江苏省南京市2022年中考数学真题试题(含答案)
- 格式:doc
- 大小:638.50 KB
- 文档页数:15
2022年江苏省南京市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若∠A 为锐角,且22cos22A<<,则∠A 的范围是()A.30°<∠A<45°B. 60°<∠A <90° C.30°<∠A <60° D.0°<∠A <30°2.若一个三角形的一个外角等于其中的一个内角,则这个三角形是()A.等腰三角形B.正三角形C.直角三角形D.不存在3.如图所示,在△ABC中,AB=AC,D为BC上任意一点.DE∥AC交AB于点E,DF∥AB 交AC 于点F,那么下列各式中不成立的是()A.DF=AE,DE=AF B.AE=CF,DE=EB C.DF-DE=DB D.DE+DF=AB4.从正方形的铁片上,截去2 cm宽的一条长方形铁片,余下铁片的面积是48cm2,则原来正方形铁片的面积是()A.6cm2B.8 cm2C.36 cm2D.64 cm25.如图,已知一次函数y kx b=+的图象,当x<0时,y的取值范围是()A.y>0 B.y<O C.-2<y<O D.y<-26.下列各曲线中不表示y是x的函数的是()A.B.C.D.7.若|4|4a a-=-,则a的取值范围为()A.4a>B.4a≥C.4a<D.4a≤8. 在多项式222x y +、22x y -、22x y -+、22x y --中,能用平方差公式分解的有 ( ) A .1个B . 2 个C . 1个D .4 个9.按照图①的排列规律,在d 内应选②中的( )10.方程2x+1=0的解是( ) A .12B . 12-C . 2D .-211. 用字母表示数,下列书写格式正确的是( ) A .132abB .72abC .72abD .132ab二、填空题12. 已知二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,它的顶点的横坐标为-1,由图象可知关于x 的方程ax 2+bx +c =0的两根为x 1=1,x 2=_________. 13.在平面直角坐标系中.点A(x-l ,2-x)在第四象限,则实数x 的取值范围是 . 14.一个几何体的三视图都是正方形,则这个几何体是 . 15.在Rt △ABC 中,∠C=90°,∠A=41°,则∠B= .16.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每 4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔 分钟从起点开出一辆.17.小刚想给小东打电话,但忘了电话号码中的一位数字,只记得号码是810□7711(□表示忘记的数字).若小刚从0到9的自然数中随机选取一个数放在□位置,则他拨对小东电话的概率是 .18.△ABC 经平移变换后,点A 平移了5cm ,则点B 平移了 cm.19.有 8个大小相同的球,设计一个摸球游戏,使摸到白球的概率为12,摸到红球的概率为14,摸到黄球的概率为14,摸到绿球的概率为0;则白球有 个,红球有 个,绿球有 个. 20.如果13212m n a b +-与44n a b +-是同类项,那么m= ,n= . 21.( )2= 16, ( )3 = 64.三、解答题22.有200个零件需要一天内加工完毕,设当工作效率为每人每天加工p 个时,需工人q 个, ( l )求q 关于p 的函数解析式.(2)若每人每天的工作效率提高20%,则工人人数可以减少多少? (1)q=200p ;(2)工人人数可以减少1003p个.23.判断下列定义是否正确?如果不正确,请给出正确的定义. (1)不相交的两条直线叫做平行线; (2)两点之间线段最短.24.某工厂有甲、乙两个相邻的长方体的水池,甲池的水均匀地流人乙池;如图,是甲、乙两个水池水的深度y(m)与水流动时间t(h)的函数关系的图象.(1)分别求两个水池水的深度y(m)与水流动时间x(h)的函数解析式,并指出变量x 的取值范围;(2)求水流动几小时后,两个水池的水深度相同.25.三个连续的正偶数的和不大于18,这样的偶数有几组?把它们分别写出来.26.如图,△ABC 和△DBC 都是直角三角形,∠A=∠D=90°,AB=DC .说明:△EBC 是等腰三角形.27.如图,已知直线a 和线段b ,求作一条直线c ,使c ∥a ,且与直线a 的距离于b.28.