ F冲+ F卸+ F推=+++=KN⑵压力中心如图3所示:由于工件X方向对称,故压力中心x0=32.5mm=13.0mm其中:L1=24mm y1=12mmL2=60mm y2=0mmL3=24mm y1=12mmL4=60mm y4=24mmL5=60mm y5=27.96mmL6=60mm y6=24mmL7=60mm y7=12mmL8=60mm y8=12mm计算时,忽略边缘4-R2圆角.由以上计算可知冲压件压力中心的坐标为,135.工作零件刃口尺寸计算落料部分以落料凹模为基准计算,落料凸模按间隙值配制;冲孔部分以冲孔凸模为基准计算,冲孔凹模按间隙值配制.即以落料凹模、冲孔凸模为基准,凸凹模按间隙值配制.刃口尺寸计算见表16.工作零件结构尺寸落料凹模板尺寸:凹模厚度:H=kb≥15mmH=×凹模边壁厚:c≥~2H=~2×=~mm 实取c=30mm凹模板边长:L=b+2c=65+2×30=125mm查标准JB/T :凹模板宽B=125mm故确定凹模板外形为:125×125×18mm.将凹模板作成薄型形式并加空心垫板后实取为:125×125×14mm.凸凹模尺寸:凸凹模长度:L=h1+h2+h=16+10+24=50mm其中:h1-凸凹模固定板厚度h2-弹性卸料板厚度h-增加长度包括凸模进入凹模深度,弹性元件安装高度等凸凹模内外刃口间壁厚校核:根据冲裁件结构凸凹模内外刃口最小壁厚为7mm,根据强度要求查冲压模具设计与制造表2.9.6知,该壁厚为4.9mm即可,故该凸凹模侧壁强度足够.冲孔凸模尺寸:凸模长度:L凸= h1+h2+h3=14+12+1440mm其中:h1-凸模固定板厚 h2-空心垫板厚 h3-凹模板厚凸模强度校核:该凸模不属于细长杆,强度足够.7.其它模具零件结构尺寸根据倒装复合模形式特点:凹模板尺寸并查标准JB/,确定其它模具模板尺寸列于表2:根据模具零件结构尺寸,查标准GB/选取后侧导柱125×25标准模架一副.8.冲床选用根据总冲压力 F总=352KN,模具闭合高度,冲床工作台面尺寸等,并结合现有设备,选用J23-63开式双柱可倾冲床,并在工作台面上备制垫块.其主要工艺参数如下:公称压力:63KN滑块行程:130mm行程次数:50次/分最大闭合高度:360mm连杆调节长度:80mm工作台尺寸前后×左右:480mm×710mm二、模具制造1、主要模具零件加工工艺过程制件:柴油机飞轮锁片材料:Q235料厚:1.2mm该制件为大批量生产,制品图如下:一冲裁件的工艺分析1、冲裁件为Q235号钢,是普通碳素钢,有较好的冲压性能,由设计书查得τ=350Mpa.2、该工作外形简单,规则,适合冲压加工.3、所有未标注公差尺寸,都按IT14级制造.4、结论:工艺性较好,可以冲裁.方案选择:方案一:采用单工序模.方案二:采用级进模.方案三:采用复合模.单工序模的分析单工序模又称简单模,是压力机在一次行程内只完成一个工序的冲裁模.工件属大批量生产,为提高生产效率,不宜采用单工序模,而且单工序模定位精度不是很高,所以采用级进模或复合模.级进模的分析级进模是在压力机一次行程中,在一副模具上依次在几个不同的位置同时完成多道工序的冲模.因为冲裁是依次在几个不同的位置逐步冲出的,因此要控制冲裁件的孔与外形的相对位置精度就必须严格控制送料步距,为此,级进模有两种基本结构类型:用导正销定距的级进模和用侧刃定距的级进模.另外级进模有多个工序所以比复合模效率低.复合模的分析复合模是在压力机一次工作行程中,在模具同一位置同时完成多道工序的冲模.它不存在冲压时的定位误差.特点:结构紧凑,生产率高,精度高,孔与外形的位置精度容易保证,用于生产批量大.复合模还分为倒装和正装两种,各有优缺点.