[实用参考]高中物理电磁场练习题.doc
- 格式:doc
- 大小:1.58 MB
- 文档页数:36
[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。
()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。
()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。
评卷人得分一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是()A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是()A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B 图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是()A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:安培力为:故:求和,有:故:故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则()A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:,又因为粒子在磁场中圆周运动的周期,可知粒子在磁场中运动的时间相等,故D正确,C错误;如图,粒子在磁场中做圆周运动,分别从P点和Q点射出,由图知,粒子运动的半径,又粒子在磁场中做圆周运动的半径知粒子运动速度,故A错误B正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式,周期公式,运动时间公式,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a、b、c处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c点的导线所受安培力的方向()A. 与ab边平行,竖直向上B. 与ab边垂直,指向右边C. 与ab边平行,竖直向下D. 与ab边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a在c处的磁场方向垂直ac斜向下,b在c处的磁场方向垂直bc斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c点所受安培力方向为与ab边垂直,指向左边,D正确;7.下列说法中正确的是()A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD错误;8.在如图所示的平行板电容器中,电场强度E和磁感应强度B相互垂直,一带正电的粒子q以速度v沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。
高中物理磁场综合测试题附答案高中物理磁场综合测试题附答案一、选择题(每题5分,共50分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
全部选对的得5分,选不全的得3分,有选错或不答的得0分。
)1、如图1所示,在竖直向上的匀强磁场中,水平放置着一根长直流导线,电流方向指向读者,a、b、c、d是以直导线为圆心的同一圆周上的四点,在这四点中:A、a、b两点磁感应强度相同 C、a点磁感应强度最大B、c、d两点磁感应强度大小相等 D、 b点磁感应强度最大2、如图2所示,直角三角形通电闭合线圈ABC处于匀强磁场中,磁场垂直纸面向里,则线圈所受磁场力的合力为:A、大小为零B、方向竖直向上C、方向竖直向下D、方向垂直纸面向里3、质量为m,电荷量为q的带电粒子以速率v垂直射入磁感强度为B的匀强磁场中,在磁场力作用下做匀速圆周运动,带电粒子在圆形轨道上运动相当于一环形电流,则:A、环形电流跟q成正比B、环形电流跟v成正比C、环形电流跟B成反比D、环形电流跟m成反比4、如图4所示,要使线框abcd在受到磁场力作用后,ab边向纸外,cd边向纸里转动,可行的方法是:A、加方向垂直纸面向外的磁场,通方向为a→ b→c→d→a的电流B、加方向平行纸面向上的磁场,通以方向为a→b→c→d→a电流C、加方向平行于纸面向下的磁场,通以方向为a→b→c→d的电流D、加方向垂直纸面向内的磁场,通以方向为a→d→c→b→a的电流5、如图5所示,用绝缘细线悬吊着的带正电小球在匀匀强磁场中做简谐运动,则A、当小球每次通过平衡位置时,动能相同B、当小球每次通过平衡位置时,速度相同C、当小球每次通过平衡位置时,丝线拉力相同D、撤消磁场后,小球摆动周期变化6、如图所示,在加有匀强磁场的区域中,一垂直于磁场方向射入的带电粒子轨迹如图所示,由于带电粒子与沿途的气体分子发生碰撞,带电粒子的能量逐渐减小,从图中可以看出:A、带电粒子带正电,是从B点射入的B、带电粒子带负电,是从B点射入的C、带电粒子带负电,是从A点射入的D、带电粒子带正电,是从A点射入的7(Ⅰ).图中为一“滤速器”装置示意图。
Oxy V 0 a b《磁场》单元练习一.选择题:每小题给出的四个选项中,每小题有一个选项、或多个选项正确。
1、如图所示,两根垂直纸面、平行且固定放置的直导线M 和N ,通有同向等值电流;沿纸面与直导线M 、N 等距放置的另一根可自由移动的通电导线ab ,则通电导线ab 在安培力作用下运动的情况是 A.沿纸面逆时针转动 B.沿纸面顺时针转动C.a 端转向纸外,b 端转向纸里D.a 端转向纸里,b 端转向纸外2.两根长直通电导线互相平行,电流方向相同.它们的截面处于一个等边三角形ABC 的A 和B 处.如图所示,两通电导线在C 处的磁场的磁感应强度的值都是B ,则C 处磁场的总磁感应强度是( )A.2BB.BC.0D.3B3、空间存在竖直向下的匀强电场和水平方向(垂直纸面向里)的匀强磁场,如图所示,已知一离子在电场力和洛仑兹力共同作用下,从静止开始自A 点沿曲线ACB 运动,到达B点时速度为零,C 为运动的最低点.不计重力,则 A.该离子带负电B.A 、B 两点位于同一高度C.C 点时离子速度最大D.离子到达B 点后,将沿原曲线返回A 点4、一带电粒子以一定速度垂直射入匀强磁场中,则不受磁场影响的物理量是: A 、速度 B 、加速度 C 、动量 D 、动能5、MN 板两侧都是磁感强度为B 的匀强磁场,方向如图,带电粒子(不计重力)从a 位置以垂直B 方向的速度V 开始运动,依次通过小孔b 、c 、d ,已知ab = bc = cd ,粒子从a 运动到d 的时间为t ,则粒子的荷质比为: A 、tB π B 、tB 34π C 、π2tB D 、tBπ3 6、带电粒子(不计重力)以初速度V 0从a 点进入匀强磁场,MN a bc dVB B如图。
运动中经过b 点,oa=ob 。
若撤去磁场加一个与y 轴平行的匀强电场,仍以V 0从a 点进入电场,粒子仍能通过b 点,那么电场强度E 与磁感强度B 之比E/B 为: A 、V 0 B 、1 C 、2V 0 D 、2V 7、如图,MN 是匀强磁场中的一块薄金属板,带电粒子(不计重力)在匀强磁场中运动并穿过金属板,虚线表示其运动轨迹,由图知:A 、粒子带负电B 、粒子运动方向是abcdeC 、粒子运动方向是edcbaD 、粒子在上半周所用时间比下半周所用时间长8、带负电的小球用绝缘丝线悬挂于O 点在匀强磁场中摆动,当小球每次通过最低点A 时: A 、摆球受到的磁场力相同 B 、摆球的动能相同 C 、摆球的动量相同D 、向右摆动通过A 点时悬线的拉力大于向左摆动通过A 点时悬线的拉力9、如图,磁感强度为B 的匀强磁场,垂直穿过平面直角坐标系的第I 象限。
电磁场练习题电场与磁场的叠加与相互作用电磁场练习题——电场与磁场的叠加与相互作用在物理学中,电磁场是电荷与电流所产生的场,由电场和磁场组成。
电磁场的相互作用以及叠加是电磁学的重要内容。
下面,我们将通过一些实例来解析电场与磁场的叠加与相互作用。
1. 实例一:平行板电容器中的带电粒子假设有一个带正电荷q的质点,位于距离一个平行板电容器距离为d的位置。
平行板电容器的两个平行的金属板分别带上正电荷和负电荷,形成了一个匀强电场。
此时,电场的电势差为ΔV,根据电场的叠加原理,带电粒子所受到的电场力为F1 = qΔV。
假设带电粒子的速度v与电场垂直,则带电粒子还受到一个宽度为d的磁场,根据磁场的叠加原理,粒子在磁场中受到的洛伦兹力为F2 = qvB。
因此,带电粒子所受到的合力为F = F1 + F2 = qΔV + qvB。
2. 实例二:电流通过直导线考虑一个长直导线,导线中有电流I,与导线平行的方向定义为x轴方向。
在导线周围产生一个以导线为轴线的环形磁场。
现在,我们再在导线周围和导线之间施加一个电场,即有一个电场E与导线方向相同。
根据磁场的叠加原理,磁场B和电场E的合力为F1 = qE。
根据电场的叠加原理,导线所带来的电场力为F2 = ILB,其中L为导线的长度,B为导线周围的磁场强度。
所以,导线受到的总合力为F = F1 + F2 = qE + ILB。
3. 实例三:异向电场和磁场中的运动粒子假设有一个粒子,同时存在电场和磁场。
电场E方向为x轴方向,磁场B方向为z轴方向。
粒子的速度v方向既不与电场方向也不与磁场方向垂直,而是与两者夹角θ。
粒子在电场中受到的电场力为F1 = qE。
粒子在磁场中受到的洛伦兹力为F2 = qvBsinθ。
所以,粒子所受到的合力为F = F1 + F2 = qE + qvBsi nθ。
当粒子在电磁场中运动时,合力将改变粒子的运动轨迹。
总结起来,电场与磁场的叠加与相互作用是电磁学中的基本概念。
电磁场和电磁波基础测试一、选择题1.依据麦克斯韦电磁理论,以下说法正确的选项是[]A.变化的电场必定产生变化的磁场B.平均变化的电场必定产生平均变化的磁场C.稳固的电场必定产生稳固的磁场D.振荡的电场必定产生同频次的振荡磁场2.一平行板电容器与一自感线圈构成振荡电路,要使此振荡电路的周期变大,以下举措中正确的选项是[]A.增添电容器两极间的距离B.减少线圈的匝数C.增大电容器两极板间的正对面积D.增大电容器两极板间的距离的同时,减少线圈的匝数3.要使 LC 振荡电路的周期增大一倍,可采纳的方法是[] A.自感系数 L 和电容 C都增大一倍B.自感系数L和电容 C都减小一半C减小一半C.自感系数L增大一倍,而电容D.自感系数L 减小一半,而电容C增大一倍4.以下的阐述中正确的选项是[]A.在磁场四周必定能产生电场B.在变化的磁场四周必定能产生电场C.周期性变化的电场或磁场都能够产生电磁波D.振荡的电场或磁场都能够产生电磁波5.以下相关在真空中流传的电磁波的说法正确的选项是[]A.频次越大,流传的速度越大B.频次不一样,流传的速度同样C.频次越大,其波长越大D.频次不一样 ,流传速度也不一样6. LC 回路发生电磁振荡时[]A.放电结束时,电路中电流为0,电容器所带电量最大B.放电结束时,电路中电流最大,电容器所带电量为0C.充电结束时,电路中电流为0,电容器所带电量最大D.充电结束时,电路中电流最大,电容器所带电量为07.LC 回路发生电磁振荡时[]A.电容器两板间电压减小时,电路中电流减小B.电容器两板间电压减小时,电路中电流增大C.电容器两板间电压为0 时,电路中电流最大D.电容器两板间电压为最大时,电路中电流为08.如图 19-1所示,是 LC振荡电路中产生的振荡电流 i 随时间 t的变化图象,在 t3时辰以下说法正确的选项是[]A.电容器中的带电量最大B.电容器中的带电量最小C.电容器中的电场能达到最大D.线圈中的磁场能达到最小图19-1二、填空题9.在图 19-2 所示的电路中,可变电容器的最大电容是270 pF,最小电容为 30 pF,若 L 保持不变,则可变电容器的动片完整旋出与L C完整旋入时,电路可产生的振荡电流的频次之比为_____.图 19-2 10.频次为 600 kHz 到 1.5 MHz 的电磁波其波长由m 到m.11.某收音机调谐电路的可变电容器动片完整旋入时,电容是 390 PF,这时能接收到 520kHz的无线电电波,动片完整旋出时,电容变成 39 PF,这时能收到的无线电电波的频次是 ______× 106 Hz,此收音机能收到的无线电电波中,最短的波长为 ______m.(取三位有效数字)参照答案一、选择题1.D 2.C 3.A 4.BCD5.B 6.BC 7.BCD 8.B二、填空题9.3:1 10.500,20011. 1.64 , 182。