某建筑工地需浇制半径分别为 0.24 m ,0.37m ,0.39m 的三个圆形钢筋环,问需钢筋多长?尽可能使你的运算既快又方便.29.如图所示,将△ABC 经相似变换、边长扩大一倍得到像△A ′B ′C ′. (1)请你画出像△A ′B ′C ′.(2)猜测△A ′B ′C ′的面积是△ABC 的面积的多少倍.30.化简下列各分式:(1)236sxy x y-; (2) 22699x x x -+-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.C4.D5.D6.D7.D8.B9.B10.B11.B二、填空题 12. x 2=-313.2x >14.立方体15.49°16.617.10118. 519.4,2,020.3,321.4±,4三、解答题 22. 23.(1)不正确,在同一平面内,不相交的两条直线叫做平行线;(2)正确24.(1)243y x =-+甲(0≤x ≤6),123y x =+乙(0≤x ≤6);(2)2小时25.2,4,6或4,6,826.说明Rt △ABC ≌△Rt △DCF27.略28.20.2420.3720.392(0.240.370.39)2πππππ⨯÷⨯+⨯=++=(m)29.(1)图略;(2)S 4A B C ABC S S '''∆∆=30.(1)22y x -;(2)33x x -+。
2022年江苏省南京市玄武区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2022年2月4日,北京第二十四届冬季奥林匹克运动会开幕式在国家体育场隆重举行,中国大陆地区观看人数约3.16亿人.用科学记数法表示3.16亿是()A.3.16×107B.31.6×107C.3.16×108D.0.316×109 2.(2分)下列运算正确的是()A.(a2)3=a6B.a8÷a2=a4C.a2•a3=a6D.(2ab)3=6a3b33.(2分)若式子1﹣在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.4.(2分)如图,在扇形AOB中,D为上的点,连接AD并延长与OB的延长线交于点C,若CD=OA,∠O=75°,则∠A的度数为()A.35°B.52.5°C.70°D.72°5.(2分)已知x=﹣3,下列结论错误的是()A.x是负数B.x﹣是27的立方根C.x2是无理数D.x+3是7的算术平方根6.(2分)如图,矩形纸片ABCD,AB=15cm,BC=20cm,先沿对角线AC将矩形纸片ABCD 剪开,再将三角形纸片ABC沿着对角线AC向下适当平移,得到三角形纸片A'BC',然后剪出如图所示的最大圆形纸片,则此时圆形纸片的半径为()A.cm B.cm C.cm D.cm二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)﹣2的相反数是;的倒数是.8.(2分)分解因式(a﹣b)(a+4b)﹣3ab的结果是.9.(2分)计算的结果是.10.(2分)设x1,x2是关于x的方程x2+3x﹣m=0的两个根,且2x1=x2,则m=.11.(2分)在平面直角坐标系xOy中,作点P关于x轴的对称点,得到点P1,再将点P1向右平移3个单位,得到点P2(1,﹣1),则点P的坐标为.12.(2分)圆锥的母线长为5,底面圆的面积为9π,则圆锥的侧面展开图的圆心角度数为______°.13.(2分)如图,在平面直角坐标系xOy中,OA⊥OB,OB=2OA,反比例函数y1=(x>0),y2=(x<0)的图象分别经过点A,B,则k的值为.14.(2分)如图,AB是半圆O的直径,C,D是半圆O上的点,连接CD,AC,OD,且AB=4,OD∥AC,设CD=x,AC=y,则y与x之间的函数表达式为.15.(2分)如图,点O是正六边形ABCDEF和正五边形AB1C1D1E1的中心,连接AE,C1F相交于点G,则∠AGF的度数为°.16.(2分)已知P1(m,y1),P2(m+1,y2),P3(m+2,y3)是下列函数图象上的点:①y=x+1;②y=(x>0);③y=x2﹣3x﹣2(x>0);④y=﹣x2﹣3x+2(x>0)其中,使不等式|y1﹣y2|<|y3﹣y2|总成立的函数有.(填正确的序号)三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)(1)计算(﹣)﹣1+(3.14﹣π)0﹣2cos60°;(2)解方程=+1.18.