有机反应规则总结
- 格式:doc
- 大小:1.13 MB
- 文档页数:82
有机化学一、烯烃1、卤化氢加成 (1)CHCH 2RHXCH CH 3RX【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。
【机理】CH 2CH 3CH +CH 3CH 3X +CH 3CH 3+H +CH 2+C3X +CH 3X主次【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。
【注】碳正离子的重排 (2)CHCH 2RCH 2CH 2R BrHBrROOR【特点】反马氏规则 【机理】 自由基机理(略)【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。
【本质】不对称烯烃加成时生成稳定的自由基中间体。
【例】CH 2CH3BrCH CH 2BrC H 3CH +CH 3C H 3HBrBrCH 3CH 2CH 2BrCH CH 3C H 32、硼氢化—氧化CHCH 2R CH 2CH 2R OH1)B 2H 62)H 2O 2/OH-【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。
【机理】2CH33H323H32CH CH2CH32CH CH=CH(CH3CH2CH2)3-H3CH2CH2C22CH3CH2OCH2CH2CH33CH2CH2C2CH2CH3+O H-OHB-OCH2CH2CH3CH2CH2CH3H3CH2CH2B OCH2CH2CH3CH2CH2CH32CH2CH3HOO-B(OCH2CH2CH3)3B(OCH2CH2CH3)3+3NaOH3NaOH3HOCH2CH2CH33+Na3BO32【例】CH31)BH32)H2O2/OH-CH3HHOH3、X2加成C CBr/CClC CBrBr【机理】CCC CBrBrCBr+C CBrOH2+-H+C CBrOH【注】通过机理可以看出,反应先形成三元环的溴鎓正离子,然后亲和试剂进攻从背面进攻,不难看出是反式加成。
不对称的烯烃,亲核试剂进攻主要取决于空间效应。
【特点】反式加成 4、烯烃的氧化1)稀冷高锰酸钾氧化成邻二醇。
化学有机化学反应机制总结有机化学是研究碳基化合物及其反应的科学,反应机制是了解有机化学反应中原子和电子的变化过程的核心。
本文将对常见的有机化学反应机制进行总结。
一、取代反应机制取代反应是有机化学中最常见的反应之一。
在取代反应中,一个原子或官能团从一个化合物中取代另一个原子或官能团。
常见的取代反应机制有SN1和SN2两种。
1. SN1 (亲核取代,单分子解离)机制SN1反应中,最先发生的是一个离子型中间体的生成。
反应的速率由于受瓶颈步骤的影响而受原料物质浓度和温度的影响较小。
亲核试剂首先与原料物质发生解离,生成一个稳定的离子型中间体。
然后,中间体经历脱离原来官能团的过程,形成最终的产物。
2. SN2 (亲核取代,双分子反应)机制SN2反应中,反应物的一个部分被亲核试剂攻击,同时另一个部分离去。
这种反应机制发生在一个步骤中,因此速率受原料物质浓度和温度的影响较大。
SN2反应常发生在较低的溶解度和较低的浓度下,因为过高的浓度会增加反应物质间的碰撞,从而影响反应速率。
二、加成反应机制加成反应是指两个或多个分子结合成新的分子的反应。
常见的加成反应机制有Markovnikov加成和反Markovnikov加成。
1. Markovnikov加成机制Markovnikov加成指在加成反应中,负电性较强的部分与不饱和化合物结合时优先连接到碳上。
这种选择性基于烯烃上可用的π电子或质子的相对丰度。
2. 反Markovnikov加成机制反Markovnikov加成是指在加成反应中,负电性较强的部分与不饱和化合物结合时优先连接到碳的相邻位置。
这种反应机制常出现在氢气存在的情况下,其中氢气与不饱和化合物发生加成反应。
三、消除反应机制消除反应是指从一个化合物中去除一个或多个部分,形成双键或三键的过程。
最常见的消除反应机制有E1和E2两种。
1. E1消除机制E1消除反应表示亲核攻击和离去部分分别在两个不同的过程中进行。
首先,离去部分离去,生成一个稳定的离子型中间体。
有机化学反应机理总结一、引言有机化学是研究有机物合成和反应规律的科学领域。
在有机化学中,了解反应机理对于准确预测反应产物以及设计新的合成路径至关重要。
本文将总结几种常见的有机化学反应机理,包括亲核取代、酸催化、碱催化和自由基反应等。
二、亲核取代反应机理亲核取代反应是指一个亲核试剂(通常是负电荷较高的电子富余分子)与一个受体分子发生反应,取代掉受体分子中的某个官能团。
这类反应的机理通常分为四个步骤:出发物生成电子富余中间体、亲核试剂攻击中间体、负离子生成和负离子与溶剂或其他分子反应。
亲核取代反应具有广泛的应用,例如取代烯烃、芳香化合物和醇等。
三、酸催化反应机理酸催化反应是指在酸性条件下进行的一系列有机化学反应。
酸催化反应机理通常包括质子化、核迁移、亲核试剂攻击和质子转移等步骤。
酸催化反应广泛应用于合成复杂有机分子,如酯化、缩合和环化反应等。
四、碱催化反应机理碱催化反应是指在碱性条件下进行的一系列有机化学反应。
碱催化反应机理通常包括质子解离、亲电试剂攻击、质子转移和负离子生成等步骤。
碱催化反应常见于酯水解、亲电取代和醇酸碱中和反应等。
五、自由基反应机理自由基反应是指在自由基存在下进行的一系列有机化学反应。
自由基反应机理通常包括自由基生成、自由基与稳定分子反应、自由基重组和自由基转移等步骤。
自由基反应广泛应用于合成烯烃和环化反应等。
六、结论有机化学反应机理的理解对于有机化学的学习和应用具有重要意义。
通过掌握亲核取代、酸催化、碱催化和自由基反应等常见反应的机理,我们能更好地理解有机化学反应中的规律,合理设计合成路线,并预测反应的产物。
在未来的有机化学研究和实践中,深入了解和掌握有机化学反应机理将会取得重要的成果。
有机化学反应条件总结有机化学反应条件主要包括催化剂、反应温度、反应时间、溶剂、气氛等几方面,其具体内容是:一、催化剂催化剂是促进有机化学反应的一种物质。