高中物理:磁场练习及答案一、选择题1、如图所示,空间的某一区域存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果将磁场撤去,其他条件不变,则粒子从B点离开场区;如果将电场撤去,其他条件不变,则这个粒子从D点离开场区。
已知BC=CD,设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1,t2和t3,离开三点时的动能分别是Ek1、Ek2、Ek3,粒子重力忽略不计,以下关系式正确的是 ( )A.t1=t2<t3B.t1<t2=t3C.Ek1=Ek2<Ek3D.Ek1>Ek2=Ek32、(多选)下列说法正确的是()A.磁场中某点的磁感应强度可以这样测定:把一小段通电导线放在该点时,受到的磁场力F与该导线的长度L、通过的电流I的乘积的比值B=FIL,即磁场中某点的磁感应强度B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=FIL只是定义式,它的大小取决于场源及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D.磁场是客观存在的3、如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度质量为2.5 g的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度大小为0.5 T,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(g取10 m/s2)()A.0.1 A B.0.2 A C.0.05 A D.0.01 A4、(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L 的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g取10 m/s2则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J5、(多选)一质量为m、电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()A.4qBm B.3qBm C.2qBm D.qBm6、如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd 方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b;当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c.不计粒子重力.则()A.v b∶v c=1∶2,t b∶t c=2∶1B.v b∶v c=2∶1,t b∶t c=1∶2C.v b∶v c=2∶1,t b∶t c=2∶1D.v b∶v c=1∶2,t b∶t c=1∶27、速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S0A=23S0C,则下列说法中正确的是()A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S0的带电粒子的速率等于E B2D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶2*8、关于磁感线的描述,下列说法中正确的是()A.磁感线可以形象地描述各点磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致B.磁感线可以用细铁屑来显示,因而是真实存在的C.两条磁感线的空隙处一定不存在磁场D.两个磁场叠加的区域,磁感线就可能相交*9、如图所示,在同一平面内互相绝缘的三根无限长直导线ab、cd、ef围成一个等边三角形,三根导线通过的电流大小相等,方向如图所示,O为等边三角形的中心,M、N分别为O关于导线ab、cd的对称点.已知三根导线中的电流形成的合磁场在O点的磁感应强度大小为B1,在M点的磁感应强度大小为B2,若撤去导线ef,而ab、cd中电流不变,则此时N点的磁感应强度大小为()A.B1+B2B.B1-B2C.B1+B22D.B1-B2210、在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直。
高中物理:磁场练习及答案一、选择题1、如图所示,空间的某一区域存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果将磁场撤去,其他条件不变,则粒子从B点离开场区;如果将电场撤去,其他条件不变,则这个粒子从D点离开场区。
已知BC=CD,设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1,t2和t3,离开三点时的动能分别是Ek1、Ek2、Ek3,粒子重力忽略不计,以下关系式正确的是 ( )A.t1=t2<t3B.t1<t2=t3C.Ek1=Ek2<Ek3D.Ek1>Ek2=Ek32、(多选)下列说法正确的是()A.磁场中某点的磁感应强度可以这样测定:把一小段通电导线放在该点时,受到的磁场力F与该导线的长度L、通过的电流I的乘积的比值B=FIL,即磁场中某点的磁感应强度B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=FIL只是定义式,它的大小取决于场源及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D.磁场是客观存在的3、如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度质量为2.5 g的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度大小为0.5 T,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(g取10 m/s2)()A.0.1 A B.0.2 A C.0.05 A D.0.01 A4、(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L 的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g取10 m/s2则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J5、(多选)一质量为m、电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()A.4qBm B.3qBm C.2qBm D.qBm6、如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd 方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b;当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c.不计粒子重力.则()A.v b∶v c=1∶2,t b∶t c=2∶1B.v b∶v c=2∶1,t b∶t c=1∶2C.v b∶v c=2∶1,t b∶t c=2∶1D.v b∶v c=1∶2,t b∶t c=1∶27、速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S0A=23S0C,则下列说法中正确的是()A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S0的带电粒子的速率等于E B2D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶2*8、关于磁感线的描述,下列说法中正确的是()A.磁感线可以形象地描述各点磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致B.磁感线可以用细铁屑来显示,因而是真实存在的C.两条磁感线的空隙处一定不存在磁场D.两个磁场叠加的区域,磁感线就可能相交*9、如图所示,在同一平面内互相绝缘的三根无限长直导线ab、cd、ef围成一个等边三角形,三根导线通过的电流大小相等,方向如图所示,O为等边三角形的中心,M、N分别为O关于导线ab、cd的对称点.已知三根导线中的电流形成的合磁场在O点的磁感应强度大小为B1,在M点的磁感应强度大小为B2,若撤去导线ef,而ab、cd中电流不变,则此时N点的磁感应强度大小为()A.B1+B2B.B1-B2C.B1+B22D.B1-B2210、在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直。
高二物理电磁场练习题讲解电磁场是高中物理的重要内容之一,也是学生在学习物理过程中常常会遇到的难点之一。
为了帮助高二学生更好地理解和掌握电磁场的相关知识,以下是一些电磁场的练习题及其详细讲解。
1. 题目:一根长直导线通以电流I,求离导线距离为r处的磁感应强度B的表达式。
解析:根据比奥-萨伐尔定律,通过一条长直导线所产生的磁场大小与距离这条导线的距离成反比。
所以根据比奥-萨伐尔定律,可以得到以下的表达式:B = (μ₀I)/(2πr)其中,B为磁感应强度,μ₀为真空磁导率,I为电流强度,r为距离导线的距离。
2. 题目:两根平行的长直导线之间的间距为d,两根导线通以相反方向相等的电流,求两导线之间的磁感应强度B的表达式。
解析:根据比奥-萨伐尔定律,两根平行的长直导线之间的磁感应强度大小可以用以下公式来计算:B = (μ₀I)/(2πd)其中,B为磁感应强度,μ₀为真空磁导率,I为电流强度,d为两根导线之间的间隔距离。
3. 题目:一个长直导线与一个长方形回路(边长为a和b)垂直放置,长方形回路的一条边与长直导线平行。
长直导线通以电流I,求回路中的电动势ε。
解析:根据法拉第电磁感应定律,当导线中的磁场发生变化时,会在回路中产生感应电动势。
对于这个题目,长直导线中电流I的存在会产生一个磁场,而由于长方形回路边长与导线平行,所以回路中感应电动势的大小可以通过以下公式计算:ε = B * L其中,ε为感应电动势,B为磁感应强度,L为回路边的长度。
4. 题目:一根半径为R的无限长细导线通以电流I,求与导线距离为r处的磁感应强度B。