倒装复合模但采用直刃壁凹模洞口凸凹模内有积存废料账力较大,正装复合模的优点是:就软就薄的冲裁件,冲出的工件比较平整,平直度高,凸凹模内不积存废料减小孔内废料的胀力,有利于凸凹模减小最小壁厚.经比较分析,该制件的模具制造选用导料销加固定挡料销定位的弹性卸料及上出件的正装复合模.二排样图设计及冲压力和压力中心的计算由3-6,3-8表可查得:a1=,a=,△=查书391.料宽计算: B=D+2a=62+2=64mm2.步距:A=D=a1=62+=62.8mm3.材料利用率计算:η=A/BS×100%=πR2-πR2+12/64=312-+/64×100%=%其中a是搭边值,a1是工作间隙,D是平行于送料方向冲材件的宽度,S是一个步距内制件的实际面积,A是步距,B是料宽,R1是大圆半径,R2是小圆半径,12×是方孔的面积,η为一个步距内的材料的利用率4.冲裁总压力的确定:L=231+2+12+2=周边总长计算冲裁力:F=KLtτ查设计指导书得τ=350MpaF=350≈180KN落料力:F落=τ=231350=卸料力:F卸=kF落==冲孔力:F冲=τ+12+2350=顶件力:F顶=-k2F落==冲裁总压力:F∑=F落+F卸+F冲+F顶=+++=F压=~F∑=246KN说明:K为安全系数,一般取;k为卸料力系数,其值为~,在上式中取值为;k2为顶件力系数,其值为~,式中取值为5.压力机的初步选用:根据制件的冲裁的公称压力,选用开式双柱可倾式压力机,公称压力为350k N 形号为J23-35 满足:F压≥F∑。
内容提要本此设计说明书论述了级进模的下模由下模座、下模垫板、下模固定板、凹模镶块、抬料钉、导料板、卸料板,导柱导套、卸料板弹钉、卸料板限位器等零部件组成以及其设计计算过程。
其中下模固定板、凹模镶块、导料板、卸料板拉深翻边凸模等是关键零部件。
该级进模采用单出排样,有6个工位,上、下模固定板具有高精度、长寿命。
可快速更换凸模和凹模镶块,并且重复装配精度高,可延长模具的使用寿命。
采用双侧刃定距,在侧刃凹模镶块上设计一个与导料板一样高的限位刃凸台,既可初定位送料的步距,又可快速定位导料板。
同时在上模座上设计刚性的卸料板限位器,卸料板既可弹性压料又可刚性卸料﹐综合而言﹐该模具有以下特点﹕(1)下模固定板具有高精度、长寿命(2) 快速更换冲裁凹模镶块目录前言 (1)绪论 (2)第1章冲压工艺分析 (4)第2章主要工艺参数的计算 (5)2.1确定冲压的基本工序 (5)2.2确定基本工序尺寸公差 (6)2.3排样及材料的选用率 (6)2.4计算工序压力 (6)2.5冲压设备的选择 (7)2.6确定压力中心 (8)2.7冲模刃口尺寸及公差的计算 (8)2.8确定各个零件的结构尺寸 (9)第3章确定工艺方案及模具结构形式 (11)3.1工艺方案的确定……………………………………………………‥113.2模具结构形式选择的基本原则 (12)第4章模具设计计算 (10)4.1凹模板外形尺寸的确定 (13)4.2凸模固定板形外形尺寸确定 (13)4.3凸凹模垫板外形尺寸确定 (13)4.4卸料橡胶的选用 (14)第5章固定机构的设计 (16)5.1 模板类零件的固定 (16)5.2凸模的固定 (16)5.3凹模镶块的固定 (16)第6章设计并绘制总装配图并选取标准件 (18)6.1下模座的选用 (18)6.2上模座的选用 (19)第7章绘制非标准零件图 (20)第8章本模具的工作过程及特点 (21)8.1工作过程 (21)8.2本模结构特点 (21)第9章典型零件加工工艺编制 (23)9.1卸料板 (23)9.2挡料销 (23)结束语 (25)参考文献 (26)致谢 (27)摘要:随着模具的迅速发展,在现代工业生产中,模具已经成为生产各种工业产品不可缺少的重要工艺设备,为了扩展在工艺方面的知识面为了适应社会的要求,学校举行了课程设计,这次课程设计是在学习完冲模、模具制造等课程的基础上进行的,是对我综合能力的考核,是对我所学知识的综合运用,也是对我所学知识的回顾与检查。