根据反应物的不同,催化剂可分为酸性催化剂、碱性催化剂、金属催化剂等多种类型。
常见的催化剂有硫酸、氢氧化钠、氯化亚铁等。
催化剂可以提高反应速率、选择性和收率。
二、反应温度反应温度决定了反应物与催化剂之间的反应快慢。
过高或过低的反应温度都会影响反应速率和选择性,导致反应无法顺利进行。
通常情况下,反应温度在0-150℃之间。
三、反应时间反应时间是指反应物与催化剂在反应条件下所需的时间。
反应时间过短可能会导致反应收率低,而反应时间过长则可能导致副反应产生,并影响产率和纯度。
不同的反应需要不同的反应时间。
四、溶剂溶剂是指在有机化学反应中用于将反应物溶解的介质。
通常情况下,使用的溶剂需能够溶解反应物,并对催化剂无影响。
不同的反应需要不同的溶剂。
五、气氛气氛是指有机化学反应中使用的气体,可以影响反应的速率和选择性。
常见的气氛有惰性气体(如氮气、氩气)、氧及其他有害的气体。
在反应过程中,需要严格控制气氛的组成和流量。
下面列举一些常用的有机化学反应及其条件:1.酯化反应:反应物为羧酸和醇,催化剂为硫酸或盐酸,反应温度在50-70℃,反应时间1-3小时,溶剂为无水乙醇。
2.烷基化反应:反应物为卤代烷和铝烷,催化剂为氯化亚铁,反应温度在-20-0℃,反应时间5-10小时,溶剂为甲苯。
3.加成反应:反应物为烯烃和氢气,催化剂为钯催化剂,反应温度在25-50℃,反应时间2-8小时,溶剂为乙腈或甲苯。
4.氧化反应:反应物为烃和氧气,催化剂为过氧化氢或高锰酸钾,反应温度在60-80℃,反应时间3-6小时,溶剂为乙醇或丙酮。
5.还原反应:反应物为酮和氢气,催化剂为铝醇,反应温度在25-50℃,反应时间3-6小时,溶剂为环己烷或四氢呋喃。
6.脱水反应:反应物为醇和硫酸,催化剂为硫酸,反应温度在110-130℃,反应时间2-3小时,溶剂为氯化甲烷或甲苯。
有机化学反应机理总结有机化学反应机理是有机化学研究的重要内容之一,它揭示了有机化合物在反应过程中的分子结构变化和反应速率规律。
通过对有机反应机理的研究,我们可以更好地理解和预测有机化学反应的发生过程,为有机合成化学和药物设计提供理论依据。
下面我们将对常见的有机化学反应机理进行总结和归纳。
1. 加成反应。
加成反应是有机化学中最基本的反应类型之一,它是指两个或多个单体分子中的双键或三键断裂,然后原子或原子团以共价键的方式结合形成新的分子。
加成反应可分为电子亲和性和电子排斥性两种机理。
电子亲和性加成反应是指亲电试剂攻击双键或三键,形成中间离子,最后被亲核试剂攻击生成产物。
电子排斥性加成反应是指亲核试剂攻击双键或三键,生成中间离子,然后被亲电试剂攻击生成产物。
2. 消除反应。
消除反应是有机化学中另一种重要的反应类型,它是指有机分子中的两个邻近原子或原子团通过共价键的方式脱离分子,生成双键或三键。
消除反应可分为β-消除、α-消除和γ-消除等不同机理,其中最常见的是β-消除反应。
β-消除反应是指邻位原子或原子团与相邻的氢原子脱离,生成双键或三键。
3. 取代反应。
取代反应是有机化学中最常见的反应类型之一,它是指有机分子中的一个原子或原子团被另一个原子或原子团取代。
取代反应可分为亲核取代和亲电取代两种机理。
亲核取代是指亲核试剂攻击有机分子中的一个原子或原子团,将其取代生成新的产物。
亲电取代是指亲电试剂攻击有机分子中的一个原子或原子团,将其取代生成新的产物。
4. 加成-消除反应。
加成-消除反应是一种复合反应类型,它是指有机分子中的双键或三键发生加成反应生成中间产物,然后再发生消除反应生成最终产物。
加成-消除反应的机理比较复杂,通常需要通过实验数据和理论计算来揭示其反应过程和产物结构。
总的来说,有机化学反应机理的研究对于我们理解和掌握有机反应规律具有重要意义。
通过深入学习和掌握有机反应机理,我们可以更好地设计和优化有机合成路线,提高有机合成的效率和选择性,为新药物的研发和合成提供理论指导。
有机化学反应知识点总结1.烷烃●氧化●自动氧化●燃烧●异构化●热裂●卤化自由基反应●硝化●磺化氯磺化2.环烷烃●与卤素●自由基取代●加成离子型●与HX●催化加氢●不被氧化3.烯烃●催化氢化顺式加成●亲电加成●卤素环鎓离子中间体反式加成●次卤酸环鎓离子中间体马氏规则●氢卤酸碳正离子中间体(顺反加成,重排)马氏规则反马氏规则●硫酸,水,有机酸,醇,酚碳正离子●硼氢化四中心过渡态→顺式加成 B进攻小空阻→反马氏●氧化(H2O2/OH-/H2O)→醇●还原→烷烃●羟汞化-脱汞Hg(OCOCH3)2,NaBH4 马氏规则●自由基加成HBr 过氧化物 hv●氧化●环氧化-开环→反式邻二醇有机过酸酸/碱●高锰酸钾●稀、冷→顺式邻二醇●酸/碱、加热→氧化裂解●四氧化锇→顺式邻二醇●臭氧化-水解●O3●水解●还原水解→醛/酮Zn/H2O;CH3SCH3;H2/Pd;LiAlH4;NaBH4●α-H卤化自由基取代烯丙位自由基稳定●X2 500-600℃/hv●NBS/NCS●与卡宾反应●单线态卡宾●三线态卡宾●类卡宾●加聚反应4.炔烃●末端炔氢酸性●NaNH2/NH3(i)得到亲核试剂: RX C=O●[Ag(NH3)2]+HCl HNO3 CN-/H2O 还原提纯●[Cu(NH3)2]+●亲电加成●卤素反式(环正离子中间体),马氏规则●HX顺/反式(碳正离子中间体),两侧均为R时反式;马氏规则●H2O马氏规则,烯醇式互变酮式●H2SO4 H3PO4催化碳正离子中间体●Hg2+/H+催化汞鎓离子中间体●硼氢化●氧化H2O2/OH-顺式水合,反马氏●还原●自由基加成过氧化物(链引发剂)●亲核加成端炔C,碳负离子中间体●HCN●活泼氢-OH,-SH,-NH2,=NH,-CONH2,-COOH●还原●催化加氢●强还原剂Pd,Pt,Ni●弱还原剂顺式加成●Lindlar催化剂(Pd-CaCO3-PbO)●Pd-BaSO4,吡啶●碱金属与液氨反式加成●氢化锂铝反式加成●氧化→-COOH●KMnO4●O3/H2O2/Hg2+●聚合●链●环三聚成苯 #5.