第十二章_梯度功能材料
- 格式:ppt
- 大小:1.58 MB
- 文档页数:60
梯度功能材料的制备与应用及其发展状况摘要:近年来,梯度功能材料(FunctionallyGradientMaterials,FGM)由于其优异的性能和特殊的功能,得到了迅速发展,展现出极大的应用价值。
FGM的制备方法主要有粉末冶金法、等离子喷涂法、激光熔覆法、自蔓延高温燃烧法等。
FGM在航空航天、电磁工程、生物工程、核能和电气工程等领域都有广泛的应用。
文章综述了FGM的制备方法、特性、在各领域的应用以及发展现状,对未来的发展做了一些展望。
关键词:梯度功能材料;制备方法;特性;应用;发展前景梯度功能材料(functional gradient material, FGM),即材料的组分和结构从材料的某一方位(一维、二维、三维)向另一方位连续地变化,使材料的性能和功能也呈现梯度变化的一种新型材料[1]。
20世纪80年代后期,日本学者新野正之等首先提出功能梯度材料的概念[2],很快引起多个国家宇航领域科技工作者的极大关注,功能梯度材料的研究在各国迅速展开,二十多年来,国内外在功能梯度材料的组织结构、性能、制备工艺、设备以及材料的应用方面都取得了令人瞩目的成果。
1梯度功能材料制备方法1.1粉末冶金法(PM)PM法是将10μm~100μm粒径的粉末(金属、陶瓷)充分混合,按组分梯度分层填充或连续成分控制填充,压实后烧结制备FGM[3]。
PM法具有设备简单、易于操作、成本低等优点,但需要对烧结温度、保温时间和冷却速度等工艺进行严格控制。
1.2等离子喷涂法等离子喷涂法是将原料粉末送至等离子射流中,以熔融状态状态直接喷射到基材上形成涂层。
该方法使用粉末作喷涂材料,以气体作载体将粉末吹入等离子射流中, 依靠等离子弧将粉末熔化,熔融的粒子被进一步加速,然后以极高的速度打在经过净化和粗化处理的基材表面,产生强烈的塑性变形,相互挤嵌、填塞,形成扁平的层状结构涂层。
喷涂过程中改变陶瓷与金属的送粉比例,调节等离子射流的温度及流速,即可调整成分和组织,获得FGM涂层。
梯度功能材料梯度功能材料是指具有渐变性质的功能材料,其物理、化学、结构等性能在空间上呈现出渐变变化的特点。
梯度功能材料是近年来发展起来的一种新型材料,它具有各种优异的性能,可以在许多领域发挥重要作用。
首先,梯度功能材料在力学性能方面具有显著的优势。
由于其物理结构和化学成分在空间上的渐变,梯度功能材料可以实现从硬到软、从脆到韧的过渡。
这对于一些领域,如材料设计、结构工程等非常有意义。
例如,在航天航空领域中,梯度功能材料可以用于制造轻巧但又具有很高抗压、抗弯性能的航天器件。
其次,梯度功能材料在热传导方面也具有独特的优势。
相对于传统材料,梯度功能材料可以实现热导率的逐渐变化。
这对于一些需要控制热传导的应用非常重要。
举个例子,梯度功能材料可以应用于热电子学器件中,以实现热管理和能量转换的最优化。
此外,梯度功能材料在生物医学领域也有广泛的应用。
例如,在组织工程和再生医学中,梯度功能材料可以模拟人体组织的力学性能和结构特点,从而更好地促进生物材料与人体组织的相容性和生物交互性。
此外,梯度功能材料还可以用于医学影像学领域,通过改变材料的渐变特性,实现对特定组织的显影效果。
最后,梯度功能材料还具有其他许多应用潜力。
例如,在能源领域,梯度功能材料可以用于提高储能设备的性能,如电池和超级电容器。
在环境领域,梯度功能材料可以用于制造高效的吸附材料,以去除有害气体和废水中的污染物等。
总而言之,梯度功能材料的出现为各领域的科研和工程应用带来了许多机会。
它的独特性能可以被广泛地应用于力学、热传导、生物医学、能源、环境等领域,为材料科学和工程技术的发展提供了新的思路和方法。
随着研究的深入和进一步的应用开发,相信梯度功能材料将发挥更加巨大的作用。
梯度功能材料梯度功能材料State:1. 此⽂在是从中英⽂⽂献中的“简单总结”,没列出相应的参考⽂献2. 是为允诺⼀位朋友⽽做,也可以算作⾃⼰的读书⼩笔记,仅此⽽已背景梯度功能材料( Functionally Gradient Materials ,简称FGM)是由于航空航天技术的发展⽽提出的新概念。
航天飞机在⼤⽓层中长时间飞⾏,机头尖端和发动机燃烧室内壁的温度⾼达2100 K 以上,因此材料必须承受很⼤的⾼温以及内外的温度差别,服役的环境很恶劣。