解析:这是一个经典的安培环路定律的应用题。
根据安培环路定律,可以推导出以下公式:B = (μ₀I)/(2R)其中,B为磁感应强度,μ₀为真空磁导率,I为电流强度,R为导线的半径。
通过对以上练习题的详细讲解,相信大家对电磁场的相关知识有了更深入的理解。
掌握了这些基本的公式和定律,对于后面的学习和解题将会起到很大的帮助。
高中物理:磁场练习含答案1、下列说法正确的是()A.磁感线有可能出现相交的情况B.磁感线总是由N极出发指向S极C.某点磁场的方向与放在该点的小磁针静止时N极所指方向一致D.某点磁场的方向与放在该点的小磁针受力的方向一致2、如图所示,abcd为四边形闭合线框,a、b、c三点坐标分别为(0,L,0),(L,L,0),(L,0,0),整个空间处于沿y轴正方向的匀强磁场中,通入电流I,方向如图所示,关于四边形的四条边所受到的安培力的大小,下列叙述中正确的是()A.ab边与bc边受到的安培力大小相等B.cd边受到的安培力最大C.cd边与ad边受到的安培力大小相等D.ad边不受安培力作用3、(双选)如图甲所示,扬声器中有一线圈处于磁场中,当音频电流信号通过线圈时,线圈带动纸盆振动,发出声音.俯视图乙表示处于辐射状磁场中的线圈(线圈平面即纸面),磁场方向如图中箭头所示,在图乙中()甲乙A.当电流沿顺时针方向时,线圈所受安培力的方向垂直于纸面向里B.当电流沿顺时针方向时,线圈所受安培力的方向垂直于纸面向外C.当电流沿逆时针方向时,线圈所受安培力的方向垂直于纸面向里D.当电流沿逆时针方向时,线圈所受安培力的方向垂直于纸面向外4、带电油滴以水平速度v0垂直进入匀强磁场,恰好做匀速直线运动,如图所示,若油滴质量为m,磁感应强度为B,重力加速度为g.则下述说法正确的是()A.油滴必带正电荷,电荷量为mg v0BB.油滴必带正电荷,比荷qm=qv0BC.油滴必带负电荷,电荷量为mg v0BD.油滴带什么电荷都可以,只要满足q=mg v0B5、如图所示,有界匀强磁场边界线SP∥MN,速度不同的同种带电粒子从S点沿SP方向同时射入磁场,其中穿过a点的粒子速度v1与MN垂直,穿过b点的粒子,其速度方向与MN成60°角,设两粒子从S到a、b所需的时间分别为t1、t2,则t1∶t2为()A.1∶3B.4∶3C.1∶1 D.3∶26、如图所示,水平桌面上放置一根条形磁铁,磁铁中央正上方用绝缘弹簧悬挂一水平直导线,并与磁铁垂直.当直导线中通入图中所示方向的电流时,可以判断出()A.弹簧的拉力增大,条形磁铁对桌面的压力减小B.弹簧的拉力减小,条形磁铁对桌面的压力减小C.弹簧的拉力增大,条形磁铁对桌面的压力增大D.弹簧的拉力减小,条形磁铁对桌面的压力增大7、一条形磁铁静止在斜面上,固定在磁铁中心的竖直上方的水平导线中通有垂直纸面向里的恒定电流,如图所示.若将磁铁的N极位置与S极位置对调后,仍放在斜面上原来的位置,则磁铁对斜面的压力F和摩擦力f的变化情况分别是()A.F增大,f减小B.F减小,f增大C.F与f都增大D.F与f都减小8、如图所示,一个粗糙且足够长的斜面体静止于水平面上,并处于方向垂直纸面向外,磁感应强度大小为B的匀强磁场中,质量为m、带电荷量为+Q的小滑块从斜面顶端由静止下滑,在滑块下滑的过程中,斜面体静止不动,下列判断正确的是()A.滑块受到的摩擦力逐渐增大B.滑块沿斜面向下做匀加速直线运动C.滑块最终要离开斜面D.滑块最终可能静止于斜面上9、两个相同的回旋加速器,分别接在加速电压U1和U2的高频电源上,且U1>U2,两个相同的带电粒子分别从这两个加速器的中心由静止开始运动,设两个粒子在加速器中运动的时间分别为t1和t2,获得的最大动能分别为E k1和E k2,则()A.t1<t2,E k1>E k2B.t1=t2,E k1<E k2C.t1<t2,E k1=E k2D.t1>t2,E k1=E k210、如图所示,质量m=0.5 kg、长L=1 m的通电导体棒在安培力作用下静止在倾角为37°的光滑绝缘框架上,磁场方向垂直于框架向下(磁场范围足够大),右侧回路电源电动势E=8 V,内电阻r=1 Ω,额定功率为8 W、额定电压为4 V的电动机正常工作,(取g=10 m/s2)则()A.回路总电流为2 AB.电动机的额定电流为4 AC.流经导体棒的电流为4 AD.磁感应强度的大小为1.5 T11、如图所示,取一柔软的铝箔条,把它折成天桥状并用胶纸粘牢两端,使蹄形磁铁横跨过“天桥”.当电池与铝箔接通时()A.铝箔条中部向磁铁S极运动B.铝箔条中部向磁铁N极运动C.铝箔条中部向下方运动D.铝箔条中部向上方运动12、音圈电机是一种应用于硬盘、光驱等系统的特殊电动机.如图是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为L,匝数为n,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为B,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等.某时刻线圈中电流从P流向Q,大小为I.(1)求此时线圈所受安培力的大小和方向;(2)若此时线圈水平向右运动的速度大小为v,求安培力的功率.13、如图所示,一个质量为m、带正电荷量为q的带电体,紧贴着水平绝缘板的下表面滑动,滑动方向与垂直纸面的匀强磁场垂直,请回答:(1)能沿下表面滑动,物体速度的大小和方向应满足什么条件?(2)若物体以速度v0开始运动,则它沿绝缘面运动的过程中,克服摩擦力做了多少功?磁场1、下列说法正确的是()A.磁感线有可能出现相交的情况B.磁感线总是由N极出发指向S极C.某点磁场的方向与放在该点的小磁针静止时N极所指方向一致D.某点磁场的方向与放在该点的小磁针受力的方向一致C[根据磁感线的特点:(1)磁感线在空间内不能相交;(2)磁感线是闭合曲线,在磁体外部由N 极指向S极,在磁体内部由S极指向N极;(3)磁感线的切线方向表示磁场的方向(小磁针静止时N极指向).可判断选项A、B错误,C正确,D错误.]2、如图所示,abcd为四边形闭合线框,a、b、c三点坐标分别为(0,L,0),(L,L,0),(L,0,0),整个空间处于沿y轴正方向的匀强磁场中,通入电流I,方向如图所示,关于四边形的四条边所受到的安培力的大小,下列叙述中正确的是()A.ab边与bc边受到的安培力大小相等B.cd边受到的安培力最大C.cd边与ad边受到的安培力大小相等D.ad边不受安培力作用B[因为ab边垂直于磁场,所以其受到的安培力F ab=BL ab I,而bc边平行于磁场,所以其受到的安培力为零,故A错误;ad边与cd边虽然长度相等,且长度最长,但ad边与磁场不垂直,cd边与磁场垂直,即等效长度不同,所以受到的安培力大小不相等,cd边受到的安培力最大,故B正确,C 错误;ad边受到安培力作用,故D错误.]3、(双选)如图甲所示,扬声器中有一线圈处于磁场中,当音频电流信号通过线圈时,线圈带动纸盆振动,发出声音.俯视图乙表示处于辐射状磁场中的线圈(线圈平面即纸面),磁场方向如图中箭头所示,在图乙中()甲乙A.当电流沿顺时针方向时,线圈所受安培力的方向垂直于纸面向里B .当电流沿顺时针方向时,线圈所受安培力的方向垂直于纸面向外C .当电流沿逆时针方向时,线圈所受安培力的方向垂直于纸面向里D .当电流沿逆时针方向时,线圈所受安培力的方向垂直于纸面向外BC [将圆形线圈看作由无数小段直导线组成,由左手定则可以判断,当电流沿顺时针方向时,线圈所受安培力的方向垂直于纸面向外,选项B 正确,A 错误;当电流沿逆时针方向时,线圈所受安培力的方向垂直于纸面向里,选项C 正确,D 错误.]4、带电油滴以水平速度v 0垂直进入匀强磁场,恰好做匀速直线运动,如图所示,若油滴质量为m,磁感应强度为B,重力加速度为g.则下述说法正确的是( )A .油滴必带正电荷,电荷量为mg v 0B B .油滴必带正电荷,比荷q m =q v 0BC .油滴必带负电荷,电荷量为mg v 0BD .油滴带什么电荷都可以,只要满足q =mg v 0B A [油滴水平向右做匀速直线运动,其所受的洛伦兹力必向上且与重力平衡,故带正电荷,其电荷量为q =mg v 0B ,A 正确,C 、D 错误;比荷q m =g v 0B,B 错误.] 5、如图所示,有界匀强磁场边界线SP ∥MN,速度不同的同种带电粒子从S 点沿SP 方向同时射入磁场,其中穿过a 点的粒子速度v 1与MN 垂直,穿过b 点的粒子,其速度方向与MN 成60°角,设两粒子从S 到a 、b 所需的时间分别为t 1、t 2,则t 1∶t 2为( )A .1∶3B .4∶3C .1∶1D .3∶2D [画出运动轨迹,过a 点的粒子转过90°,运动时间为t 1=T 4;过b 点的粒子转过60°,运动时间t 2=T 6,故t 1∶t 2=3∶2,故选项D 正确.]6、如图所示,水平桌面上放置一根条形磁铁,磁铁中央正上方用绝缘弹簧悬挂一水平直导线,并与磁铁垂直.当直导线中通入图中所示方向的电流时,可以判断出( )A .弹簧的拉力增大,条形磁铁对桌面的压力减小B .弹簧的拉力减小,条形磁铁对桌面的压力减小C .弹簧的拉力增大,条形磁铁对桌面的压力增大D .弹簧的拉力减小,条形磁铁对桌面的压力增大A [如图所示,画出直导线附近的条形磁铁的磁感线,由左手定则可知,直导线受向下的安培力,由于力的作用是相互的,因此条形磁铁受向上的作用力,故A 正确.]7、一条形磁铁静止在斜面上,固定在磁铁中心的竖直上方的水平导线中通有垂直纸面向里的恒定电流,如图所示.若将磁铁的N 极位置与S 极位置对调后,仍放在斜面上原来的位置,则磁铁对斜面的压力F 和摩擦力f 的变化情况分别是( )A .F 增大,f 减小B .F 减小,f 增大C .F 与f 都增大D .F 与f 都减小C [题图中电流与磁体间的磁场力为引力,若将磁极位置对调则相互作用力为斥力,再由受力分析可知,选项C 正确.]8、如图所示,一个粗糙且足够长的斜面体静止于水平面上,并处于方向垂直纸面向外,磁感应强度大小为B 的匀强磁场中,质量为m 、带电荷量为+Q 的小滑块从斜面顶端由静止下滑,在滑块下滑的过程中,斜面体静止不动,下列判断正确的是( )A.滑块受到的摩擦力逐渐增大B.滑块沿斜面向下做匀加速直线运动C.滑块最终要离开斜面D.滑块最终可能静止于斜面上C[小滑块带正电,由左手定则判断知,滑块受到的洛伦兹力方向垂直于斜面向上,故垂直于斜面方向:N+q v B=mg cos θ,平行于斜面方向:mg sin θ-f=ma,其中f=μN,联立得到f=μ(mgcos θ-q v B),a=g sin θ-μ(mg cos θ-q v B)m,由于a与v同向,故v增大,f减小,a增加,故A错误,B错误;当洛伦兹力等于重力垂直斜面分力时,支持力为零,此后滑块离开斜面,故C正确,D 错误.]9、两个相同的回旋加速器,分别接在加速电压U1和U2的高频电源上,且U1>U2,两个相同的带电粒子分别从这两个加速器的中心由静止开始运动,设两个粒子在加速器中运动的时间分别为t1和t2,获得的最大动能分别为E k1和E k2,则()A.t1<t2,E k1>E k2B.t1=t2,E k1<E k2C.t1<t2,E k1=E k2D.t1>t2,E k1=E k2C[粒子在磁场中做匀速圆周运动,由R=m vqB,E km=12m v2可知,粒子获得的最大动能只与磁感应强度和D形盒的半径有关,所以E k1=E k2;设粒子在加速器中绕行的圈数为n,则E k=2nqU,由以上关系可知n与加速电压U成反比,由于U1>U2,则n1<n2,而t=nT,T相同,所以t1<t2,故C正确,A、B、D错误.]10、如图所示,质量m=0.5 kg、长L=1 m的通电导体棒在安培力作用下静止在倾角为37°的光滑绝缘框架上,磁场方向垂直于框架向下(磁场范围足够大),右侧回路电源电动势E=8 V,内电阻r=1 Ω,额定功率为8 W、额定电压为4 V的电动机正常工作,(取g=10 m/s2)则()A.