共轭烯烃●亲电加成●1,2-加成动力学●1,4-加成热力学●Diels-Alder反应周环反应,Δ,可逆给电子基双烯体+吸电子基亲双烯体优亲双烯体顺反构型保持内型产物优先产物取代基邻对位优●聚合反应6.苯●亲电取代定位效应:给诱,吸诱,给共,吸共,卤素加成-消除机理●硝化反应HNO3/H2SO4=1:2●卤化反应X2/Lewis酸 F2,I2特殊反应●磺化反应浓硫酸,发烟硫酸弱酸恢复●Friedel-Crafts反应●傅-克烷基化碳正离子重排多烷基化可逆●RX/AlCl3●RCH=CH2/H+●ROH/HF●傅-克酰基化不可逆,无重排,无多元●RCOCL/AlCl3●(RCO)2O/AlCl3●RCOOH/H2SO4●Blanc氯甲基化HCHO/HCl/无水ZnCl2●Gattermann-Koch反应→芳醛Lewis酸,加压CuCl,CO/HCl(1:1)●还原反应●催化氢化H2,Pt Pd Ni Ru Rb●Birch还原Na/NH3(l)/CH3CH2OH●加成反应3Cl3 Δ/P/hv●氧化反应不为高锰酸钾、重铬酸钾所氧化●O2/V2O5/Δ→顺丁烯二酸酐●苯甲位性质●碳负离子反应●碳正离子反应●SN1取代●SN2取代●自由基反应X2/hv NBS/过氧化物●侧链氧化●强氧化(KMnO4,K2Cr2O7,HNO3)→-COOH含α-H的苯环侧链●温和氧化●Etard反应ArCH3 (CrO2Cl2)→ArCHO●Kornblum反应ArCH2X (DMSO,NaHCO3)→ArCHO●卤苯●与金属有机化合物●芳香亲核取代NaNH2/NH3(l) 苯炔中间体机理(消除-加成机理)●邻对位被吸电子基取代卤苯,卤素易亲核取代7.稠环芳烃●萘●亲电取代●硝化●卤代●磺化●低温α-位动力学●高温β-位热力学●酰基化●CS2溶剂→α-位●C6H5NO2溶剂→β-位●氧化●CrO3/HOAc●O2/V2O5/Δ●H2O2●催化氢化●一取代萘亲电取代定位●蒽、菲活泼,9.10位●亲电取代●催化氢化●氧化→醌8.卤代烃●亲核取代机理:Sn1;Sn2 反应活性●水解→醇●碱●水(溶剂解)●醇解→醚●碱●醇(溶剂解)●氨解●NaHS●NaSR●NaCN延长碳链●RC≡CNa●AgNO3鉴别卤代烃●-CH(COOEt)2●NaX'●β-消除区域选择性(Zaitev规则)立体选择性(反式共平面)机理:E1;E2 反应活性●与金属反应●Mg→格氏试剂●格氏试剂亲核取代偶联反应●格氏试剂与活泼氢反应●H2O●HX●HOR'●HC≡CR'●NH3●R'COOH●格氏试剂与醛、酮反应●格氏试剂与酯反应●格氏试剂与环氧乙烷反应●格氏试剂与CO2反应●格氏试剂与O2反应●NaWurtz反应●Li→有机锂→二烷基铜锂●亲核偶联●与活泼氢●与CO2、O2●还原反应●LiAlH4保留双键●NaBH4保留双键●Zn/HCl●HI●催化氢化●Na/NH3保留双键及构型●氧化反应●DMSO(二甲基亚砜)→R-CHO9.醇●醇羟基上的H 酸性●电离●与碱金属→亲核试剂●与氢氧化钠→亲核试剂●醇羟基上的O●碱性●亲核性——酯化反应●与有机酸加成-消除机理碳正离子机理酰基正离子机理●与含氧无机酸●硝酸●亚硝酸●硫酸●与羧酸衍生物●酰卤●酸酐●胺/氨●酯酯交换●亲核取代●HX机理:SN1,SN2 Lucas试剂及应用邻基参与效应●PX3,PX5重排●SOCl2不重拍●→构型保持●+吡啶→构型翻转●分子间脱水(H2SO4/140℃)低温利SN1●β-消除(H2SO4或HPO3/180℃)分子内脱水,高温利E1●氧化有α-H者●KMnO4/MnO2●稀、冷、中性KMnO4→不反应●酸性/Δ KMnO4●1°R-OH→羧酸●2°R-OH→酮●3°R-OH→裂解成酮●新制MnO2→醛(不饱和键保留)●铬酸●强氧化●Na2Cr2O7+H2SO41°R-OH→羧酸 2°R-OH→酮●温和氧化→醛不饱和键保留●Sareett试剂(CrO3+吡啶)●Jones试剂(CrO3+稀H2SO4)●PCC试剂(CrO3+HCl+吡啶)●硝酸●1°ROH→羧酸●2°ROH,3°ROH→浓硝酸,裂解●环醇→二元酸●Oppenauer氧化Al[OC(CH3)3]3→选择性醇/酮H交换●Pfitzner-Moffatt试剂氧化→醛二甲亚砜+二环己基碳二亚胺●脱氢Cu或CuCrO4或Pd/300℃●多元醇特殊性质●邻二醇●络合金属离子(Cu2+)●氧化邻二醇→断裂为二羰基化合物●H5IO6●Pb(OAc)4/CH3COOH或C6H6●NaIO4●频哪醇重排10.酚●酚羟基●酸性●NaOH●碱性极弱●亲核性较低●酯化催化剂:碱,质子酸●酰卤●酸酐●醚化●Williamson醚合成●RX●CH3OSO2OCH3●CH2NO2●Clainsen重排芳香,脂肪●Fires重排●芳环上亲电取代●卤化●多卤代●单卤代降低温度小极性或非极性溶剂酸性条件次氯酸叔丁酯●磺化●硝化亚硝化●Friedel-Crafts反应●烷基化●酰基化●Reimer-Tiemann反应→邻对位甲酰化(苯甲醛)CHCl3/NaOH/60℃●Kolbe-Schmitt反应→邻对位羧酸NaOH—CO2(高压)—H+●羟甲基化反应→邻对位羟甲基化HCHO/H+●偶联反应→对位偶氮苯ArN2+X-11.醚●自动氧化自由基反应●碱性→佯盐●亲核取代 HIC-O键断裂顺序●Claisen重排●烯基型醚稀酸→醛/酮●1,2-环氧乙烷开环●酸性 SN2机理,SN1区位选择性Nu-多取代C 构型翻转●碱性 SN2机理Nu-小空阻C 构型翻转●冠醚12.