冲压模具设计与制造实例例:图1所示冲裁件,材料为A3,厚度为2mm,大批量生产。
试制定工件冲压工艺规程、设计其模具、编制模具零件的加工工艺规程。
零件名称:止动件生产批量:大批材料:A3材料厚度:t=2mm一、冲压工艺与模具设计1.冲压件工艺分析①材料:该冲裁件的材料A3钢是普通碳素钢,具有较好的可冲压性能。
②零件结构:该冲裁件结构简单,并在转角有四处R2圆角,比较适合冲裁。
③尺寸精度:零件图上所有未注公差的尺寸,属自由尺寸,-0.740-0.52-0.52-0.52-0.52可按IT14级确定工件尺寸的公差。
孔边距12mm 的公差为-0.11,属11级精度。
查公差表可得各尺寸公差为:零件外形:65 mm 24 mm 30 mm R30 mm R2 mm零件内形:10 mm孔心距:37±0.31mm 结论:适合冲裁。
2.工艺方案及模具结构类型该零件包括落料、冲孔两个工序,可以采用以下三种工艺方案:①先落料,再冲孔,采用单工序模生产。
②落料-冲孔复合冲压,采用复合模生产。
③冲孔-落料连续冲压,采用级进模生产。
方案①模具结构简单,但需要两道工序、两套模具才能完成零件的加工,生产效率较低,难以满足零件大批量生产的需求。
由于零件结构简单,为提高生产效率,主要应采用复合冲裁或级进冲裁方式。
由于孔边距尺寸12 mm 有公差要求,为了更好地保证此尺寸精度,最后确定 用复合冲裁方式进行生产。
+0.36 0-0.11工件尺寸可知,凸凹模壁厚大于最小壁厚,为便于操作,所以复合模结构采用倒装复合模及弹性卸料和定位钉定位方式。
3.排样设计查《冲压模具设计与制造》表2.5.2,确定搭边值:两工件间的搭边:a=2.2mm工件边缘搭边:a1=2.5mm步距为:32.2mm条料宽度B=D+2a1=65+2*2.5=70确定后排样图如2所示一个步距内的材料利用率η为:η=A/BS×100%=1550÷(70×32.2)×100%=68.8%查板材标准,宜选900mm×1000mm的钢板,每张钢板可剪裁为14张条料(70mm×1000mm),每张条料可冲378个工件,则η为:η=nA1/LB×100%=378×1550/900×1000×100%=65.1%即每张板材的材料利用率为65.1%4.冲压力与压力中心计算⑴冲压力落料力F总=1.3Ltτ=1.3×215.96×2×450=252.67(KN)其中τ按非退火A3钢板计算。
典型冲压件冲压工艺设计实例
汽车车门玻璃升降器外壳件的形状、尺寸如图 8.2.1 所示,材料为 08 钢板,板厚 1.5mm ,中批量生产,打算采用冲压生产,要求编制冲压工艺。
8.2.1 冲压件的工艺分析
首先必须充分了解产品的应用场合和技术要求,并进行工艺分析。
汽车车门上的玻璃抬起或降落是靠升降器操纵的。
升降器部件装配简图如图 8.2.2 所示,本冲压件为其中的外壳 5 。
升降器的传动机构装在外壳内,通过外壳凸缘上三个均布的小孔 φ 3.2mm 用铆钉铆接在车门座板上。
传动轴 6 以 I T11 级的间隙配合装在外壳件右端孔 φ 16.5mm 的承托部位,通过制动扭簧 3 、联动片 9 及心轴 4 与小齿轮 11 联接,摇动手柄 7 时,传动轴将动力传递给小齿轮,然后带动大齿轮 12 ,推动车门玻璃升降。
该冲压件采用 1.5mm 的钢板冲压而成,可保证足够的刚度与强度。
外壳内腔的主要配合尺寸φ 16.5 mm 、 φ 22.3 mm 、 16 mm 为IT11-IT12 级。