回路总电流为2 AB.电动机的额定电流为4 AC.流经导体棒的电流为4 A D.磁感应强度的大小为1.5 TD[电动机正常工作时,有P M=UI M,代入数据解得I M=2 A,通过电源的电流为I总=E-U r=8-41A=4 A,流过导体棒的电流I为I=I总-I M=4 A-2 A=2 A.故A、B、C错误;导体棒静止在导轨上,由共点力的平衡可知,安培力的大小等于重力沿斜面向下的分力,即:F=mg sin 37°=0.5×10×0.6 N=3 N,由安培力的公式F=BIL,解得B=1.5 T,故D正确.]11、如图所示,取一柔软的铝箔条,把它折成天桥状并用胶纸粘牢两端,使蹄形磁铁横跨过“天桥”.当电池与铝箔接通时()A.铝箔条中部向磁铁S极运动B.铝箔条中部向磁铁N极运动C.铝箔条中部向下方运动D.铝箔条中部向上方运动D[由题意,可知,通过“天桥”的电流方向由外向内,而磁场方向由N到S极,根据左手定则,则可知,箔条中部受到的安培力向上,故A、B、C错误,D正确.]12、音圈电机是一种应用于硬盘、光驱等系统的特殊电动机.如图是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为L,匝数为n,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为B,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等.某时刻线圈中电流从P流向Q,大小为I.(1)求此时线圈所受安培力的大小和方向;(2)若此时线圈水平向右运动的速度大小为v ,求安培力的功率.[解析] (1)由左手定则可以判断出线圈所受安培力的方向水平向右.由于线圈与磁场垂直,故线圈所受安培力的大小F =nIBL.(2)此时安培力的功率P =F v =nIBL v .[答案] (1)nIBL 水平向右 (2)nIBL v13、如图所示,一个质量为m 、带正电荷量为q 的带电体,紧贴着水平绝缘板的下表面滑动,滑动方向与垂直纸面的匀强磁场垂直,请回答:(1)能沿下表面滑动,物体速度的大小和方向应满足什么条件?(2)若物体以速度v 0开始运动,则它沿绝缘面运动的过程中,克服摩擦力做了多少功?[解析] (1)若物体沿下表面滑动,则洛伦兹力一定向上,根据左手定则,速度方向向右. 当物体沿下表面滑动时,满足q v B ≥mg解得v ≥mg qB .(2)运动过程中,洛伦兹力和重力不做功.当v =mg qB 时,mg =q v B,摩擦力消失,由动能定理,克服摩擦力做的功W =12m v 20-12m v 2=12m ⎣⎢⎡⎦⎥⎤v 20-⎝ ⎛⎭⎪⎫mg qB 2. [答案] (1)向右 v ≥mg qB (2)12m ⎣⎢⎡⎦⎥⎤v 20-⎝ ⎛⎭⎪⎫mg qB 2.。
1.(20分)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。
一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。
已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002m T qB π=。
设小球在运动过程中电量保持不变,对原磁场的影响可忽略。
(1)在t=0到t=T 0 这段时间内,小球不受细管侧壁的作用力,求小球的速度大小V 0;(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。
试求t=T 0 到t=1.5T 0 这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。
2.如图所示,一只用绝缘材料制成的半径为R 的半球形碗倒扣在水平面上,其内壁上有一质量为m 的带正电小球,在竖直向上的电场力F =2mg 的作用下静止在距碗口R 54高处。
已知小球与碗之间的动摩擦因数为μ,则碗对小球的弹力与摩擦力的大小分别为-----------------3.(22分)如图所示,在xOy 平面的第一象限内,分布有沿x 轴负方向的场强E =34×104N/C 的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度B 1=0.2 T的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度B 2的匀强磁场。
在x 轴上有一个垂直于y 轴的平板OM ,平板上开有一个小孔P ,P 处连接有一段长度d =lcm 内径不计的准直管,管内由于静电屏蔽没有电场。
y 轴负方向上距O的粒子源S 可以向第四象限平面内各个方向发射a 粒子,假设发射的a 粒子速度大小v 均为2×105m /s ,打到平板和准直管管壁上的a 粒子均被吸收。
已知a 粒子带正电,比荷为5q m=×l07C /kg ,重力不计,求:(1)a 粒子在第四象限的磁场中运动时的轨道半径和粒子从S 到达P 孔的时间;(2) 除了通过准直管的a 粒子外,为使其余a 粒子都不能进入电场,平板OM 的长度至少是多长?(3) 经过准直管进入电场中运动的a 粒子,第一次到达y 轴的位置与O 点的距离;(4) 要使离开电场的a 粒子能回到粒子源S 处,磁感应强度B 2应为多大?4.(多选题)如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一重力不可忽略,中间带有小孔的正电小球套在细杆上。
高中物理磁场经典计算题训练(有答案)1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0。
5T ,如图所示。
质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失。
(1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来?2。
如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里。
在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边。
试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10133( L 。
要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值?3。
在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q ,质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小.a b cdACFD(a )(b )4。
高中物理竞赛习题之电磁场经典例题一、选择题1. 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )dεq V E 0π4,0==(B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4== 解析: 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
2、在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 解析:由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).3、对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理解析:位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).4.将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流(B ) 铜环中有感应电流,木环中有感应电流(C ) 铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).二、计算题5、如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.解析:由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为 ()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.6、在一半径为R 1 =6.0 cm 的金属球A 外面套有一个同心的金属球壳B .已知球壳B 的内、外半径分别为R 2=8.0 cm ,R 3 =10.0 cm .设球A 带有总电荷Q A =3.0 ×10-8C ,球壳B 带有总电荷Q B =2.0×10-8C .(1) 求球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势;(2) 将球壳B 接地然后断开,再把金属球A 接地,求金属球A 和球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势.解析:(1) 根据静电感应和静电平衡时导体表面电荷分布的规律,电荷Q A 均匀分布在球A 表面,球壳B 内表面带电荷-Q A ,外表面带电荷Q B +Q A ,电荷在导体表面均匀分布[图(a)],由带电球面电势的叠加可求得球A 和球壳B 的电势.(2) 导体接地,表明导体与大地等电势(大地电势通常取为零).球壳B 接地后,外表面的电荷与从大地流入的负电荷中和,球壳内表面带电-Q A [图(b)].断开球壳B 的接地后,再将球A 接地,此时球A 的电势为零.电势的变化必将引起电荷的重新分布,以保持导体的静电平衡.不失一般性可设此时球A 带电q A ,根据静电平衡时导体上电荷的分布规律,可知球壳B 内表面感应-q A ,外表面带电q A -Q A [图(c )].此时球A 的电势可表示为0π4π4π4302010=-+-+=R εQ q R εq R εq V A A A A A 由V A =0 可解出球A 所带的电荷q A ,再由带电球面电势的叠加,可求出球A 和球壳B 的电势.解 (1) 由分析可知,球A 的外表面带电3.0 ×10-8C ,球壳B 内表面带电-3.0 ×10-8C ,外表面带电5.0 ×10-8C .由电势的叠加,球A 和球壳B 的电势分别为V 106.5π4π4π43302010⨯=-+-+=R εQ Q R εQ R εq V A A A A A V 105.4π4330⨯=+=R εQ Q V B A B (2) 将球壳B 接地后断开,再把球A 接地,设球A 带电q A ,球A 和球壳B 的电势为0π4π4π4302010=+-+-+=R εq Q R εq R εq V A A A A A 30π4R εq Q V A A B +-= 解得C 1012.2831322121-⨯=-+=R R R R R R Q R R q A A 即球A 外表面带电2.12 ×10-8C ,由分析可推得球壳B 内表面带电-2.12 ×10-8C ,外表面带电-0.9 ×10-8C .