电冰箱控制系统汇总
- 格式:ppt
- 大小:3.93 MB
- 文档页数:18
实验六电冰箱控制系统一、实验目的熟悉电冰箱的控制系统,能进行简单维护维修。
二、实验原理(一)控制电路中常用的元器件电冰箱电气控制系统的主要作用,是根据使用要求,自动控制电冰箱的起动、运行和停止,调节制冷剂的流量,并对电冰箱及其电气设备实行自动保护,以防止发生事故。
电冰箱的控制电路是根据电冰箱的性能指标来确定。
但其电气控制系统还是大同小异的,一般由动力、起动和保护装置、温度控制装置、化霜控制装置、加热与防冻装置,以及箱内风扇、照明等部分组成。
常用压力式温度控制器见下图。
1. 温度控制器:温度控制器简称温控器,是电冰箱、房间空调器等制冷设备调温、控温的装置。
它的主要作用是:(1)通过调节温度控制器旋钮,可以改变所需要的控制温度。
(2)可根据电冰箱内或空调房间内的温度要求,对制冷压缩机进行开、停的自动控制,使电冰箱内或房间内的温度保持在控制范围内。
温度控制器的种类很多,常用的温感压力式温度控制器。
温感压力式温度控制器主要用于人工化霜的普通“直冷式”单、双门电冰箱,或用于全自动化霜的“间冷式”双门电冰箱对冷冻室的温度进行控制。
温度控制器主要由感温元件、毛细管、感压腔和一组微动开关等机构组成。
感温元件也叫温压转换部件,是一个密闭的腔体,由感温管感温剂和感压腔三部分组成。
感压腔内充入的感温剂一般是氯甲烷或是R12。
它的作用是将蒸发器表面的温度变化转换为压力变化,从而引起快跳触点的动作。
2. 起动继电器:(1)重锤式起动继电器:重锤式起动继电器的结构主要包括电流线圈、重力衔铁、弹簧、动触点、T形架、绝缘壳体等;(2) PTC起动继电器:PTC是正温度系数的热敏电源电阻英文的缩写。
PTC起动继电器的工作原理:电冰箱在室温下起动时,PTC元件的电阻很小(约20Ω),而在较短的时间(0.1~0.2s)内通过基本恒定的电流,呈导通状态,之后随着其元件本身的发热温度升高,其阻值迅速增大,此时,PTC处于“断开”状态。
3. 过载保护器:过电流和过热保护器称为过载保护器,是压缩机电动机的安全保护装置。
前言众所周知,电冰箱是现代家庭中必不可少的家用电器。
而目前我国市场销售的冰箱大多采用传统的机械式温控,其控制精度差,功能单一,控制方式简单难以满足冰箱发展的要求。
随着经济的发展和人民生活水平的进一步提高,人们对多功能的发展要求越来越高。
由于单片机性能好,控制功能强,工作可靠,成本低等优点,现在已经在家电产品中得到了广泛的应用。
面临国内电冰箱发展的现状,在技术上还与其他发达国家有一定的差距,我们在原有的基础上对电冰箱进行了一定的改进,使其适应当代个性时尚、节能环保、智能高端、精确温控的发展方式,使人们体验闻所未闻的个性化感受,快捷与原汁原味不再是梦想。
新一代产品在控制上还增加了人工智能,使家电性能更优异,使用更方便可靠。
本次设计基于大量的市场调查和理论研究。
首先,我对传统电冰箱控制系统进行了分析。
调查了10多个品牌的电冰箱的控制系统,研究了他们制冷的优缺点,吸收了一些比较好的设计思想。
其后,我又查阅了大量的资料文献,其中最多的是国内外最新发表的关于制冷方面的论文,丰富了我们的理论依据。
然后,根据我拥有的材料用单片机实现电冰箱控制系统的硬件设计,最后在硬件设计的基础上实现了其软件设计。
第1章电冰箱系统概述1.1 单片机概述自从1971年微型计算机问世以来,随着大规模集成电路技术的进一步发展,导致微型计算机正向两个方向发展:一是高速度、高性能、大容量的高档微型计算机及其系列化,向大、中型计算机挑战;另一个是稳定可靠、小而廉、能适应各种领域需要的单片机。
单片机是指把中央处理器、随机存储器、只读存储器、定时器/计数器以及I/O 接口电路等主要部件集成在一块半导体芯片上的微型计算机。
虽然单片机只是一个芯片,但从组成和功能上看,它已经具有了微型计算机系统的含义,从某种意义上来说,一块单片机就是一台微型计算机。