醛&酮●羰基亲核加成●含氧亲核试剂●H2O→偕二醇●ROH→半缩醛(酮)→缩醛(酮) [碱与氧化剂稳定,酸不稳定→恢复羰基]催化剂:对甲苯磺酸,HCl●含硫亲核试剂●NaHSO3(过量、饱和)醛脂肪族甲基酮 C8以下环酮●RSH→缩硫醛(酮)H2/NaneyNi→二甲基●Schiff试剂(品红+SO2)●含碳亲核试剂●HCN→α-羟基腈醛脂肪族甲基酮 C8以下环酮●炔化物→α-炔基醇●金属有机化合物→醇一次加成●Witting试剂(磷Ylide)→烯烃●含氮亲核试剂●胺●一级胺→亚胺●二级胺→烯胺●氨●胺衍生物●α-H反应酸性烯醇化→烯醇盐(区位选择)●α-H卤化●酸催化●碱催化●卤仿反应α-甲基酮,α-甲基醇●烷基化 RX●酮(仲胺参与)●醛(亚胺参与)●羟醛缩合(Aldol反应)酸催化碱催化自身缩合定向缩合●Michael加成(1,4-加成)含α-H的醛/酮+α-不饱和醛/酮●Perkin缩合芳香醛+酸酐(酸酐对应盐/Δ)→反式β-芳基-α-不饱和羧酸●Mannich反应含α-H的酮+甲醛+胺●氧化●一般氧化高锰酸钾、重铬酸钾、铬酸、过酸、过氧化氢、氧化银、溴…●醛→羧酸●酮 Null●特殊●醛●自氧化自由基●Fehling试剂(新制氢氧化铜络合物)→羧酸盐+砖红色氧化亚铜醛、α-羟基酮、α-醛酮芳香醛不反应●Tollens试剂(银氨离子)→羧酸盐+银镜●酮●Baeyer-Villiger氧化重排(过酸)迁移顺序●还原●→-C-OH●催化氢化顺式,小空阻侧●氢化金属化合物●LiAlH4C=C、C≡C保留●NaBH4C=C、C≡C保留●B2H6C=O>C=C●Meerwein-Pronndorf-Verley还原(异丙醇铝/异丙醇)C=C、C≡C保留●活泼金属●单分子还原●双分子还原[Mg/苯,Na/NH3(l)]→频哪醇孤立C=C不还原,共轭时优先还原●→-CH2●Clenmmensen还原 Zn-Hg/浓HCl●Wolff-Kishner还原●Wolff-Kishner-黄鸣龙还原C=C、C≡C保留●歧化 Cannizzaro反应(浓OH-)分子间自身,交叉,定向(甲醛总被氧化)分子内●安息香缩合苯甲醛+CN-●Darzen反应酮+XCH2COOR'→环氧化酯→(OH-/H2O,H3O/Δ)多一个碳的醛●聚合反应●不饱和醛、酮●烯酮●羰基的加成(活泼H)互变●格氏试剂●聚合体反应●β-丙内酯开环●酸性中性●碱性,强酸性●α,β-不饱和醛酮●加成反应●1,4-加成氨及其衍生物HX H2SO4 HCN H2O ROH 二烷基铜锂格氏试剂与酮Michael加成●1,2-加成RNa RLi 格氏试剂与醛●3,4-加成X2 H2O●还原●醌●对苯醌●加成●1,2-加成●氮亲核试剂●格氏试剂●1,4-加成HCN,HX,CH3OH,胺●还原●Diiels-Alder反应●羟基取代醛酮●α-OH取代●互变●氧化●与苯肼反应●与H5IO6反应●β-OH取代●脱水●γ/δ-OH取代●分子内亲核取代→环状半缩醛13.羧酸●酸性NaOH,KOH,Na2CO3,NH3·H2O●酰基碳上的亲核取代——酰化●酯化 ROH RX加成-消除碳正离子中间体酰基正离子中间体●与无机酰卤SOCl2 PCl3 PCl5●与氨或胺亦可酸碱反应●氨→互变成腈●胺→脱水缩合●与金属有机化合物●格氏试剂→羧酸镁盐无意义●有机锂→酮●还原●催化氢化●LiAlH4●BH3●脱羧自由基●Kolbe法电解●Hunsdicker反应→R-BrRCOOAg+Br2 (CCl4/Δ)●Cristal反应→R-BrHgO+Br2●Kochi反应●二元羧酸脱水与脱羧Blanc规则●α-H的反应 Hell-Volhard-Zelinsky反应PBr3 一、二、三卤代●不饱和羧酸●α,β-不饱和●1,4-亲核加成●Diels-Alder反应14.取代羧酸●卤代酸●α-X●亲核取代NaOH/H2O,NH3,NaCN/H+●β-X●卤代烃消除●γ,δ,ε -X●内酯化●醇酸●酸性●脱水●α- →半交酯→交酯●β- →消除成烯(共轭)●γ,δ - →内酯(分子内)●>ε- →聚酯(分子间)●与醛反应(亲核加成)●α-醇酸与金属离子→螯合物●降解脱羧,成酮●α-醇酸●稀H2SO4●浓H2SO4●β-醇酸●酚酸●羰基酸●乙醛酸水合●丙酮酸降解●乙酰乙酸●4-戊酮酸●氨基酸●两性与等电点●脱羧●脱水缩合●显色反应●β-酮酸酯●酸性●酮式与烯醇式互变●分解●酮式分解→酯水解稀碱●酸式分解→亲核加成-消除,脱羧浓碱●作为亲核试剂●烃化●酰化●Knoevenagel反应弱碱催化●Micheal加成●乙酰乙酸乙酯合成法●丙二酸二乙酯合成法15.羧酸衍生物●酰基碳上的亲核取代反应性:I>Br>Cl>-OCOOR>-OR>-OH>-NH2>-NHR●水解→羧酸酸性,碱性酰卤>酸酐>酯,易酰胺难●酯水解的机理●亲核加成-消除●碳正离子●酰基正离子●腈→酰胺→羧酸●醇解→酯酰卤>酸酐,易酯>酰胺>腈,难●酯交换反应及应用●氨解→酰胺均易●酸解●与金属有机化合物反应●酰卤●格氏试剂,有机锂→少量得酮,过量得3°ROH●二烷基铜锂→酮●有机镉化物→酮●酯,腈格氏试剂,有机锂→少量得酮,过量得3°ROH●酰胺NH2活泼氢先反应,浪费●酸酐→酮→醇浪费●还原●催化氢化●酰卤●强烈还原——H2/Pd→RCH2OH●温和还原Rosenmund还原——H2/Pd-BaSO4/硫/喹啉→RCHO●酸酐 ..H2/Pd●酯 CuO·CuCrO4,200-300℃,10-30MPa苯环不受影响●酰胺 H2/CuCr氧化物/高温高压●腈 H2/Ni/NH3(l)/高温高压●金属氢化物●酰卤,酸酐,酯→RCH2OH●LiAlH4/乙醚●LiBH4/THF●NaBH4/THF●酰胺 LiAlH4/乙醚●1°→RCH2NH2●2°→RCH2NHR'●3°●氧化剂过量→RCH2CR'R''●氧化剂不过量→RCHO●腈→RCH2NH2LiAlH4●特殊●二元环酐(NaBH4)→内酯●酰卤[ AlLi(t-BuO)3H ]→醛●酯的特殊还原——Bouveault-Blanc还原(Na/ROH)→醛+醇●酰卤专属反应●α-H卤代X2/H+●酯的专属反应●Claisen酯缩合→β-羰基酯C2H5ONa/C2H5OH●混合酯缩合●Dieckmann反应二酸酯(Na/甲苯/C2H5OH)→β-羰基酯环五、六元环稳定●酮酯缩合●酮醇缩合 2酯→β-羟基酮Na/N2,Ph-CH3,Δ●热裂→羧酸+烯400-500℃●Reformatsky反应β-卤代酸酯+醛/酮(Zn)→β-羟基酸酯●酰胺专属性质●酸碱性●脱水→腈P2O5或SOCl2或Δ●Hofmann降级→胺X2/NaOH→NaXO●Gabriel合成法亚酰胺制备伯胺●腈专属反应●水解→酰胺→羧酸●Ritter反应16.