另外球A 和球壳B 的电势分别为0A V =27.2910V B V =-⨯导体的接地使各导体的电势分布发生变化,打破了原有的静电平衡,导体表面的电荷将重新分布,以建立新的静电平衡.7、如图所示球形金属腔带电量为Q >0,内半径为ɑ,外半径为b ,腔内距球心O 为r 处有一点电荷q ,求球心的电势.解析:导体球达到静电平衡时,内表面感应电荷-q ,外表面感应电荷q ;内表面感应电荷不均匀分布,外表面感应电荷均匀分布.球心O 点的电势由点电荷q 、导体表面的感应电荷共同决定.在带电面上任意取一电荷元,电荷元在球心产生的电势Rεq V 0π4d d = 由于R 为常量,因而无论球面电荷如何分布,半径为R 的带电球面在球心产生的电势为R εq R εq V s 00π4π4d ==⎰⎰由电势的叠加可以求得球心的电势. 解 导体球内表面感应电荷-q ,外表面感应电荷q ;依照分析,球心的电势为bεQ q a εq r εq V 000π4π4π4++-= 8、有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .解析:电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQ U r 00+-= 相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQ U -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷均会增加,而电势差保持不变.解 (1) 空气平板电容器的电容dS εC 00= 充电后,极板上的电荷和极板间的电场强度为U dS εQ 00= d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd S εQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSU εεU C C r r -+==011 介质内电场强度 ()δd εδU S εεQ E r r -+=='011 空气中电场强度 ()δd εδU εS εQ E r r -+==011 (3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd S εC -=02 U δd S εQ -=02 导体中电场强度 02='E 空气中电场强度δd U E -=2 无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.9、如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接。
高中物理磁场大题一.解答题(共30小题)1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时进入两板间的带电粒子在磁场中做圆周运动的半径.(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.2.如图所示,在xOy平面内,0<x<2L的区域内有一方向竖直向上的匀强电场,2L<x<3L的区域内有一方向竖直向下的匀强电场,两电场强度大小相等.x>3L的区域内有一方向垂直于xOy平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点以沿x轴正方向的初速度v进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电量大小相等.求:(1)正、负粒子的质量之比m1:m2;(2)两粒子相遇的位置P点的坐标;(3)两粒子先后进入电场的时间差.3.如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D 为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计.(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ;(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U;(3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t 的最小值.4.如图所示,直角坐标系xoy位于竖直平面内,在‑m≤x≤0的区域内有磁感应强度大小B=4.0×10﹣4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10﹣27kg、电荷量q=﹣3.2×10‑19C 的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:(1)带电粒子在磁场中运动时间;(2)当电场左边界与y轴重合时Q点的横坐标;(3)若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系.5.如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场.A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强.平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属板度为B1.CD为磁场的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁场应强度为B2边界上的一绝缘板,它与M板的夹角θ=45°,O′C=a,现有大量质量均为m,B2含有各种不同电荷量、不同速度的带电粒子(不计重力),自O点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B中,求:2的带电粒子的速度;(1)进入匀强磁场B2(2)能击中绝缘板CD的粒子中,所带电荷量的最大值;(3)绝缘板CD上被带电粒子击中区域的长度.6.在平面直角坐标系xoy中,第I象限存在沿y轴负方向的匀强电场,第IV 象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m,电荷垂直于y轴射入电场,量为q的带正电的粒子从y轴正半轴上的M点以速度v经x轴上的N点与x轴正方向成45°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求:(1)M、N两点间的电势差U;MN(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.7.如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中感应强度B1线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B=0.25T,磁场边界AO和y轴的夹角∠AOy=45°.一束带电量q=8.02×10﹣19C的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.2m)的Q点垂直y轴射入磁场区,离子通过x轴时的速度方向与x轴正方向夹角在45°~90°之间.则:(1)离子运动的速度为多大?(2)离子的质量应在什么范围内?(3)现只改变AOy区域内磁场的磁感应强度大小,使离子都不能打到x轴上,磁感应强度大小B应满足什么条件?28.如图所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB、CD的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场.现有质量为m、带电的水平初速度射入电场,随后与量为+q的粒子(不计重力)从P点以大小为v边界AB成45°射入磁场.若粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板.(1)请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小v;(2)求匀强磁场的磁感应强度B;(3)求金属板间的电压U的最小值.9.如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,两板间加上如图的周期性变化的电压,在Q板右侧某个区域内存在磁感应强度大乙最大值为U小为B、方向垂直于纸面向里的有界匀强磁场.在紧靠P板处有一粒子源A,自t=0开始连续释放初速不计的粒子,经一段时间从Q板小孔O射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上.已知电场变化周期T=,粒子质量为m,电荷量为+q,不计粒子重力及相互间的作用力.求:(1)t=0时刻释放的粒子在P、Q间运动的时间;(2)粒子射入磁场时的最大速率和最小速率;(3)有界磁场区域的最小面积.10.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2.足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响.(1)求粒子到达O点时速度的大小;(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件.试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子.11.如图,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E,方向如图所示;离子质量为m、电荷量为q;=2d、=3d,离子重力不计.(1)求圆弧虚线对应的半径R的大小;(2)若离子恰好能打在NQ的中点上,求矩形区域QNCD内匀强电场场强E的值;(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN 上,求磁场磁感应强度B 的取值范围.12.如图甲所示,一对平行金属板M 、N 长为L ,相距为d ,O 1O 为中轴线.当两板间加电压U MN =U 0时,两板间为匀强电场,忽略两极板外的电场.某种带负电的粒子从O 1点以速度v 0沿O 1O 方向射入电场,粒子恰好打在上极板M 的中点,粒子重力忽略不计.(1)求带电粒子的比荷;(2)若MN 间加如图乙所示的交变电压,其周期,从t=0开始,前内U MN =2U ,后内U MN =﹣U ,大量的上述粒子仍然以速度v 0沿O 1O 方向持续射入电场,最终所有粒子刚好能全部离开电场而不打在极板上,求U 的值;(3)紧贴板右侧建立xOy 坐标系,在xOy 坐标第I 、IV 象限某区域内存在一个圆形的匀强磁场区域,磁场方向垂直于xOy 坐标平面,要使在(2)问情景下所有粒子经过磁场偏转后都会聚于坐标为(2d ,2d )的P 点,求磁感应强度B 的大小范围.13.如图所示,在第一、二象限存在场强均为E 的匀强电场,其中第一象限的匀强电场的方向沿x 轴正方向,第二象限的电场方向沿x 轴负方向.在第三、四象限矩形区域ABCD 内存在垂直于纸面向外的匀强磁场,矩形区域的AB 边与x 轴重合.M点是第一象限中无限靠近y轴的一点,在M点有一质量为m、电荷量为e沿y轴负方向开始运动,恰好从N点进入磁场,若OM=2ON,的质子,以初速度v不计质子的重力,试求:(1)N点横坐标d;(2)若质子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;(3)在(2)的前提下,该质子由M点出发返回到无限靠近M点所需的时间.14.