为确保在铆合固定后,其承托部位与轴套的同轴度,三个φ 3.2mm 小孔与φ 16.5mm 间的相对位置要准确,小孔中心圆直径φ 42 ± 0.1mm 为 Ⅰ T10 级。
此零件为旋转体,其形状特征表明,是一个带凸缘的圆筒形件。
其主要的形状、尺寸可以由拉深、翻边、冲孔
等冲压工序获得。
作为拉深成形尺寸,其相对值 、 都比较合适,拉深工艺性较好。
φ 22.3 mm 、16 mm 的公差要求偏高,拉深件底部及口部的圆角半径 R1.5 mm 也偏小,故应在拉深之后,另加整形工序,并用制造精度较高、间隙较小的模具来达到。
三个小孔 φ 3.2 mm 的中心圆直径 42 ± 0.1mm 的精度要求较高,按冲裁件工艺性分析,应以 φ 22.3 mm 的内径定位,用高精度(IT7 级以上)冲模在一道工序中同时冲出。
图 8.2.1 玻璃升降器外壳
图 8.2.2 玻璃升降器外壳的装配简图
8.2.2 冲压件冲压工艺过程的确定
一.工艺方案的分析比较
外壳的形状表明,它为拉深件,所以拉深为基本工序。
凸缘上三小孔由冲孔工序完成。
该零件φ 16.5 mm 部分(见图 8.2.1 右侧)的成形,可以有三种方法:一种可以采用阶梯拉深后车去底部;另一种可以采用阶梯拉深后冲去底部;第三种可以采用拉深后冲底孔,再翻边的方法(见图 8.2.3 所示)。
第一种方法车底的质量较高,但生产率低,在零件底部要求不高的情况下,不易采用。
第二种方法在冲去底部之前,要求底部圆角半径接近于零,因此需要增加一道整形工序,而且质量不易保证。
第三种方法虽然翻边的端部质量不及前两种好,但生产效率高,而且省料。
由于外壳高度尺寸 21 mm 的公差要求不高,翻边工艺完全可以保证零件的技术要求,故采用拉深后再冲孔翻边的方案还是比较合理的。
图 8.2.3 外壳底部的成形方案
a) 车切 ;b) 冲切 ;c) 冲孔翻边
二.工艺方案的确定
• 计算毛坯尺寸
在计算毛坯尺寸以前需要先确定翻边前的半成品形状和尺寸,核算翻边的变形程度。
参见图 8.2.1 ,零件φ 16.5 mm 处的高度尺寸为: H =21-16 =5mm 。
根据翻边工艺计算公式,翻边系数 K 为:
将翻边高度 H =5 mm ;翻边直径 D =16.5+1.5 =18mm ;翻边圆角半径 r = 1 mm ;材料厚度 t =1.5mm 带入上式,得翻边系数:
预冲孔孔径 d = DK =11 mm , d/t =11/1.5=7.33 ,查翻边系数极限值表知,当用圆柱形凸模预冲孔时,极限翻边系数 [ K ]=0.5 ,现 0.61>0.5 ,故能由冲孔后直接翻边获得 H =5 mm 的高度。
翻边前的拉深件形状与尺寸如图 8.2.4 所示。
为了计算毛坯尺寸,还须确定切边余量。
因为凸缘直径 d =50mm ,拉深直径 d =23.8mm ,所以
,查拉深工艺资料,得凸缘修边余量 δ =1.8 mm ,实际凸缘直径 d' 凸 = d 凸 +2 δ = (50+3.6) mm ≈ 54 mm 。
毛坯直径 D 按以下公式计算:
D= = ≈ 65 mm
图 8.2.4 翻边前的半成品形状和尺寸
2 .计算拉深次数
因为 t /D= 2.3% , , ,初定 r 1 ≈ ( 4 ~ 5) t , 从《冲压手册》中查表可得 极限拉深系数 [m 1 ]= 0.44 , [ m 2 ]= 0.75 ,又由 [ m 1 ][ m 2 ] =0.44 × 0.75=0.33 , 所以 m 总 ﹥ [ m 1 ][ m 2 ]。
需要两次拉深,取 n =2 。
若采用接近于极限的拉深系数进行拉深,则需要选用较大的圆角半径,以保证拉深质量。