有机含氮化合物●胺●脂肪胺●碱性碱性判断分离纯化●酸性LDA制备●亲核性●烷基化(Hofmann烷基化) R-XSN2●酰基化(伯胺,仲胺)●羧酸衍生物——酰卤,酸酐,酯保护氨基,结构鉴定●磺酰氯 Hinsberg反应鉴别结构,分离纯化●亚硝化●叔胺→N-亚硝铵盐●仲胺→N-亚硝胺●伯胺→重氮盐→碳正离子●取代●消除●重排●Tiffeneau-Demjanov重排类似频哪醇●与醛/酮反应●伯胺→亚胺●仲胺→烯胺●还原性●伯胺→亚硝基化合物→硝基化合物●仲胺→羟胺●叔胺→氧化胺●Cope消除β-H的氧化胺Δ→烯烃+羟胺●芳香胺●极弱碱性●芳香亲核取代活化,邻对位改变活性→铵盐改变定位→酰化●卤化→三卤代无cat.●磺化,硝化,酰基化注意N上的H竞争反应●重氮化NaNO2,H+,H2O,0-5℃●伯芳胺→芳香重氮盐●仲芳胺→N-R基-N-亚硝基苯胺●叔芳胺→对亚硝基苯胺●还原性●氨基氧化●1°→硝基化合物●2°→羟胺●3°→氧化胺●苯环氧化复杂醌式结构●MnO2/H2SO4/10℃→醌●季铵盐与季铵碱●制备●Hofmann烷基化●Ag2O/H2O●Hofmann消除Hofmann规则●硝基化合物●脂肪族●还原反应→-NH2●酸性还原系统 Fe/Zn/Sn+HCl●催化氢化●酸性α-H●Henry反应碳负离子与羰基化合物缩合●与亚硝酸反应●1°→硝肟酸+NaOH→红色溶液●2°→假硝醇+NaOH→蓝色溶液●3° null●芳香族●还原→→-NH2●酸性系统→-NH2●中性系统→-NHOHNH4Cl,CH3CH2OH●碱性系统→氧化偶氮苯,偶氮苯,氢化偶氮苯Zn/NaOH●催化氢化●亲电取代钝化,间位定位●亲核取代卤苯亲核取代●重氮化合物●重氮甲烷●碱性●与含活泼氢者反应●亲核性●与醛/酮反应●与酰卤反应 Arndt-Eister合成法●亲电反应●1,3-偶极环加成反应→环丙烷及其衍生物●生成卡宾●芳香族●酸性●亲核取代反应●被OH取代PhN2+SO4H- H2O H+/Δ●被卤素取代●F Schiemann反应●Cl Br●Olah反应●Sandmeger反应CuX●Gattermann反应Cu●IKI/Δ●被CN取代●Sandmeger反应CuCN+KCN●Gattermann反应Cu+KCN●被硝基取代●Gattermann反应NaNO2+H2O+Cu●被H取代●H2PO3+H2O●HCHO+NaOH●还原反应●偶联反应活泼芳环●二烷基芳胺●芳香伯胺、仲胺●酚●偶氮化合物●芳香族●异构化●弱碱性●联苯胺重排●氧化→氧化偶氮苯→对羟基偶氮苯过氧酸 H+●脂肪族●叠氮化合物●还原→-NH3●Curtius重排酰胺叠氮→胺(少一个C)●Schmidt重排●氮烯17.杂环化合物●五元杂环●一个杂原子——吡咯、呋喃、噻吩●芳香性●亲电取代α-位吡咯>呋喃>噻吩●卤代●Br2 Cl2→多卤代●SO2Cl/Et2O/0℃,Br2/环二乙醚/0℃,Br2/AcOH,NBS,NCS→一卤代●噻吩+I2/HgO/苯/0℃→一碘代●磺化吡啶三氧化硫噻吩可直接磺化●硝化乙酰基硝酸酯●偶联芳香重氮盐●傅-克酰基化●傅-克烷基化→混合物●加成●催化加氢●Diels-Alder反应●吡咯特有性质●极弱碱性●酸性与碱反应得N+●N+作为亲核试剂RX, RCOX, CO2/H2O●瑞默尔-悌曼反应→α-醛CHCl3/NaOH●衍生物α-呋喃甲醛●醛●催化加氢●氧化●无α-H的醛●康尼扎罗●安息香缩合●交叉羟醛缩合●Perkin反应●一个杂原子的苯并杂环——吲哚,异吲哚●亲电取代3-位●2个杂原子●咪唑●酸性强于吡咯●碱性强于吡咯●六元杂环●一个杂原子——吡啶●碱性●亲核性N●CH3I●RX●酰卤●SO3●亲电取代β-位●卤代200℃●硝化HNO3/H2SO4/KNO3/300℃●磺化发烟H2SO4/HgSO4/230℃●亲核取代α-位●Chichibabin反应NaNH2/NH3●C6H5Li●3,4-卤代吡啶+氨水/160℃→4-取代●氧化●较苯难氧化●被过氧化物氧化产物取代定位γ-●还原●催化氢化●Na/C2H5OH●侧链α-H缩合反应●芳香醛●CH3I●一个杂原子的苯并杂环——喹啉,异喹啉●亲电取代苯环5,8-位●亲核取代●喹啉 2(主),4-位●异喹啉 1位●氧化还原●侧链α-H18.周环反应●电环化反应●4n●基态Δ→顺旋●激发态hν→对旋●4n+2●基态Δ→对旋●激发态hν→顺旋●环加成反应基态Δ●Diels-Alder反应●1,3-偶极环加成反应●σ迁移反应●[1,j]●H迁移●基态●同面5 9 13(4n+1C)●异面3 7 11 (4n-1C)●激发态●同面 4n-1●异面4n+1●C迁移●基态●构型保持●同面4n+1●异面4n-1●构型翻转●同面4n-1●异面4n+1●激发态●构型保持●同面4n-1●异面4n+1●构型翻转●同面4n+1●异面4n-1 ●[i,j]●[3,3]σ迁移●cope重排●claisen重排。
高中有机反应条件总结1.根据物质的性质推断官能团,如:能使溴水反应而褪色的物质含碳碳双双键、三键“-CHO”和酚羟基;能发生银镜反应的物质含有“-CHO”;能与钠发生置换反应的物质含有“-OH”;能分别与碳酸氢钠镕液和碳酸钠溶液反应的物质含有“-COOH”;能水解产生醇和羧酸的物质是酯等.2.根据性质和有关数据推知官能团个数,如:-CHO→2Ag→Cu20;2-0H→H2;2-COOH(CO32-)→CO23.根据某些反应的产物推知官能团的位置,如:(1)由醇氧化得醛或羧酸,-OH一定连接在有2个氢原子的碳原子上;由醇氧化得酮,-OH接在只有一个氢原子的碳原子上.(2)由消去反应产物可确定“-OH”或“-X”的位置.(3)由取代产物的种数可确定碳链结构.(4)由加氢后碳的骨架,可确定“C=C”或“C≡C”的位置.能力点击:以一些典型的烃类衍生物(溴乙烷、乙醇、乙酸、乙醛、乙酸乙酯、脂肪酸、甘油酯、多羟基醛酮、氨基酸等)为例,了解官能团在有机物中的作用.掌握各主要官能团的性质和主要化学反应,并能结合同系列原理加以应用.注意:烃的衍生物是中学有机化学的核心内容,在各类烃的衍生物中,以含氧衍生物为重点.教材在介绍每一种代表物时,一般先介绍物质的分子结构,然后联系分子结构讨论其性质、用途和制法等.