如图所示,在xOy平面直角坐标系中,直线MN与y轴成30°角,P点的坐标为(,0),在y轴与直线MN之间的区域内,存在垂直于xOy平面向外、磁感应强度为B的匀强磁场.在直角坐标系xOy的第Ⅳ象限区域内存在沿y轴,正方向、大小为的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,从y轴上0≤y≤2a的区间垂直于y轴与x轴交点为Q,电子束以相同的速度v和磁场方向射入磁场.已知从y=2a点射入的电子在磁场中轨迹恰好经过O点,忽略电子间的相互作用,不计电子的重力.求:(1)电子的比荷;(2)电子离开磁场垂直y轴进入电场的位置的范围;(3)从y轴哪个位置进入电场的电子打到荧光屏上距Q点的距离最远?最远距离为多少?15.如图(a)所示,水平放置的平行金属板A、B间加直流电压U,A板正上方有“V”字型足够长的绝缘弹性挡板.在挡板间加垂直纸面的交变磁场,磁感应强度随时间变化如图(b),垂直纸面向里为磁场正方向,其中B1=B,B2未知.现有一比荷为、不计重力的带正电粒子从C点静止释放,t=0时刻,粒子刚好从小孔O进入上方磁场中,在 t1时刻粒子第一次撞到左挡板,紧接着在t1+t2时刻粒子撞到右挡板,然后粒子又从O点竖直向下返回平行金属板间.粒子与挡板碰撞前后电量不变,沿板的分速度不变,垂直板的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.求:(1)粒子第一次到达O点时的速率;(2)图中B2的大小;(3)金属板A和B间的距离d.16.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时,刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时刻进入两板间的带电粒子在磁场中做圆周运动的半径.(3)带电粒子在磁场中的运动时间.17.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场由加了电压的相距为d的两块水平平行放置的导体板形成,如图甲所示.大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t,当在两板间加如图乙所示的周期为2t0、幅值恒为U的电压时,所有电子均从两板间通过,然后进入水平宽度为l,竖直宽度足够大的匀强磁场中,最后通过匀强磁场打在竖直放置的荧光屏上.问:(1)电子在刚穿出两板之间时的最大侧向位移与最小侧向位移之比为多少?(2)要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?(3)在满足第(2)问的情况下,打在荧光屏上的电子束的宽度为多少?(已知电子的质量为m、电荷量为e)18.如图所示xOy平面内,在x轴上从电离室产生的带正电的粒子,以几乎为零的初速度飘入电势差为U=200V的加速电场中,然后经过右侧极板上的小孔沿x 轴进入到另一匀强电场区域,该电场区域范围为﹣l≤x≤0(l=4cm),电场强度大小为E=×104V/m,方向沿y轴正方向.带电粒子经过y轴后,将进入一与y 轴相切的圆形边界匀强磁场区域,磁场区域圆半径为r=2cm,圆心C到x轴的距离为d=4cm,磁场磁感应强度为B=8×10﹣2T,方向垂直xoy平面向外.带电粒子最终垂直打在与y轴平行、到y轴距离为L=6cm的接收屏上.求:(1)带电粒子通过y轴时离x轴的距离;(2)带电粒子的比荷;(3)若另一种带电粒子从电离室产生后,最终打在接收屏上y=cm处,则该粒子的比荷又是多少?19.如图所示,在竖直平面内,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MOP范围内存在竖直向下的匀强电场,电场强度为E,MOQ上方的某个区域有垂直纸面向里的匀强磁场,磁感应强度为B,O点处在磁场的边界上,现有一群质量为m、电量为+q的带电粒子在纸面内以速度v(0≤v≤)垂直于MO从O 点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:(1)速度最大的粒子在磁场中的运动时间;(2)速度最大的粒子打在水平线POQ上的位置离O点的距离;(3)磁场区域的最小面积.20.如图所示为某一仪器的部分原理示意图,虚线OA、OB关于y轴对称,∠AOB=90°,OA、OB将xOy平面分为Ⅰ、Ⅱ、Ⅲ三个区域,区域Ⅰ、Ⅲ内存在水平方向的匀强电场,电场强度大小相等、方向相反.质量为m电荷量为q的带电粒子自x轴上的粒子源P处以速度v0沿y轴正方向射出,经时间t到达OA上的M点,且此时速度与OA垂直.已知M到原点O的距离OM=L,不计粒子的重力.求:(1)匀强电场的电场强度E的大小;(2)为使粒子能从M点经Ⅱ区域通过OB上的N点,M、N点关于y轴对称,可在区域Ⅱ内加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域Ⅲ到达x轴上Q点的横坐标;(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域内.由于某种原因的影响,粒子经过M点时的速度并不严格与OA垂直,成散射状,散射角为θ,但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度.21.在xoy平面直角坐标系的第Ⅰ象限有射线OA,OA与x轴正方向夹角为30°,如图所示,OA与y轴所夹区域存在y轴负方向的匀强电场,其它区域存在垂直坐标平面向外的匀强磁场;有一带正电粒子质量m,电量q,从y轴上的P点沿着x轴正方向以大小为v的初速度射入电场,运动一段时间沿垂直于OA方向经过Q点进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场.已知OP=h,不计粒子的重力.(1)求粒子垂直射线OA经过Q点的速度v;Q(2)求匀强电场的电场强度E与匀强磁场的磁感应强度B的比值;(3)粒子从M点垂直进入电场后,如果适当改变电场强度,可以使粒子再次垂直OA进入磁场,再适当改变磁场的强弱,可以使粒子再次从y轴正方向上某点垂直进入电场;如此不断改变电场和磁场,会使粒子每次都能从y轴正方向上某点垂直进入电场,再垂直OA方向进入磁场…,求粒子从P点开始经多长时间能够运动到O点?22.如图所示,图面内有竖直线DD′,过DD′且垂直于图面的平面将空间分成Ⅰ、Ⅱ两区域.区域I有方向竖直向上的匀强电场和方向垂直图面的匀强磁场B (图中未画出);区域Ⅱ有固定在水平面上高h=2l、倾角α=的光滑绝缘斜面,斜面顶端与直线DD′距离s=4l,区域Ⅱ可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD′上,距地面高H=3l.零时刻,质量为m、带电荷量为q=、方向与水平面夹角θ=的速度,在区域I 的小球P在K点具有大小v内做半径r=的匀速圆周运动,经CD水平进入区域Ⅱ.某时刻,不带电的绝缘小球A由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇.小球视为质点,不计空气阻力及小球P所带电量对空间电磁场的影响.l已知,g为重力加速度.(1)求匀强磁场的磁感应强度B的大小;(2)若小球A、P在斜面底端相遇,求释放小球A的时刻t;A(3)若小球A、P在时刻t=β(β为常数)相遇于斜面某处,求此情况下区域Ⅱ的匀强电场的场强E,并讨论场强E的极大值和极小值及相应的方向.23.如图,在x轴上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;在x轴下方存在匀强电场,电场方向与xOy平面平行,且与x轴成45°夹从y轴上P点沿y轴正方角.一质量为m、电荷量为q(q>0)的粒子以速度v向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过,磁场方向变为垂直纸面向里,大小不变,不计重力.一段时间T(1)求粒子从P点出发至第一次到达x轴时所需的时间;(2)若要使粒子能够回到P点,求电场强度的最大值.24.一半径为R的薄圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的中心轴线平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒可绕其中心轴线转动,圆筒的转动方向和角速度大小可以通过控制装置改变.一的角速不计重力的负电粒子从小孔M沿着MN方向射入磁场,当筒以大小为ω度转过90°时,该粒子恰好从某一小孔飞出圆筒.(1)若粒子在筒内未与筒壁发生碰撞,求该粒子的荷质比和速率分别是多大?(2)若粒子速率不变,入射方向在该截面内且与MN方向成30°角,则要让粒子与圆筒无碰撞地离开圆筒,圆筒角速度应为多大?25.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.26.如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求:(1)木板B上表面的动摩擦因素μ;(2)圆弧槽C的半径R;(3)当A滑离C时,C的速度.27.如图所示,一质量M=0.4kg的小物块B在足够长的光滑水平台面上静止不动,其右侧固定有一轻质水平弹簧(处于原长).台面的右边平滑对接有一等高的水平传送带,传送带始终以υ=1m/s的速率逆时针转动.另一质量m=0.1kg的小物块A以速度υ=4m/s水平滑上传送带的右端.已知物块A与传送带之间的动摩擦因数μ=0.1,传送带左右两端的距离l=3.5m,滑块A、B均视为质点,忽略空气阻力,取g=10m/s2.(1)求物块A第一次到达传送带左端时速度大小;;(2)求物块A第一次压缩弹簧过程中弹簧的最大弹性势能Epm(3)物块A会不会第二次压缩弹簧?28.历史上美国宇航局曾经完成了用“深度撞击”号探测器释放的撞击器“击中”坦普尔1号彗星的实验.探测器上所携带的重达370kg的彗星“撞击器”将以1.0×104m/s的速度径直撞向彗星的彗核部分,撞击彗星后“撞击器”融化消失,这次撞击使该彗星自身的运行速度出现1.0×10﹣7m/s的改变.已知普朗克常量h=6.6×10﹣34J•s.(计算结果保留两位有效数字).求:①撞击前彗星“撞击器”对应物质波波长;②根据题中相关信息数据估算出彗星的质量.29.如图,ABD为竖直平面内的轨道,其中AB段是水平粗糙的、BD段为半径R=0.4m 的半圆光滑轨道,两段轨道相切于B点.小球甲从C点以速度υ沿水平轨道向右运动,与静止在B点的小球乙发生弹性碰撞.已知甲、乙两球的质量均为m,小球甲与AB段的动摩擦因数为μ=0.5,C、B距离L=1.6m,g取10m/s2.(水平轨道足够长,甲、乙两球可视为质点)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;(2)在满足(1)的条件下,求的甲的速度υ;(3)若甲仍以速度υ向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围.30.动量定理可以表示为△p=F△t,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是υ,如图所示.碰撞过程中忽略小球所受重力.a.分别求出碰撞前后x、y方向小球的动量变化△px 、△py;b.