(8分)先化简,再求值:()÷(1﹣),其中a=2﹣.19.(8分)如图,在等边三角形ABC中,BD=CE,BE,AD相交于点F.(1)求证△ABD≌△BCE;(2)求证AE2=EF•EB.20.(8分)在某次射击训练中,小明10次射击的成绩如下(单位:环).(1)填表:平均数中位数方差8环环环2(2)你认为小明这10次射击的平均成绩8环能反映他的实际水平吗?请说明理由.(3)若小明增加1次射击,成绩为9环,与增加前相比,小明的射击成绩.A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大21.(7分)一个不透明的袋子中装有2个红球,1个黄球,1个白球,这些球除颜色外无其他差别.(1)从袋子中随机摸出1个球,不放回,再随机摸出1个球.求两次摸出的球都是红球的概率.(2)从袋子中随机摸出1个球,摸出的是红球得6分,黄球得4分,白球得2分.甲同学从袋子中随机摸出1个球,记下颜色后放回并摇匀,乙同学再随机摸出1个球.则甲,乙两位同学所得分数之和不低于10分的概率是.22.(7分)在▱ABCD中,E,F分别是AB,CD的中点,连接BF,DE,M,N分别是BF,DE的中点,连接EM,FN.(1)求证:四边形BFDE是平行四边形;(2)若AB=12,EM=EN=5,则四边形ABCD的面积为.23.(7分)如图①,某款线上教学设备由底座,支撑臂AB,连杆BC,悬臂CD和安装在D处的摄像头组成.如图②是该款设备放置在水平桌面l上的示意图.已知支撑臂AB⊥l,AB=15cm,BC=30cm,测量得∠ABC=148°,∠BCD=28°,AE=9cm.求摄像头到桌面l的距离DE的长(结果精确到0.1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,≈1.73)24.(8分)甲、乙两地相距40km,一辆慢车和一辆快车先后从甲地出发沿同一直道匀速前往乙地.慢车先出发,行驶一段时间后停车休息,待快车追上后立即以原速度匀速行驶,直至到达乙地.快车比慢车晚20min出发,始终保持匀速行驶,且比慢车提前到达乙地.两车之间的距离y(单位:km)与慢车的行驶时间x(单位:min)之间的部分函数图象如图所示.请结合图象解决下面问题:(1)慢车的速度为km/min;(2)求线段AB表示的y与x之间的函数表达式;(3)请根据题意补全图象.25.(8分)如图,在△ABC中,E是BC边上的点,以AE为直径的⊙O与AB,BC,AC分别交于点F,D,G,且D是的中点.(1)求证AB=AC;(2)连接DF,当DF∥AC时,若AB=10,BC=12,求CE的长.26.(8分)已知二次函数y=(x﹣m)(x﹣m﹣2)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有两个公共点;(2)二次函数的图象与x轴交于点M,N,与y轴交于点P,若△MNP是等腰直角三角形,则m的值为;(3)点A(1,y1),B(2,y2),C(3,y3)在二次函数的图象上,当y1•y2•y3<0时,结合函数图象,直接写出m的取值范围.27.(11分)旋转的思考【探索发现】(1)已知△ABC,将△ABC绕点A逆时针旋转得到△AB′C′.小美,小丽探索发现了下列结论.小美的发现如图①,连接对应点BB′,CC′,则=.小丽的发现如图②,以A为圆心,BC边上的高AD为半径作⊙A,则B′C′与⊙A相切.(ⅰ)请证明小美所发现的结论.(ⅱ)如图②,小丽过点A作AD′⊥B′C′,垂足为D′.证明途径可以用下面的框图表示,请填写其中的空格.【问题解决】(2)在Rt△ABC中,∠A=90°,AB=,AC=2,M是AC的中点,将△ABC绕点M逆时针旋转得到△A'B'C'.(ⅰ)如图③,当边B'C'恰好经过点C时,连接BB',则BB'的长为.(ⅱ)在旋转过程中,若边B'C'所在直线l恰好经过点B,请在图④中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法)【拓展研究】(3)在(2)的条件下,如图⑤,在旋转过程中,直线BB',CC'交于点P,则BP的最大值为.2022年江苏省南京市玄武区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【解答】解:316亿=3.16000000=3.16×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【分析】A、根据幂的乘方运算法则计算判断即可;B、根据同底数幂的除法运算法则计算判断即可;C、根据同底数幂的乘法运算法则计算判断即可;D、根据积的乘方与幂的乘方运算法则计算判断即可.