1984 年,⽇本学者Masyuhi NINO,Toshio HIRA,和Ryuzo WATANBE等⼈⾸先提出了FGM 的概念,其设计思想⼀是采⽤耐热性及隔热性的陶瓷材料以适应⼏千度⾼温⽓体的环境,⼆是采⽤热传导和机械强度⾼的⾦属材料,通过控制材料的组成、组织和显微⽓孔率,使之沿厚度⽅向连续变化,即可得到陶瓷⾦属的FGM。
所谓梯度功能材料(FGM), 即在材料制备过程中,使组成、结构及孔隙率等要素在材料的某个⽅向上连续变化或阶梯变化, 从⽽使材料的性质和功能也呈连续变化或阶梯变化的⼀种⾮均质复合材料。
功能梯度材料的研究开发最早始于1987 年⽇本科学技术厅的⼀项“关于开发缓和热应⼒的功能梯度材料的基础技术研究”计划。
该项⽬于1992 年完成,随后将⼯作重⼼转向模拟件的试制及其在超⾼温、⾼温度梯度落差及⾼温燃⽓⾼速冲刷等条件下的实际性能测试评价上,并于1993 年开始研究具有梯度结构的能量转换材料。
第⼀届国际FGM 研讨会于1990 年在⽇本仙台召开,之后每两年举办⼀届。
中国于2002 年在北京主办过第七届FGM国际研讨会。
特点功能梯度材料的关键特点是控制界⾯的成分和组织连续变化,使材料的热应⼒⼤为缓和。
从材料的组成⽅式看,功能梯度材料可分为⾦属/陶瓷、⾦属/⾮⾦属、陶瓷/陶瓷、陶瓷/⾮⾦属和⾮⾦属/聚合物等多种结合⽅式。
从组成变化可划分为:功能梯度整体型(组成从⼀侧到另⼀侧呈梯度渐变的结构材料),功能梯度涂覆型(在基体材料上形成组成渐变的涂层)和功能梯度连接型(粘结两个基体间的接缝呈梯度变化)。
梯度功能材料
梯度功能材料是一种具有不同特性、性能或结构的材料。
它可以被设计成具有不同的物理、化学和力学性质,以满足特定应用的要求。
梯度功能材料的研究和应用已经在众多领域中取得了重要的突破,如电子器件、光学器件、医学器械等。
首先,梯度功能材料在电子器件领域有着广泛的应用。
传统的材料在电子器件中往往具有均匀的结构和性能,然而,在某些情况下,需要在同一材料中实现不同的电学性质。
梯度功能材料的研究可以实现局部性能的控制,从而在电子器件的制作中提供更好的功能性和性能。
其次,梯度功能材料在光学器件中也具有重要的应用价值。
光学器件的设计和制造往往依赖于不同材料之间的界面效应,而梯度功能材料可以提供更好的界面适配性和光学性能。
例如,在光学透镜中,通过调控梯度功能材料的光学性质,可以实现对光束的聚焦和分散,从而实现更好的成像效果。
此外,梯度功能材料在医学器械领域也有着广泛的应用。
随着医学技术的不断发展,对材料在医学器械中的要求也越来越高。
梯度功能材料可以在同一材料中实现多种性质,例如生物相容性、机械强度等,从而提高医学器械的性能和可靠性。
例如,在人工骨骼和关节假体的制作中,梯度功能材料可以实现与真实骨骼和关节更好的兼容性,减少植入体对人体的不良反应。
总的来说,梯度功能材料在各个领域中都具有重要的应用价值。
它可以实现在同一材料中多种性质的控制,提高材料的功能性
和性能。
随着科学技术的不断发展,相信梯度功能材料将在更多领域中得到应用,为人们的生活带来更多的便利和创新。
End。
梯度功能材料
梯度功能材料是一种具有非均匀性能分布的材料,其性能随着空间位置的变化而变化。
这种材料在各种工程领域中具有广泛的应用,包括电子器件、能源存储、传感器等。
梯度功能材料的设计和制备对于提高材料的性能和实现特定功能具有重要意义。
首先,梯度功能材料的设计需要充分考虑材料的性能需求和实际应用场景。
在电子器件中,需要设计具有不同导电性能的材料,以实现对电子流的精确控制。
在能源存储领域,需要设计具有不同电化学性能的材料,以提高电池的能量密度和循环寿命。
因此,梯度功能材料的设计需要结合具体的应用需求,确定材料的性能分布和变化规律。
其次,梯度功能材料的制备需要选择合适的制备方法和工艺参数。
常见的制备方法包括溶液法、气相沉积、激光烧结等。
这些方法可以实现对材料成分、结构和形貌的精确控制,从而实现材料性能的梯度分布。
在制备过程中,需要合理选择工艺参数,如温度、压力、溶剂浓度等,以实现对材料性能的精确调控。
最后,梯度功能材料的应用需要充分考虑材料的性能稳定性和可靠性。
在实际应用中,梯度功能材料可能会受到温度、湿度、光照等环境因素的影响,从而导致材料性能的变化。
因此,需要对梯度功能材料进行性能评估和稳定性测试,以确保其在不同环境条件下的可靠性和稳定性。
综上所述,梯度功能材料的设计、制备和应用是一个复杂而又具有挑战性的过程。
通过合理设计和精密制备,梯度功能材料可以实现对材料性能的精确调控,从而实现特定功能和应用需求。
随着材料科学和工程技术的不断发展,梯度功能材料将在更多领域展现出其巨大的应用潜力。