目前零件的材料厚度 t =1.5mm 、圆角半径 r =2.55 mm ,约为 1.5 t ,过小,而且零件直径又较小,两次拉深难以满足零件的要求。
因此需要在两次拉深后还增加一道整形工序,以得到更小的口部、底部圆角半径。
在实际应用中,可以采用三道拉深工序,依次减小拉深圆角半径,将总的拉深系数 m 总 =0.366分配到三道拉深工序中去,可以选取 m 1 = 0.56 , m 2 = 0.805 , m 3 =0 .812 ,使
m 1 × m 2 × m 3 =0.56 × 0.805 × 0.812=0.366
3 .工序的组合和顺序确定
对于外壳这样工序较多的冲压件,可以先确定出零件的基本工序,再考虑对所有的基本工序进行可能的组合排序,将由此得到的各种工艺方案进行分析比较,从中确定出适合于生产实际的最佳方案。
外壳的全部基本工序为:落料 φ 65 mm ,第一次拉深、第二次拉深(见图 8-11b )、第三次拉深(见图 8.2.5c )、冲底孔 φ 11 mm (见图 8.2.5d ),翻边 φ 16.5 mm (见图 8.2.5e ),冲三小孔 φ 3.2 mm (见图 8.2.5f ),修边 φ 50 mm (见图 8.2.5g )。
共计八道基本工序,据此可以排出以下五种工艺方案:
方案一:落料与首次拉深复合(见图 8.2.5a ),其余按基本工序。
方案二:落料与首次拉深复合,冲 φ 11 mm 底孔与翻边复合(见图 8.2.6a ),冲三个小孔 φ 3.2 mm 与切边复合(见图 8.2.6b ),其余按基本工序。
方案三:落料与首次拉深复合,冲 φ 11 mm 底孔与冲三个小孔 φ 3.2 mm 复合(见图 8.2.7a ),翻边与切边复合(见图 8.2.7b ),其余按基本工序。
方案四:落料、首次拉深与冲 φ 11 mm 底孔复合(见图 8.2.8 ),其余按基本工序。
方案五:采用级进模或在多工位自动压力机上冲压。
分析比较上述五种方案,可以看出:方案二中,冲 φ 11mm 孔与翻边复合,由于模壁厚度较小
mm ,小于凸凹模间的最小壁厚 3.8 mm ,模具极易损坏。
冲三个小孔 φ 3.2 mm 与切边复合,也存在模壁太薄的问题,此时 mm ,因此不宜采用。
方案三中,虽解决了上述模壁太薄的矛盾,但冲 φ 11 mm 底孔与冲三个小孔 φ 3.2 mm 复合及翻边与切边复合时,它们的刃口都不在同一平面上,而且磨损快慢也不一样,这会给修磨带来不便,修磨后要保持相对位置也有困难。
方案四中,落料、首次拉深与冲 φ 11 mm 底孔复合,冲孔凹模与拉深凸模做成一体,也会给修磨造成困难。
特别是冲底孔后再经二次和三次拉深,孔径一旦变化,将会影响到翻边的高度尺寸和翻边口部的质量。
方案五采用级进模或多工位自动送料装置,生产效率高。
模具结构复杂,制造周期长,成本高,因此,只有大批量生产中才较适合。
方案一没有上述缺点,但工序复合程度低、生产效率也低,不过单工序模具结构简单、制造费用低,这在中小批生产中却是合理的,因此决定采用第一方案。
本方案在第三次拉深和翻边工序中,于冲压行程临近终了时,模具可对工件刚性镦压而起到整形作用,故无需另加整形工序。
图 8.2.5 各工序的模具结构
a) 落料与拉深 ;b) 二次拉深 ;c) 三次拉深 ;d) 冲底孔 ;e) 翻边 ;f) 冲小孔 ;g) 切边
图8.2.6方案二的部分模具结构
a)冲孔与翻边;b)冲小孔与切边
图8.2.7方案三的部分模具结构
a)冲底孔与冲小孔;b)翻边与切边
图8.2.8方案四的落料,拉深与冲底孔复合模具结构
关于排样与裁板中各工序半成品尺寸的确定,各工序冲压力及设备的选择等,可参见前面的有关章节,从此处略。