【解答】解:A、原式=a6,符合题意;B、原式=a6,不合题意;C、原式=a5,不合题意;D、原式=8a3b3,不合题意;故选:A.【点评】此题考查的是同底数幂的乘除法运算,幂的乘方的运算,掌握其运算法则是解决此题的关键.3.【分析】直接利用二次根式有意义的条件得出x的取值范围,进而得出答案.【解答】解:由题可知:x﹣1>0,解得x>1.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确得出x的取值范围是解题关键.4.【分析】连接OD,如图,设∠C的度数为n,由于CD=OA=OD,根据等腰三角形的性质得到∠C=∠DOC=n,则利用三角形外角性质得到∠ADO=2n,所以∠A=2n,然后利用三角形内角和定理得到75°+n+2n=180°,然后解方程求出n,从而得到∠A的度数.【解答】解:连接OD,如图,设∠C的度数为n,∵CD=OA=OD,∴∠C=∠DOC=n,∴∠ADO=∠DOC+∠C=2n,∴OA=OD,∴∠A=∠ADO=2n,∵∠AOC+∠C+∠A=180°,∠AOC=75°,∴75°+n+2n=180°,解得n=35°,∴∠A=2n=70°.故选:C.【点评】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.5.【分析】根据无理数、有理数、立方根、算术平方根的定义解答即可.【解答】解:x=﹣3,A、x一定是负数,原说法正确,故此选项不符合题意;B、x﹣是﹣27的立方根,原说法错误,故此选项不符合题意;C、x2是无理数,原说法正确,故此选项不符合题意;D、x+3是7的算术平方根,原说法正确,故此选项不符合题意.故选:B.【点评】此题主要考查了无理数、有理数、立方根、算术平方根的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6.【分析】过点A'作A'P⊥AD于点P,设AP=xcm,A'P=y cm,圆的直径为dcm,利用对边之间的关系可得x与y的关系,再利用A字型相似也可求出x与y的关系,进而可求出x,d,从而得出结论.【解答】解:过点A'作A'P⊥AD于点P,设AP=xcm,A'P=y cm,圆的直径为dcm,由题意可得:d+x=20,d﹣y=15,∴20﹣x=15+y,即x+y=5,∵∠A=∠A,∠APA'=∠ADC,∴△APA'∽△ADC,∴,即,∴y=,∴x=,d=,∴半径为:cm.故选:A.【点评】本题考查相似三角形的性质与判定,解题关键是构造合适的辅助线.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.【分析】根据只有符号不同的两个数互为相反数,乘积为1的两个数互为倒数,可得答案.【解答】解:﹣2的相反数是2;的倒数是2,故答案为:2,2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.【分析】根据多项式乘多项式展开,合并同类项,根据平方差公式分解因式即可.【解答】解:原式=a2+4ab﹣ab﹣4b2﹣3ab=a2﹣4b2=(a+2b)(a﹣2b).故答案为:(a+2b)(a﹣2b).【点评】本题考查了因式分解﹣运用公式法,掌握a2﹣b2=(a+b)(a﹣b)是解题的关键.9.【分析】直接利用二次根式的混合运算法则化简,进而得出答案.【解答】解:原式===.故答案为:.【点评】此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.10.【分析】根据一元二次方程根与系数的关系,列方程即可解答.【解答】解:∵x1,x2是关于x的方程x2+3x﹣m=0的两个根,∴x1+x2=﹣3,x1•x2=﹣m,∵2x1=x2,∴x1+2x1=﹣3,解得x1=﹣1,∴x2=﹣2,∴﹣m=x1•x2=2,∴m=﹣2,故答案为:﹣2.【点评】本题考查一元二次方程根与系数的关系,解题的关键是能熟练应根与系数的关系.11.【分析】直接利用平移的性质得出P1坐标,再利用关于x轴对称图形的性质得出答案.【解答】解:∵将点P1向右平移3个单位,得到点P2(1,﹣1),∴P1(﹣2,﹣1),∵点P关于x轴的对称点,得到点P1,∴点P的坐标为(﹣2,1).故答案为:(﹣2,1).【点评】此题主要考查了平移变换以及轴对称变换,正确掌握坐标变换的性质是解题关键.12.