分析说明小球对木板的作用力的方向.参考答案与试题解析一.解答题(共30小题)1.(2017•吉林模拟)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的时电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t、B为已知量.(不考虑粒子间相互影刻经极板边缘射入磁场.上述m、q、l、t响及返回板间的情况)的大小.(1)求电压U时进入两板间的带电粒子在磁场中做圆周运动的半径.(2)求t(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.【解答】解:(1)t=0时刻进入两极板的带电粒子在电场中做匀变速曲线运动,时刻刚好从极板边缘射出,t则有 y=l,x=l,电场强度:E=…①,由牛顿第二定律得:Eq=ma…②,2…③偏移量:y=at由①②③解得:U=…④.(2)t0时刻进入两极板的带电粒子,前t时间在电场中偏转,后t时间两极板没有电场,带电粒子做匀速直线运动.带电粒子沿x轴方向的分速度大小为:vx =v=…⑤带电粒子离开电场时沿y轴负方向的分速度大小为:vy =a•t…⑥带电粒子离开电场时的速度大小为:v=…⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,由牛顿第二定律得:qvB=m…⑧,由③⑤⑥⑦⑧解得:R=…⑨;(3)在t=2t时刻进入两极板的带电粒子,在电场中做类平抛运动的时间最长,飞出极板时速度方向与磁场边界的夹角最小,而根据轨迹几何知识可知,轨迹的圆心角等于粒子射入磁场时速度方向与边界夹角的2倍,所以在t=2t时刻进入两极板的带电粒子在磁场中运动时间最短.带电粒子离开磁场时沿y轴正方向的分速度为:vy ′=at…⑩,设带电粒子离开电场时速度方向与y轴正方向的夹角为α,则:tanα=,由③⑤⑩解得:α=,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为:2α=,所求最短时间为:tmin=T,带电粒子在磁场中运动的周期为:T=,联立以上两式解得:tmin=;答:(1)电压U的大小为;。
4.2 电磁场与电磁波一、选择题1.(多选)关于电磁场和电磁波,下列叙述中正确的是( CD )A.均匀变化的电场在它周围空间产生均匀变化的磁场B.电磁波和机械波一样依赖于介质传播C.电磁波中每一处的电场方向和磁场方向总是互相垂直,且与波的传播方向垂直D.只要空间某个区域有振荡的电场或磁场,就能产生电磁波解析:均匀变化的电场和恒定电流一样,只能产生恒定的磁场,所以A错误;电磁波是电磁场自身的运动过程,它本身就是物质,不需要介质就能传播;振荡的电场和振荡的磁场总是交替产生,且能由发生的区域向周围空间传播,产生电磁波,B错误,D正确;理论分析和实验都证明电磁波是横波,电磁场中E、B的方向跟波的传播方向是互相垂直的,C正确。
2.如图所示是空间中某磁场的磁感应强度B随时间变化的图像,在它周围空间产生的电场中的某一点的电场强度E应是 ( C )A.逐渐增强B.逐渐减弱C.不变D.无法确定解析:由题图可知,磁场的磁感应强度均匀增强,根据麦克斯韦电磁场理论,均匀变化的磁场产生恒定的电场,即电场强度E不变,选项C正确,A、B、D错误。
3.声波和电磁波均可传播信息,且都具有波的共同特征。
下列说法正确的是( A ) A.声波的传播速度小于电磁波的传播速度B.声波和电磁波都能引起鼓膜振动C.电磁波都能被人看见,声波都能被人听见D.二胡演奏发出的是声波,而电子琴演奏发出的是电磁波解析:声波属于机械波,其传播需要介质,传播速度小于电磁波的传播速度;鼓膜的振动是空气的振动带动的,人耳听不到电磁波,因为电磁波的传播不需要介质;人耳听不到超声波和次声波,同时不是所有的电磁波都能被人看见;二胡和电子琴演奏发出的都是声波。
4.电磁波已广泛运用于很多领域,下列关于电磁波的说法符合实际的是( C )A.电磁波不能发生衍射现象B.常用的遥控器通过发出紫外线脉冲信号来遥控电视机C.根据多普勒效应可以判断遥远天体相对于地球运动的速度D.不同频率的电磁波在真空中的传播速度随频率的增加而递减解析:电磁波是横波,波都能发生干涉和衍射现象,故A错误;常用红外线作为脉冲信号来遥控电视,故B错误;由于波源与接受者的相对位移的改变,而导致接受频率的变化,称为多普勒效应,所以可以判断遥远天体相对于地球的运动速度,故C正确;所有电磁波在真空中沿不同方向的传播速度大小相等,故D错误。
高中物理磁场综合练习及答案高中物理磁场综合练习及答案一、选择题(本题10小题,每小题5分,共50分)1.一个质子穿过某一空间而未发生偏转,则( )A.可能存在电场和磁场,它们的方向与质子运动方向相同B.此空间可能有磁场,方向与质子运动速度的方向平行C.此空间可能只有磁场,方向与质子运动速度的方向垂直D.此空间可能有正交的电场和磁场,它们的方向均与质子速度的方向垂直答案ABD解析带正电的质子穿过一空间未偏转,可能不受力,可能受力平衡,也可能受合外力方向与速度方向在同一直线上.2. 两个绝缘导体环AA′、BB′大小相同,环面垂直,环中通有相同大小的恒定电流,如图1所示,则圆心O处磁感应强度的方向为(AA′面水平,BB′面垂直纸面)A.指向左上方B.指向右下方C.竖直向上D.水平向右答案 A3.关于磁感应强度B,下列说法中正确的是( )A.磁场中某点B的大小,跟放在该点的试探电流元的情况有关B.磁场中某点B的方向,跟该点处试探电流元所受磁场力的方向一致C.在磁场中某点试探电流元不受磁场力作用时,该点B 值大小为零D.在磁场中磁感线越密集的地方,B值越大答案 D解析磁场中某点的磁感应强度由磁场本身决定,与试探电流元无关.而磁感线可以描述磁感应强度,疏密程度表示大小.4.关于带电粒子在匀强磁场中运动,不考虑其他场力(重力)作用,下列说法正确的是( )A.可能做匀速直线运动B.可能做匀变速直线运动C.可能做匀变速曲线运动D.只能做匀速圆周运动答案 A解析带电粒子在匀强磁场中运动时所受的洛伦兹力跟速度方向与磁场方向的夹角有关,当速度方向与磁场方向平行时,它不受洛伦兹力作用,又不受其他力作用,这时它将做匀速直线运动,故A项正确.因洛伦兹力的方向始终与速度方向垂直,改变速度方向,因而同时也改变洛伦兹力的方向,故洛伦兹力是变力,粒子不可能做匀变速运动,故B、C两项错误.只有当速度方向与磁场方向垂直时,带电粒子才做匀速圆周运动,故D项中“只能”是不对的.5. 1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图2所示.这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是( )A.离子由加速器的中心附近进入加速器B.离子由加速器的边缘进入加速器C.离子从磁场中获得能量D.离子从电场中获得能量答案AD解析本题源于课本而又高于课本,既考查考生对回旋加速器的结构及工作原理的掌握情况,又能综合考查磁场和电场对带电粒子的作用规律.由R=mvqB知,随着被加速离子的速度增大,离子在磁场中做圆周运动的轨道半径逐渐增大,所以离子必须由加速器中心附近进入加速器,A项正确,B项错误;离子在电场中被加速,使动能增加;在磁场中洛伦兹力不做功,离子做匀速圆周运动,动能不改变.磁场的作用是改变离子的速度方向,所以C项错误,D项正确.6. 如图3所示,一个带负电的油滴以水平向右的速度v 进入一个方向垂直纸面向外的匀强磁场B后,保持原速度做匀速直线运动,如果使匀强磁场发生变化,则下列判断中正确的是( )A.磁场B减小,油滴动能增加B.磁场B增大,油滴机械能不变C.使磁场方向反向,油滴动能减小D.使磁场方向反向后再减小,油滴重力势能减小答案ABD解析带负电的油滴在匀强磁场B中做匀速直线运动,受坚直向下的重力和竖直向上的洛伦兹力而平衡,当B减小时,由F=qvB可知洛伦兹力减小,重力大于洛伦兹力,重力做正功,故油滴动能增加,A正确;B增大,洛伦兹力大于重力,重力做负功,而洛伦兹力不做功,故机械能不变,B正确;磁场反向,洛伦兹力竖直向下,重力做正功,动能增加,重力势能减小,故C错,D正确.7.如图4所示为一个质量为m、电荷量为+q的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B的匀强磁场中(不计空气阻力).现给圆环向右的初速度v0,在以后的运动过程中,圆环运动的速度—时间图象可能是下图中的( )答案AD解析由左手定则可知,圆环所受洛伦兹力竖直向上,如果恰好qv0B=mg,圆环与杆间无弹力,不受摩擦力,圆环将以v0做匀速直线运动,故A正确;如果qv0Bmg,则a=μ(qvB-mg)m,随着v的减小a也减小,直到qvB=mg,以后将以剩余的速度做匀速直线运动,故D正确,B、C错误.8. 如图5所示,空间的某一区域内存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果这个区域只有电场则粒子从B点离开场区;如果这个区域只有磁场,则粒子从D点离开场区;设粒子在上述3种情况下,从A到B 点,从A到C点和A到D点所用的时间分别是t1、t2和t3,比较t1、t2和t3的大小,则有(粒子重力忽略不计)( )A.t1=t2=t3B.t2C.t1=t2t2答案 C解析只有电场时,粒子做类平抛运动,水平方向为匀速直线运动,故t1=t2;只有磁场时做匀速圆周运动,速度大小不变,但沿AC方向的分速度越来越小,故t3>t2,综上所述可知,选项C对.9.如图6所示,a、b是一对平行金属板,分别接到直流电源两极上,右边有一挡板,正中间开有一小孔d,在较大空间范围内存在着匀强磁场,磁感应强度大小为B,方向垂直纸面向里,在a、b两板间还存在着匀强电场E.从两板左侧中点c处射入一束正离子(不计重力),这些正离子都沿直线运动到右侧,从d孔射出后分成3束.则下列判断正确的是( )A.这三束正离子的速度一定不相同B.这三束正离子的质量一定不相同C.这三束正离子的电荷量一定不相同D.这三束正离子的比荷一定不相同答案 D解析本题考查带电粒子在电场、磁场中的运动,速度选择器的知识.带电粒子在金属板中做直线运动,qvB=Eq,v=EB,表明带电粒子的速度一定相等,而电荷的带电量、电性、质量、比荷的关系均无法确定;在磁场中R=mvBq,带电粒子运动半径不同,所以比荷一定不同,D项正确.10.如图7所示,两个半径相同的半圆形轨道分别竖直放置在匀强电场和匀强磁场中.轨道两端在同一高度上,轨道是光滑的,两个相同的带正电小球同时从两轨道左端最高点由静止释放.M、N为轨道的最低点,则下列说法正确的是( )A.两小球到达轨道最低点的速度vMB.两小球第一次到达轨道最低点时对轨道的压力FMC.小球第一次到达M点的时间大于小球第一次到达N点的时间D.在磁场中小球能到达轨道的另一端,在电场中小球不能到达轨道的另一端答案 D。