在学习这一章时首先掌握同类衍生物的组成、结构特点(官能团)和它们的化学性质,在此基础上要注意各类官能团之间的衍变关系,熟悉官能团的引入和转化的方法,能选择适宜的反应条件和反应途径合成有机物.有机化学知识点总结1.需水浴加热的反应有:(1)、银镜反应(2)、乙酸乙酯的水解(3)苯的硝化(4)糖的水解(5)、酚醛树脂的制取(6)固体溶解度的测定凡是在不高于100℃的条件下反应,均可用水浴加热,其优点:温度变化平稳,不会大起大落,有利于反应的进行.2.需用温度计的实验有:(1)、实验室制乙烯(170℃)(2)、蒸馏(3)、固体溶解度的测定(4)、乙酸乙酯的水解(70-80℃)(5)、中和热的测定(6)制硝基苯(50-60℃)〔说明〕:(1)凡需要准确控制温度者均需用温度计.(2)注意温度计水银球的位置. 3.能与Na反应的有机物有:醇、酚、羧酸等——凡含羟基的化合物.4.能发生银镜反应的物质有:醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖——凡含醛基的物质.5.能使高锰酸钾酸性溶液褪色的物质有:(1)含有碳碳双键、碳碳叁键的烃和烃的衍生物、苯的同系物(2)含有羟基的化合物如醇和酚类物质(3)含有醛基的化合物(4)具有还原性的无机物(如SO2、FeSO4、KI、HCl、H2O2等)6.能使溴水褪色的物质有:(1)含有碳碳双键和碳碳叁键的烃和烃的衍生物(加成)(2)苯酚等酚类物质(取代)(3)含醛基物质(氧化)(4)碱性物质(如NaOH、Na2CO3)(氧化还原――歧化反应)(5)较强的无机还原剂(如SO2、KI、FeSO4等)(氧化)(6)有机溶剂(如苯和苯的同系物、四氯甲烷、汽油、已烷等,属于萃取,使水层褪色而有机层呈橙红色.)7.密度比水大的液体有机物有:溴乙烷、溴苯、硝基苯、四氯化碳等.8、密度比水小的液体有机物有:烃、大多数酯、一氯烷烃.9.能发生水解反应的物质有:卤代烃、酯(油脂)、二糖、多糖、蛋白质(肽)、盐.10.不溶于水的有机物有:烃、卤代烃、酯、淀粉、纤维素11.常温下为气体的有机物有:分子中含有碳原子数小于或等于4的烃(新戊烷例外)、一氯甲烷、甲醛.12.浓硫酸、加热条件下发生的反应有:苯及苯的同系物的硝化、磺化、醇的脱水反应、酯化反应、纤维素的水解13.能被氧化的物质有:含有碳碳双键或碳碳叁键的不饱和化合物(KMnO4)、苯的同系物、醇、醛、酚.大多数有机物都可以燃烧,燃烧都是被氧气氧化.14.显酸性的有机物有:含有酚羟基和羧基的化合物.15.能使蛋白质变性的物质有:强酸、强碱、重金属盐、甲醛、苯酚、强氧化剂、浓的酒精、双氧水、碘酒、三氯乙酸等.16.既能与酸又能与碱反应的有机物:具有酸、碱双官能团的有机物(氨基酸、蛋白质等)17.能与NaOH溶液发生反应的有机物:(1)酚:(2)羧酸:(3)卤代烃(水溶液:水解;醇溶液:消去)(4)酯:(水解,不加热反应慢,加热反应快)(5)蛋白质(水解)18、有明显颜色变化的有机反应:1.苯酚与三氯化铁溶液反应呈紫色;2.KMnO4酸性溶液的褪色;3.溴水的褪色;4.淀粉遇碘单质变蓝色.5.蛋白质遇浓硝酸呈黄色(颜色反应)。
高中有机反应条件总结1.根据物质的性质推断官能团,如:能使溴水反应而褪色的物质含碳碳双双键、三键“-CHO”和酚羟基;能发生银镜反应的物质含有“-CHO”;能与钠发生置换反应的物质含有“-OH”;能分别与碳酸氢钠镕液和碳酸钠溶液反应的物质含有“-COOH”;能水解产生醇和羧酸的物质是酯等.2.根据性质和有关数据推知官能团个数,如:-CHO→2Ag→Cu20;2-0H→H2;2-COOH(CO32-)→CO23.根据某些反应的产物推知官能团的位置,如:(1)由醇氧化得醛或羧酸,-OH一定连接在有2个氢原子的碳原子上;由醇氧化得酮,-OH接在只有一个氢原子的碳原子上.(2)由消去反应产物可确定“-OH”或“-X”的位置.(3)由取代产物的种数可确定碳链结构.(4)由加氢后碳的骨架,可确定“C=C”或“C≡C”的位置.能力点击:以一些典型的烃类衍生物(溴乙烷、乙醇、乙酸、乙醛、乙酸乙酯、脂肪酸、甘油酯、多羟基醛酮、氨基酸等)为例,了解官能团在有机物中的作用.掌握各主要官能团的性质和主要化学反应,并能结合同系列原理加以应用.注意:烃的衍生物是中学有机化学的核心内容,在各类烃的衍生物中,以含氧衍生物为重点.教材在介绍每一种代表物时,一般先介绍物质的分子结构,然后联系分子结构讨论其性质、用途和制法等.在学习这一章时首先掌握同类衍生物的组成、结构特点(官能团)和它们的化学性质,在此基础上要注意各类官能团之间的衍变关系,熟悉官能团的引入和转化的方法,能选择适宜的反应条件和反应途径合成有机物.有机化学知识点总结1.需水浴加热的反应有:(1)、银镜反应(2)、乙酸乙酯的水解(3)苯的硝化(4)糖的水解(5)、酚醛树脂的制取(6)固体溶解度的测定凡是在不高于100℃的条件下反应,均可用水浴加热,其优点:温度变化平稳,不会大起大落,有利于反应的进行.2.需用温度计的实验有:(1)、实验室制乙烯(170℃)(2)、蒸馏(3)、固体溶解度的测定(4)、乙酸乙酯的水解(70-80℃)(5)、中和热的测定(6)制硝基苯(50-60℃)〔说明〕:(1)凡需要准确控制温度者均需用温度计.(2)注意温度计水银球的位置. 3.能与Na反应的有机物有:醇、酚、羧酸等——凡含羟基的化合物.4.能发生银镜反应的物质有:醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖——凡含醛基的物质.5.能使高锰酸钾酸性溶液褪色的物质有:(1)含有碳碳双键、碳碳叁键的烃和烃的衍生物、苯的同系物(2)含有羟基的化合物如醇和酚类物质(3)含有醛基的化合物(4)具有还原性的无机物(如SO2、FeSO4、KI、HCl、H2O2等)6.能使溴水褪色的物质有:(1)含有碳碳双键和碳碳叁键的烃和烃的衍生物(加成)(2)苯酚等酚类物质(取代)(3)含醛基物质(氧化)(4)碱性物质(如NaOH、Na2CO3)(氧化还原――歧化反应)(5)较强的无机还原剂(如SO2、KI、FeSO4等)(氧化)(6)有机溶剂(如苯和苯的同系物、四氯甲烷、汽油、已烷等,属于萃取,使水层褪色而有机层呈橙红色.)7.