【分析】设这个圆锥的侧面展开图的圆心角为n°,由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则根据弧长公式得到6π=,然后解方程即可.【解答】解:底面圆的面积为9π,∴圆的半径为3,∴底面圆的周长为6π,设这个圆锥的侧面展开图的圆心角为n°,根据题意得6π=,解得n=216,所以这个圆锥的侧面展开图的圆心角为216°.故答案为216.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.【分析】过A、B分别作x轴的垂线,垂足分别为E、F,先证得△AEO∽△OFB,根据相似三角形的性质得出∴=()2=,根据反比例函数系数k的几何意义得出=,解得方程即可求得k=﹣4.【解答】解:如图,过A、B分别作x轴的垂线,垂足分别为E、F.∵OA⊥OB,∴∠AOE+∠BOF=90°,∵∠AOE+∠OAE=90°,∴∠OAE=∠BOF,∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴=()2=,∴=∴|k|=4,∴k<0,∴k=﹣4,故答案为:﹣4.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数y=(k≠0)中比例系数k的几何意义:过反比例函数图象上任意一点分别作x轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.14.【分析】连接BC,交OD于点E,根据圆周角定理得到∠ACB=90°,根据平行线的性质得出∠OEB∠CED=90°,根据勾股定理得出OE=2﹣x2,根据题意推出OE是△ABC 的中位线,根据三角形中位线性质即可得解.【解答】解:连接BC,交OD于点E,∵AB是半圆O的直径,∴∠ACB=90°,∵OD∥AC,OA=OB,∴∠OEB=∠CED=∠ACB=90°,CE=BE,∴CE2=CD2﹣DE2,BE2=OB2﹣OE2,∴CD2﹣DE2=OB2﹣OE2,∵CD=x,OB=OD=2,∴x2﹣DE2=22﹣(2﹣DE)2,∴DE=x2,∴OE=2﹣x2,∵OA=OB,CE=BE,∴OE是△ABC的中位线,∴AC=2OE,∵AC=y,∴y=4﹣x2,故答案为:y=4﹣x2.【点评】此题考查了勾股定理、三角形中位线定理,熟记勾股定理、三角形中位线定理是解题的关键.15.【分析】连接OA,OB1,OC1,根据正五边形的性质得到∠AOB1=∠B1OC1==72°,根据圆周角定理得到∠AFC1=AOC1=72°,根据等腰三角形的性质得到∠GAF=30°,于是得到结论.【解答】解:连接OA,OB1,OC1,∵点O是正六边形ABCDEF和正五边形AB1C1D1E1的中心,∴∠AOB1=∠B1OC1==72°,∴∠AOC1=144°,∴∠AFC1=AOC1=72°,∵AF=EF,∠AFE=120°,∴∠GAF=30°,∴∠AGF=180°﹣∠GAF﹣∠AFG=180°﹣30°﹣72°=78°,故答案为:78.【点评】本题考查了正多边形与圆,等由三角形的性质,正确地作出辅助线是解题的关键.16.【分析】将m,m+1,m+2代入函数表达式,根据题意求得y1、y2、y3,比较大小,逐项判断即可.【解答】解:P1(m,y1),P2(m+1,y2),P3(m+2,y3)是下列函数图象上的点,①y=x+1,则y1=m+1.y2=m+1+1=m+2.y3=m+2+1=m+3,∵|m+1﹣(m+2)|=1,|m+3﹣(m+2)|=1,∴|y1﹣y2|=|y3﹣y2|,故①不合题意;②y=(x>0),则y1=.y2=.y3=,∵|﹣|=,|﹣|=,∴|y1﹣y2|>|y3﹣y2|,故②不合题意;③y=x2﹣3x﹣2(x>0),则y1=m2﹣3m﹣2.y2=(m+1)2﹣3(m+1)﹣2=m2﹣m﹣4.y3=(m+2)2﹣3(m+2)﹣2=m2+m﹣4,∵|m2﹣3m﹣2﹣(m2﹣m﹣4)|=|﹣2m+2|,|m2+m﹣4﹣(m2﹣m﹣4)|=|2m|,∵m>0,当﹣2m+2>2m时,即0<m<时,|y1﹣y2|>|y3﹣y2|,故③不合题意④y=﹣x2﹣3x+2(x>0),则y1=﹣m2﹣3m+2.y2=﹣(m+1)2﹣3(m+1)+2=﹣m2﹣5m﹣2.y3=﹣(m+2)2﹣3(m+2)+2=﹣m2﹣7m﹣8,∵|﹣m2﹣3m+2+m2+5m+2|=|2m+4|,|﹣m2﹣7m﹣8+m2+5m+2|=|2m+6|,∵m>0,∴2m+6>2m+4>0,∴|y1﹣y2|<|y3﹣y2|,故④正确,符合题意.