专题练习电磁场第1讲电场及带电体在电场中的运动微网构建核心再现知识规律(1)电场力的性质.①电场强度的定义式:E=Fq.②真空中点电荷的场强公式:E=kQr2.③匀强电场场强与电势差的关系式:E=Ud.(2)电场能的性质.①电势的定义式:φ=E pq.②电势差的定义式:U AB=W ABq.③电势差与电势的关系式:U AB=φA-φB.④电场力做功与电势能:W AB=-ΔE p.思想方法(1)物理思想:等效思想、分解思想.(2)物理方法:理想化模型法、比值定义法、控制变量法、对称法、合成法、分解法等.高频考点一电场的特点和性质知能必备1.电场强度的三种表达形式及适用条件.2.电场强度、电势、电势能大小的比较方法.3.电场的叠加原理及常见电荷电场线、等势线的分布特点.例1直角坐标系POP 中,M 、N 两点位于P 轴上,G 、H 两点坐标如图.M 、N 两点各固定一负点电荷,一电量为Q 的正点电荷置于O 点时,G 点处的电场强度恰好为零.静电力常量用k 表示.若将该正点电荷移到G 点,则H 点处场强的大小和方向分别为( ) A.3kQ 4a 2,沿P 轴正向 B.3kQ4a 2,沿P 轴负向 C.5kQ 4a 2,沿P 轴正向D.5kQ4a 2,沿P 轴负向 [例2] (2016·全国大联考押题卷)(多选)如图所示,虚线为某电场中的三条电场线1、2、3,实线表示某带电粒子仅在电场力作用下的运动轨迹,a 、b 是轨迹上的两点,则下列说法中正确的是( ) A .粒子在a 点的加速度大小小于在b 点的加速度大小 B .粒子在a 点的电势能大于在b 点的电势能 C .粒子在a 点的速度大小大于在b 点的速度大小 D .a 点的电势高于b 点的电势电场性质的判断方法1.电场强度的判断方法:(1)根据电场线的疏密程度进行判断. (2)根据等差等势面的疏密程度进行判断. (3)根据E =Fq 进行判断.2.电势高低的判断方法:(1)由沿电场线方向电势逐渐降低进行判断. (2)若q 和W AB 已知,由U AB =W ABq进行判断. 3.电势能大小的判断根据电场力做功的正负判断电势能的变化或动能的变化.1.(多选)两个固定的等量异种点电荷所形成电场的等势线如图中虚线所示,一带电粒子以某一速度从图中f点进入电场,其运动轨迹如图中实线所示,若粒子只受静电力作用,则下列说法中正确的是()A.f、b、c、d、e五点中,c点电场强度最大B.带电粒子的加速度逐渐变大C.带电粒子的速度先增大后减小D.粒子经过b点和d点时的速度大小相同2.(多选)两个相同的负电荷和一个正电荷附近的电场线分布如图所示,c是两负电荷连线的中点,d点在正电荷的正上方,c、d到正电荷的距离相等,则()A.a点的电场强度比b点的大B.a点的电势比b点的高C.c点的电场强度比d点的大D.c点的电势比d点的低3.(2016·湖北武汉调研)在真空中某区域有一电场,电场中有一点O,经过O点的一条直线上有P、M、N三点,到O点的距离分别为r0、r1、r2,直线上各点的电势φ分布如图所示,r 表示该直线上某点到O点的距离,下列说法中正确的是()A.O、P两点间电势不变,O、P间场强一定为零B.M点的电势低于N点的电势C.M点的电场强度大小小于N点的电场强度大小D.在将正电荷沿该直线从M移到N的过程中,电场力做负功高频考点二平行板电容器问题知能必备1.电容的定义式和决定式、板间电场强度的计算式.2.引起电容器电容变化的因素及动态分析问题的两种结论及处理方法.[例3]已知均匀带电的无穷大平面在真空中激发电场的场强大小为σ2ε0,其中σ为平面上单位面积所带的电荷量,ε0为常量.如图所示的平行板电容器,极板正对面积为S,其间为真空,带电荷量为Q.不计边缘效应时,极板可看做无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引力大小分别为()A.Qε0S和Q2ε0S B.Q2ε0S和Q2ε0SC.Q2ε0S和Q22ε0S D.Qε0S和Q22ε0S[例4](2016·山西名校联盟)(多选)如图所示,平行板电容器与电动势为E′的直流电源(内阻不计)连接,下极板接地,静电计所带电荷量很少,可被忽略.一带负电油滴被固定于电容器中的P点.现将平行板电容器的下极板竖直向下移动一小段距离,则下列说法中正确的是()A.平行板电容器的电容将变小B.静电计指针张角变小C.带电油滴的电势能将减少D.若先将上极板与电源正极的导线断开,再将下极板向下移动一小段距离,则带电油滴所受电场力不变1.如图所示,平行板电容器与一电动势为E的直流电源(内阻不计)连接,一带电油滴位于电容器中的P点且恰好处于平衡状态.在其他条件不变的情况下,现将平行板电容器的两极板缓慢地错开一些,那么在错开的过程中()A.电容器的电容C增大B.电容器所带电荷量Q增多C.油滴将向下加速运动,电流计中的电流从N流向MD.油滴静止不动,电流计中的电流从N流向M2.(2016·陕西宝鸡高三二模)如图所示,一带电小球悬挂在平行板电容器内部,闭合电键S,电容器充电后,细线与竖直方向夹角为φ,则下列说法中正确的是()A.保持电键S闭合,使两极板靠近一些,φ将减小B.保持电键S闭合,将滑动变阻器滑片向右移动,φ将减小C.打开电键S,使两极板靠近一些,φ将不变D.轻轻将细线剪断,小球将做斜抛运动3.(创新题)如图所示,理想二极管(具有单向导电性)、平行板电容器、电源组成闭合电路,带电液滴P置于水平放置的平行板电容器的正中间而静止,则下列说法中正确的是()A.若将极板A向下移动少许,则液滴的电势能将减小B.若将极板A向上移动少许,则液滴将向上运动C.若将极板B向上移动少许,则液滴的电势能将增大D.若将极板A、B错开少许,使两极板正对面积变小,则液滴将向下运动高频考点三带电粒子在电场中的运动知能必备1.牛顿第二定律和运动学方程.2.动能定理及功能关系.3.类平抛运动的处理方法.4.类平抛运动的两个推论.[例5] (名师原创)如图所示,金属丝发射出的电子(质量为m 、电荷量为e ,初速度与重力均忽略不计)被加速后从金属板的小孔穿出进入偏转电场(小孔与上、下极板间的距离相等).已知偏转电场两极板间距离为d ,当加速电压为U 1、偏转电压为U 2时,电子恰好打在下极板的右边缘M 点,现将偏转电场的下极板向下平移d2.(1)如何只改变加速电压U 1,使电子打在下极板的中点? (2)如何只改变偏转电压U 2,使电子仍打在下极板的M 点?[例6] 如图甲所示,A 、B 两板竖直放置,两板之间的电压U 1=100V ,M 、N 两板水平放置,两板之间的距离d =0.1m ,板长L =0.2m .一个质量m =2×10-12kg 、电荷量q =+1×10-8C的带电粒子(不计重力)从靠近A 板处由静止释放,经加速电场加速后从B 板的小孔穿出,沿着M 、N 两板的中轴线垂直进入偏转电场.如果在M 、N 两板之间加上如图乙所示的偏转电压,当t =T4时,带电粒子刚开始进入偏转电场,则:(1)带电粒子从B 板的小孔穿出时的速度为多大?(2)要使带电粒子能够从M 、N 两板之间(不沿中轴线)穿出,并且穿出后的速度方向保持水平,则交流电U 2的周期T 为多少?(3)在满足(2)条件的情况下,它在偏转电场中的最大偏移量是多少?(结果保留一位有效数字) 解决带电粒子在电场中运动问题的基本思路及注意问题2.(多选)如图所示,氕核、氘核、氚核三种粒子从同一位置无初速地飘入电场线水平向右的加速电场E 1,之后进入电场线竖直向下的匀强电场E 2发生偏转,最后打在屏上.整个装置处于真空中,不计粒子重力及其相互作用,那么( )A .偏转电场E 2对三种粒子做功一样多B .三种粒子打到屏上时的速度一样大C .三种粒子运动到屏上所用时间相同D .三种粒子一定打到屏上的同一位置3.(2016·陕西五校联考)如图甲所示,两平行金属板MN 、PQ 的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,在t =0时刻,一不计重力的带电粒子沿板间中线垂直电场方向射入电场,粒子射入电场时的速度为v 0,t =T 时刻粒子刚好沿MN 板右边缘射出电场.则( )A .该粒子射出电场时的速度方向一定是沿垂直电场方向的B .在t =T2时刻,该粒子的速度大小为2v 0C .若该粒子在T2时刻以速度v 0进入电场,则粒子会打在板上D .若该粒子的入射速度变为2v 0,则该粒子仍在t =T 时刻射出电场4 (2016·高考全国乙卷)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C.极板上的电荷量变大,极板间电场强度不变D.极板上的电荷量变小,极板间电场强度不变5(2016·高考全国甲卷)如图,P是固定的点电荷,虚线是以P为圆心的两个圆.带电粒子Q 在P的电场中运动,运动轨迹与两圆在同一平面内,a、b、c为轨迹上的三个点.若Q仅受P 的电场力作用,其在a、b、c点的加速度大小分别为a a、a b、a c,速度大小分别为v a、v b、v c.则()A.a a>a b>a c,v a>v c>v bB.a a>a b>a c,v b>v c>v aC.a b>a c>a a,v b>v c>v aD.a b>a c>a a,v a>v c>v b7如图所示,两个带等量正电的点电荷分别固定于P、Q两点,它们连线的中点是O,A、B 是P、Q连线的中垂线上的两点,OA<OB.则下列说法正确的是()A.A点场强大小一定大于B点的场强大小B.A、B所在直线是一条等势线,等势线左右对称点电势相等C.将一正试探电荷分别置于A和B点,该试探电荷在A点的电势能等于在B点的电势能D.将一负试探电荷分别置于A和B点,该试探电荷在A点的电势能小于在B点的电势能“等势线(电场线)+运动轨迹”模型的处理思路1.(多选)在光滑绝缘的水平桌面上,存在着方向水平向右的匀强电场,电场线如图中实线所示.一初速度不为零的带电小球从桌面上的A点开始运动,到C点时,突然受到一个外加的水平恒力F作用而继续运动到B点,其运动轨迹如图中虚线所示,v表示小球经过C点时的速度.则()A.小球带正电B.恒力F的方向可能水平向左C.恒力F的方向可能与v方向相反D.在A、B两点处小球的速率不可能相等2.(多选)如图所示,虚线为某电场中的三个等差等势面1、2、3,实线表示某带电粒子仅在电场力作用下的运动轨迹,a、b是轨迹上的两点,则下列说法中正确的是()A.等势面1的电势最高B.粒子在a点的加速度大小小于在b点的加速度大小C.粒子在a点的电势能大于在b点的电势能D.粒子在a点的速度大小大于在b点的速度大小即时练习1.(多选)如图所示,直线是一簇未标明方向的由点电荷产生的电场线,曲线是某一带电粒子通过电场区域时的运动轨迹,a、b是轨迹上两点.若带电粒子运动中只受电场力作用,根据此图可以作出的判断是()A.带电粒子所带电荷的符号B.带电粒子在a、b两点的受力方向C.带电粒子在a、b两点的加速度何处大D.带电粒子在a、b两点的加速度方向2.(多选)如图所示的虚线为电场中的三条等势线,三条虚线平行且等间距,电势分别为10V、19V、28V,实线是仅受电场力的带电粒子的运动轨迹,a、b、c是轨迹上的三个点,a到中间虚线的距离大于c到中间虚线的距离,下列说法正确的是()A.粒子在a、b、c三点受到的电场力方向相同B.粒子带负电C.粒子在a、b、c三点的电势能大小关系为E p c>E p b>E p aD.粒子从a运动到b与从b运动到c,电场力做的功可能相等3.如图所示,边长为L=1m的等边三角形ABC置于匀强电场中,电场线的方向平行于△ABC 所在平面,其中A点电势为1V,AC中点电势为2V,BC中点的电势为4V,则该匀强电场的场强大小是()A.1V/m B.32V/mC.3V/mD.4V/m4.带有等量异种电荷的两块等大的平行金属板M、N水平正对放置.两板间有一带电微粒以速度v0沿直线运动,当微粒运动到P点时,将M板迅速向上平移一小段距离后,则此后微粒的可能运动情况是()A.沿轨迹①运动B.沿轨迹②运动C.沿轨迹③运动D.沿轨迹④运动5.(2016·湖北八市联考)如图,M和N是两个带有异种电荷的带电体(M在N的正上方,图示平面为竖直平面),P和Q是M表面上的两点,S是N表面上的一点.在M和N之间的电场中画有三条等势线.现有一个带正电的液滴从E点射入电场,它先后经过了F点和W点.已知油滴在F点时的机械能大于在W点时的机械能,E、W两点在同一等势面上,不计油滴对原电场的影响,不计空气阻力,则以下说法正确的是()A.P和Q两点的电势不相等。