密度比水大的液体有机物有:溴乙烷、溴苯、硝基苯、四氯化碳等.8、密度比水小的液体有机物有:烃、大多数酯、一氯烷烃.9.能发生水解反应的物质有:卤代烃、酯(油脂)、二糖、多糖、蛋白质(肽)、盐.10.不溶于水的有机物有:烃、卤代烃、酯、淀粉、纤维素11.常温下为气体的有机物有:分子中含有碳原子数小于或等于4的烃(新戊烷例外)、一氯甲烷、甲醛.12.浓硫酸、加热条件下发生的反应有:苯及苯的同系物的硝化、磺化、醇的脱水反应、酯化反应、纤维素的水解13.能被氧化的物质有:含有碳碳双键或碳碳叁键的不饱和化合物(KMnO4)、苯的同系物、醇、醛、酚.大多数有机物都可以燃烧,燃烧都是被氧气氧化.14.显酸性的有机物有:含有酚羟基和羧基的化合物.15.能使蛋白质变性的物质有:强酸、强碱、重金属盐、甲醛、苯酚、强氧化剂、浓的酒精、双氧水、碘酒、三氯乙酸等.16.既能与酸又能与碱反应的有机物:具有酸、碱双官能团的有机物(氨基酸、蛋白质等)17.能与NaOH溶液发生反应的有机物:(1)酚:(2)羧酸:(3)卤代烃(水溶液:水解;醇溶液:消去)(4)酯:(水解,不加热反应慢,加热反应快)(5)蛋白质(水解)18、有明显颜色变化的有机反应:1.苯酚与三氯化铁溶液反应呈紫色;2.KMnO4酸性溶液的褪色;3.溴水的褪色;4.淀粉遇碘单质变蓝色.5.蛋白质遇浓硝酸呈黄色(颜色反应)。
有机化学反映类型一、有机化学十大反映类型1.取代反映:有机物分子中的某些原子或原子团被其它原子或原子团所代替的反映:如:卤代、硝化、磺化、水解和酯化反映2.加成反映:有机物分子中的不饱和碳原子与其它原子或原子团直接结合生成新物质的反映:如:加H2、X2、HX、H2O、NH3、HCN等3.消去反映:一个分子中脱去一个或几个小分子生成不饱和化合物的反映。
如脱去H2O、NH3等4.氧化反映:有机物得氧或失氢的反映:有机物的燃烧反映;烯烃、炔烃、苯的同系物、醛与酸性高锰酸钾的反映;烯烃、炔烃苯酚与溴水的反映;伯醇、仲醇与氧化铜的反映;醛、甲酸、甲酸甲酯与新制氢氧化铜、银氨溶液的反映。
5.还原反映:有机物失氧或得氢的反映碳碳不饱和键加氢的反映;醛、酮碳氧双键加氢生成醇类的反映;6.加聚反映:通过加成反映,使有机物的小分子(单体)聚合成高分子的反映主如果含C=C的化合物在催化剂作用下发生加聚反映7.缩聚反映:由小分子发生聚合成高分子的同时,还有小分子(H2O、NH3等)生成的聚合反映。
两元醇与两元羧酸聚合成聚酯;羟基酸聚合成聚酯;氨基酸聚合成蛋白质;两元醇聚合成聚醚;葡萄糖聚合成多糖;苯酚和甲醛聚合醇酚醛树脂。
8.酯化反映:有机酸、无机含氧酸与醇类生成酯和水的反映。
9.水解反映:卤代烃水解;酯水解;糖水解;蛋白质水解10.裂化反映:在必然温度下,把相对分子质量较大、沸点较高的长链烃断裂成相对分子质量较小、沸点较低的短链烃的反映。
二、信息反映类型1.脱羧反映:RCOONa+NaOH →R—H+Na2CO32.烯烃断C==C双键反映:R—CH==CH—R’R—CHO+R’—CHO规律:R相同产物一种,说明烯烃分子结构对称;R不同产物多种,说明烯烃分子不对称;双键C原子连H产物为醛,连烃基产物为酮。
3.不对称不饱和烃与不对称试剂的加成反映:CH3—CHBr—CH3CH3—CH=CH2 + H—X CH3—CH2—CH2—Br规律:对称烯烃+对称、不对称试剂产物为一种;不对称烯烃+对称试剂产物为一种;不对称烯烃+不对称试剂产物为二种。
有机反应规则总结1 Arbuzov亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚磷酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例2 Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例3 Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。
4 Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例5 Birch 还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。
反应机理首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)表示的是部分共振式。
(Ⅰ)不稳定而被质子化,随即从乙醇中夺取一个质子生成环己二烯自由基(Ⅱ)。
(Ⅱ)在取得一个溶剂化电子转变成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,迅速再从乙醇中夺取一个电子生成1,4-环己二烯。
环己二烯负离子(Ⅲ)在共轭链的中间碳原子上质子化比末端碳原子上质子快,原因尚不清楚。
反应实例取代的苯也能发生还原,并且通过得到单一的还原产物。
例如6 Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇。
α,β-不饱和羧酸酯还原得相应的饱和醇。
芳香酸酯也可进行本反应,但收率较低。
本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响。
反应机理首先酯从金属钠获得一个电子还原为自由基负离子,然后从醇中夺取一个质子转变为自由基,再从钠得一个电子生成负离子,消除烷氧基成为醛,醛再经过相同的步骤还原成钠,再酸化得到相应的醇。
反应实例??????醛酮也可以用本法还原,得到相应的醇????????Bucherer??反应萘酚及其衍生物在亚硫酸或亚硫酸氢盐存在下和氨进行高温反应,可得萘胺衍生物,反应是可逆的。
反应时如用一级胺或二级胺与萘酚反应则制得二级或三级萘胺。
如有萘胺制萘酚,可将其加入到热的亚硫酸氢钠中,再加入碱,经煮沸除去氨而得。