故答案为:④.【点评】本题考查了一次函数,反比例函数,二次函数的性质,分别求得求得y1、y2、y3的值是解题的关键.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.【分析】(1)先化简各式,然后再进行计算即可解答;(2)按照解分式方程的步骤进行计算即可解答.【解答】解:(1)(﹣)﹣1+(3.14﹣π)0﹣2cos60°=﹣2+1﹣2×=﹣2+1﹣1=﹣2;(2)=+1,两边都乘以3(x+1)得:3x=2x+3x+3,解得:x=﹣,检验:当x=﹣时,3(x+1)≠0,∴x=﹣是原分式方程的根.【点评】本题考查了解分式方程,实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.18.【分析】先将小括号内的式子进行通分计算,然后算括号外面的除法,最后代入求值.【解答】解:原式=[﹣]÷(﹣)=÷=•=,当a=2﹣时,原式==.【点评】本题考查分式的化简求值,理解二次根式的性质,掌握分式混合运算的运算顺序(先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的)和计算法则是解题关键.19.【分析】(1)根据等边三角形的性质可得AB=BC,∠ABC=∠C=∠BAC=60°,然后利用SAS证明△ABD≌△BCE,即可解答;(2)利用(1)的结论可得∠ABC=∠BAC,∠CBE=∠BAF,从而可得∠ABE=∠EAF,然后利用两角相等的两个三角形相似证明△ABE∽△FAE,再利用相似三角形的性质即可解答.【解答】证明:(1)∵△ABC是等边三角形,∴AB=BC,∠ABC=∠C=∠BAC=60°,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS);(2)∵∠ABC=∠BAC,∴∠ABE+∠CBE=∠BAF+∠EAF,∵△ABD≌△BCE,∴∠CBE=∠BAF,∴∠ABE=∠EAF,∵∠AEF=∠BEA,∴△ABE∽△FAE,∴=,∴AE2=EF•EB.【点评】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定与性质,以及相似三角形的判定与性质是解题的关键.20.【分析】(1)根据中位数、方差的计算方法分别计算即可;(2)数据中“3”与其他数据的大小差异很大,因此不能较好的反映小明的实际水平;(3)根据平均数,方差的意义即可求解.【解答】解:(1)小明成绩的方差c=×[(3﹣8)2+(6﹣8)2+(9﹣8)2×5+(8﹣8)2×2+(10﹣8)2]=3.8,把小明的成绩从小到大排列为3,6,8,8,9,9,9,9,9,10,则中位数=9(环),故答案为:9,3.8;(2)不能较好的反映,理由:该组数据中“3”与其他数据的大小差异很大,因此不能较好的反映小明的实际水平;(3)若小明增加1次射击,成绩为9环,平均成绩=(8×10+9)÷11=(环),∴平均数变大,由小明的成绩得方差会变小,故答案为:C.【点评】此题考查平均数、中位数、方差的意义和计算方法,明确各个统计量的意义及反应数据的特征是正确解答的关键.21.【分析】(1)画树状图,共有12种等可能的结果,其中两次摸出的球都是红球的结果有2种,再由概率公式求解即可;(2)画树状图,共有16种等可能的结果,其中甲,乙两位同学所得分数之和不低于10分的结果有8种,再由概率公式求解即可.【解答】解:(1)画树状图如下:共有12种等可能的结果,其中两次摸出的球都是红球的结果有2种,∴两次摸出的球都是红球的概率为=.(2)画树状图如下:共有16种等可能的结果,其中甲,乙两位同学所得分数之和不低于10分的结果有8种,∴甲,乙两位同学所得分数之和不低于10分的概率为=,故答案为:.【点评】本题考查了树状图法,树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据平行四边形的性质得到AB=DC,AB∥DC.根据线段中点的定义得到BE=AB,DF=DC,根据平行四边形的判定定理即可得到结论;(2)连接EF,根据平行四边形的性质得到DE=BF,根据线段中点的定义得到EN=DN=BM=FM=BF,求得EM=BF,根据勾股定理得到EF==8,于是得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.