自从1975年美国德可萨斯公司推出世界上第一个4位单片机TMS-1000型以来,单片机技术不断发展,目前已成为微型计算机技术的一个独特分支,广泛应用于工业控制、仪器仪表智能化、家用电子产品等各个控制领域。
电冰箱的结构及工作原理引言概述:电冰箱是现代家庭必备的家电之一,它能够将食物和饮料冷藏或冷冻,以延长其保鲜期。
本文将详细介绍电冰箱的结构和工作原理,帮助读者更好地了解这一家电的工作原理和使用方法。
一、冷藏室结构及工作原理1.1 冷藏室结构:冷藏室通常位于电冰箱的顶部或中部,其内部由一个隔离区域和一个冷却系统组成。
1.2 隔离区域:隔离区域由一个保温层和一个密封门组成,保温层能够防止外界热量进入冷藏室,密封门可以有效地保持冷藏室的温度稳定。
1.3 冷却系统:冷却系统包括一个压缩机、一个冷凝器、一个蒸发器和一个膨胀阀。
压缩机将制冷剂压缩成高压气体,冷凝器将高压气体冷却成高压液体,蒸发器将高压液体蒸发成低压气体,膨胀阀控制制冷剂的流量和压力,使其循环流动。
二、冷冻室结构及工作原理2.1 冷冻室结构:冷冻室通常位于电冰箱的底部,其内部与冷藏室类似,也由一个隔离区域和一个冷却系统组成。
2.2 隔离区域:冷冻室的隔离区域与冷藏室类似,同样由保温层和密封门组成,以防止外界热量进入冷冻室。
2.3 冷却系统:冷冻室的冷却系统与冷藏室相似,同样包括一个压缩机、一个冷凝器、一个蒸发器和一个膨胀阀。
这些组件的工作原理也相同,通过制冷剂的循环流动实现冷冻室的制冷效果。
三、控制系统结构及工作原理3.1 控制系统结构:电冰箱的控制系统通常位于冷藏室或冷冻室的顶部,由一个控制面板和一组传感器组成。
3.2 控制面板:控制面板上有各种按钮和旋钮,用于设置和调节冷藏室和冷冻室的温度,以及其他功能的控制。
3.3 传感器:传感器用于监测冷藏室和冷冻室的温度,并将温度信息传输给控制面板,以便根据需要调节制冷系统的工作。
四、节能技术及环保措施4.1 节能技术:现代电冰箱通常采用节能技术,如高效压缩机、优化的隔热材料和智能温控系统,以降低能耗并提高制冷效果。
4.2 环保措施:为了保护环境,电冰箱制造商还采取了一系列环保措施,如使用环保制冷剂、回收利用废热和废水,并推动电冰箱的可持续发展。
以冰箱为例,分析一个机电系统的总体设计方案
冰箱是一个典型的机电系统,主要由以下几个组成部分构成:
1. 机械传动部分:主要包括压缩机、风扇、电机、传动带等元件。
机械传动部分的设计需要考虑这些元件的动力和功率需求以及与其他系统组件的协调。
2. 传感与控制系统:传感与控制系统主要包括温控器、压力开关、电路板等控制元件和传感器。
其设计需要考虑整个系统的稳定性和可靠性,并按照实际温度变化对冷却量进行调节。
3. 冷却部分:冷却部分包括蒸发器、冷凝器、以及铜管等元件。
冷却部分的设计需要考虑冷却量以及导热性能等因素。
4. 保温材料:保温材料主要用于隔离冷却部分和外界环境,以减少冷却能量损失。
其设计需要考虑保温材料的导热性能和耐久性。
5. 外壳与设计:外壳的设计需要考虑美观度以及与其他部件的匹配度,同时必须满足防震、防潮、防腐蚀等性能要求。
综上所述,设计一个机电系统的总体设计方案需要考虑各个组成部分之间的协调性和集成性,以确保整个系统能够稳定可靠地运行。
并且还需要考虑材料品质、制造工艺、成本控制等因素。
生活中的人工控制和自动控制的例子,并分析被控对象和
被控量
人工控制:
1、电风扇转速调节:被控对象是电风扇,被控量是电风扇的挡位,通过调节挡位旋钮来调节电风扇的挡位。
2、开灯或者关灯:被控对象是灯光控制回路,被控量是灯的状态,当按下灯光开关时,回路闭合,灯亮;当打开灯光开关时,回路断开,灯灭。
自动控制:
1、电冰箱温度控制系统:被控对象是电冰箱,被控量是电冰箱的实际温度,当冰箱的实际温度被检测到偏离设定的温度时,控制器会控制制冷装置,从而调节电冰箱内的温度,使其接近给定温度。
2、水箱的水位控制系统:被控对象是水箱,被控量是水箱水位,当检测装置检测到水箱的水位和给定水位存在偏差时,控制器会控制阀来控制水箱的进水量,从而调节水箱的实际水位,使其接近给定水位。