反应机理本反应的机理为加成消除过程,反应的第一步(无论从哪个方向开始)都是亚硫酸氢钠加成到环的双键上得到烯醇(Ⅱ)或烯胺(Ⅵ),它们再进行下一步互变异构为酮(Ⅲ)或亚胺(Ⅳ):INCLUDEPICTURE"/~hxx/jpkc/yjhx/hukun/B5.htm5.gif" \*MERGEFORMATINET反应实例INCLUDEPICTURE"/~hxx/jpkc/yjhx/hukun/B5.htm3.gif" \*MERGEFORMATINET????BambergerE重排??苯基羟胺(N羟基苯胺)和稀硫酸一起加热发生重排成对氨基苯酚:??在H??SO??C??H??OH或CH??OH??中重排生成对乙氧基(或甲氧基)苯胺:其他芳基羟胺,它的环上的op位上未被取代者会起类似的重排。
例如,对氯苯基羟胺重排成??氨基??氯苯酚:反应机理INCLUDEPICTURE"/~hxx/jpkc/yjhx/hukun/b6.htm4.gif" \*MERGEFORMATINETINCLUDEPICTURE"/~hxx/jpkc/yjhx/hukun/b6.htm5.gif" \*MERGEFORMATINET反应实例INCLUDEPICTURE"/~hxx/jpkc/yjhx/hukun/b6.htm6.gif" \* MERGEFORMATINET9 Berthsen,A.Y 吖啶合成法二芳基胺类与羧酸在无水ZnCl2存在下加热起缩合作用,生成吖啶类化合物。
反应机理反应机理不详反应实例10 Cannizzaro 反应凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。
此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。
具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应得到季戊四醇:反应机理醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。
反应实例11 Chichibabin 反应杂环碱类,与碱金属的氨基物一起加热时发生胺化反应,得到相应的氨基衍生物,如吡啶与氨基钠反应生成2-氨基啶,如果α位已被占据,则得γ-氨基吡啶,但产率很低。
本法是杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、丫啶和菲啶类化合物均能发生本反应。
喹啉、吡嗪、嘧啶、噻唑类化合物较为困难。
氨基化试剂除氨基钠、氨基钾外,还可以用取代的碱金属氨化物:反应机理反应机理还不是很清楚,可能是吡啶与氨基首先加成,(Ⅰ),(Ⅰ)转移一个负离子给质子给予体(AH),产生一分子氢气和形成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质子的给予体,最后的产物是2-氨基吡啶的钠盐,用水分解得到2-氨基吡啶:反应实例吡啶类化合物不易进行硝化,用硝基还原法制备氨基吡啶甚为困难。
本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应。
12 Claisen 酯缩合反应含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到β-酮酸酯。
如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。
二元羧酸酯的分子内酯缩合见Dieckmann缩合反应。
反应机理乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的。
但由于最后产物乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动。
所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不断地反应,结果反应还是可以顺利完成。
常用的碱性缩合剂除乙醇钠外,还有叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、三苯甲基钠、二异丙氨基锂(LDA)和Grignard试剂等。
反应实例如果酯的α-碳上只有一个氢原子,由于酸性太弱,用乙醇钠难于形成负离子,需要用较强的碱才能把酯变为负离子。
如异丁酸乙酯在三苯甲基钠作用下,可以进行缩合,而在乙醇钠作用下则不能发生反应:两种不同的酯也能发生酯缩合,理论上可得到四种不同的产物,称为混合酯缩合,在制备上没有太大意义。
如果其中一个酯分子中既无α-氢原子,而且烷氧羰基又比较活泼时,则仅生成一种缩合产物。
如苯甲酸酯、甲酸酯、草酸酯、碳酸酯等。
与其它含α-氢原子的酯反应时,都只生成一种缩合产物。
实际上这个反应不限于酯类自身的缩合,酯与含活泼亚甲基的化合物都可以发生这样的缩合反应,这个反应可以用下列通式表示:13 Claisen—Schmidt 反应一个无α-氢原子的醛与一个带有α-氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到α,β-不饱和醛或酮:反应机理反应实例14 Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。
当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。
对位、邻位均被占满时不发生此类重排反应。
交叉反应实验证明:Claisen重排是分子内的重排。
采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。
两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。
反应机理Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。
从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。