∵E,F分别是AB,CD的中点,∴BE=AB,DF=DC,∴BE=DF,∵BE∥DF∴四边形BFDE是平行四边形;(2)解:连接EF,∵四边形BFDE是平行四边形,∴DE=BF,∵M,N分别是BF,DE的中点,∴EN=DN=BM=FM=BF,∵EM=EN=5,∴EM=BF,∴∠BEF=90°,BF=2EM=10,∵AB=12,∴BE=6,∴EF==8,∴四边形ABCD的面积为AB•EF=12×8=96,故答案为:96.【点评】本题考查了平行四边形的判定和性质,勾股定理,熟练掌握平行四边形的判定和性质定理是解题的关键.23.【分析】过点C作CF⊥l,垂足为F,过点B作BN⊥CF,垂足为N,过点D作DM⊥CF,垂足为M,设DM与BC交于点G,根据题意可得FN=AB=15cm,BN=AF,DM =EF,DE=MF,∠ABN=90°,DM∥BN,从而求出∠CBN=58°,进而求出∠CDM =∠CGM﹣∠DCB=30°,然后先在Rt△CBN中,利用锐角三角函数的定义求出BN,CN的长,从而求出EF,DM的长,再在Rt△CDM中,利用锐角三角函数的定义求出CM的长,从而求出MN的长,进行计算即可解答.【解答】解:过点C作CF⊥l,垂足为F,过点B作BN⊥CF,垂足为N,过点D作DM ⊥CF,垂足为M,设DM与BC交于点G,则FN=AB=15cm,BN=AF,DM=EF,DE=MF,∠ABN=90°,DM∥BN,∵∠ABC=148°,∴∠CBN=∠ABC﹣∠ABN=148°﹣90°=58°,在Rt△CBN中,BC=30cm,∴CN=30•sin58°≈30×0.85=25.5(cm),BN=30•cos58°≈30×0.53=15.9(cm),∴AF=BN=15.9cm,∴DM=EF=AE+AF=9+15.9=24.9(cm),∵DM∥BN,∴∠CGM=∠CBN=58°,∴∠CDM=∠CGM﹣∠DCB=58°﹣28°=30°,在Rt△CDM中,CM=DM•tan30°=×24.9≈14.36(cm),∴MN=CN﹣CM=25.5﹣14.36=11.14(cm),∴MF=MN+NF=11.14+15≈26.1(cm),∴DE=MF=26.1cm,∴摄像头到桌面l的距离DE的长约为26.1cm.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.24.【分析】(1)根据图象即可得出A点坐标即可得出慢车的速度;(2)设线段AB表示的y与x之间的函数关系式为y=kx+b,由A、B的坐标即可求解;(3)根据快车与慢车速度,进而作出图象即可.【解答】解:(1)由图象得:慢车20min行驶10km,∴慢车的速度为:10÷20=(km/min),故答案为:;(2)设线段AB表示的y与x之间的函数关系式为y=kx+b,将(20,10)(30,5)代入y=kx+b得:,解得:,∴线段AB表示的y与x之间的函数关系式为y=﹣x+20(20≤x≤30);(3)快车的速度为:=1(km/min),快车追上慢车时x=30+5÷1=35(min),快车到达乙地用时40÷1=40(min),此时,x=40+20=60(min),慢车到达乙地用时40÷+5=85(min),补全图象如图:【点评】此题主要考查了一次函数的应用以及考查学生解决实际问题的能力,要求学生根据问题提供的信息读懂图象,并善于从图象中得到正确的信息.要求学生将所给的函数图象与其表示的实际意义联系起来,并结合图象分析和解决问题.25.【分析】(1)连接AD,根据圆周角定理得到∠EDA=90°,根据圆心角、弧、弦之间的关系得到∠BAD=∠CAD,进而证明∠B=∠C,根据等腰三角形的判定定理证明结论;(2)连接DF,DG,证明△AEC∽△DGC,根据相似三角形的性质求出AE,根据勾股定理求出DE,进而求出CE.【解答】(1)证明:连接AD,∵AE是⊙O的直径,∴∠EDA=90°,∵D是的中点,∴=,∴∠BAD=∠CAD,∵∠B+∠BAD=90°,∠C+∠CAD=90°,∴∠B=∠C,(2)解:连接DF,DG.∵AB=AC,AD⊥BC,∴BD=CD,∵AB=10,BC=12,∴AC=10,CD=6,由勾股定理得:AD==8,∵DF∥AC,∴=,∴BF=FA,在Rt△ADB中,AB=10,BF=FA,∴DG=DF=AB=5,∴DG=DF=5,∵∠C=∠C,∠CDG=∠CAE,∴△AEC∽△DGC,∴=,即=,解得:AE=,在Rt△ADE中,∠ADE=90°,AE=,AD=8,∴DE==,∴EC=CD﹣DE=.【点评】本题考查的是三角形的外接圆与外心、相似三角形的判定和性质,圆心角、弧、弦之间的关系,根据△AEC∽△DGC求出AE是解题的关键.26.【分析】(1)令y=0,可得出x的两个解,且两个解不相等即可得出结论;(2)利用△MNP是等腰直角三角形,可得出m2+2m=﹣1,求出m的值即可;(3)分别求出y1,y2,y3,利用y1•y2•y3<0,得出关于m的不等式,求出m的值即可.【解答】(1)证明:令y=0,则(x﹣m)(x﹣m﹣2)=0.∴x1=m,x2=m+2.∴该方程有两个不相等的实数根.∴不论m为何值,该函数图像与x轴有两个不同的公共点.(2)由(1)知M(m+2,0),N(m+2,0),令x=0,得y=m2+2m,∴P(0,m2+2m).由题意得,△MNP是等腰直角三角形,∴m2+2m=﹣1,解得m=﹣1.故答案为:﹣1;(3)法一:根据题意可知,需要分三种情况:①当有1个点在x轴下方时,有m<1<m+2<2<3或1<2<m<3<m+3,解得﹣1<m<0或2<m<3;②当有3个点在x轴下方时,∵m+2﹣m=2<3,∴此种情况不存在;综上可知,m的取值范围为:﹣1<m<0或2<m<3.法二:由题意可知,y1=(1﹣m)(1﹣m﹣2)=(m﹣1)(m+1),y2=(2﹣m)(2﹣m﹣2)=m(m﹣2),y3=(3﹣m)(3﹣m﹣2)=(m﹣1)(m﹣3),∵y1•y2•y3<0,∴(m﹣1)(m+1)•m•(m﹣2)•(m﹣1)(m﹣3)<0,即m(m+1)(m﹣2)(m﹣3)(m﹣1)2<0,∵(m﹣1)2≥0,∴m,(m+1),(m﹣2),(m﹣3)的负数有奇数个,且m+1>m>m﹣2>m﹣3,当负数有1个时,m﹣3<0且m﹣2>0,∴2<m<3;当负数有3个时,m+1>0且m<0,∴﹣1<m<0,∴m的取值范围为:﹣1<m<0或2<m<3.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,数形结合解题是关键.27.【分析】(1)(i)证明△ABB′∽△ACC′可得结论;(ii)证明AD′是⊙A的半径,AD′⊥B′C′,可得结论;(2)(i)如图3中,连接BM,MB′,过点M作MH⊥CC′于点H.解直角三角形求出CC′,再证明△BMB′∽△MCC′,推出=,可得结论;(ii)连接BM.在BM的上方作∠DBM=∠MBC,直线BD即为所求;(3)如图⑤中,连接MB,MB′.证明∠CPB=45°,因为BC===5=定值,推出点P的运动轨迹是圆,假设圆心为O,连接OB,OC,OP.求出OB,OP,可得结论.【解答】(1)(ⅰ)证明:∵△ABC绕点A逆时针旋转得到△AB′C′,∴AB=AB′,AC=AC′,∠BAB′=∠CAC′,∴=.∵∠BAB′=∠CAC′,∴△ABB′∽△ACC′.∴=;(ⅱ)证明:∵△ABC≌△AB′C′,∴AB=AB′,∠B=∠B′∵∠ADB=∠AD′B′=90°,∴△ABD≌△AB′D′(AAS),∴AD=AD′,∵AD′是⊙A的半径,AD′⊥B′C′,∴B′C′是⊙A的切线.故答案为:∠B=∠B′,AD=AD′;(2)解:(ⅰ)如图3中,连接BM,MB′,过点M作MH⊥CC′于点H.∵AB=AM=,∠A=90°,∴BM=AB=,∵MC=MC′=,tan C′==,∴MH=1,HC′=CH=2,∴CC′=2CH=4,由旋转变换的性质可知,MB=MB′,∠BMB′=∠CMC′,∴△BMB′∽△MCC′,∴=,∴=,∴BB′=4.故答案为:4;(ⅱ)如图④中,直线l即为所求.(3)如图⑤中,连接MB,MB′.∵△MBB′∽△MCC′,∴∠MB′B=∠MC′C,∵∠MB′B+∠PB′M=180°,∴∠MC′C+∠PBM=180°,∴∠BMC′+∠CPB=180°,∵A′M=A′B,∠A′=90°,∴∠A′MB=45°,∴∠BMC′=135°,∴∠CPB′=45°,∵BC===5=定值,∴点P的运动轨迹是圆,假设圆心为O,连接OB,OC,OP.∴∠BOC=2∠CPB=90°,∴OB=OC=OP=,∵PB≤OB+OP=5,∴BP的最大值为5.故答案为:5.【点评】本题属于圆综合题,考查了切线的判定,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,第三个问题的突破点是正确寻找点P的运动轨迹,属于中考压轴题.。
2023 年南京市中考数学试卷第一部分:选择题(共40分)
1. 在平面内,点A的坐标是(4,7),点B的坐标是(1,-2),则线段AB的斜率是多少?
A) 2
B) 3
C) 4
D) 5
2. 若正方形的边长为x,它的面积是多少?
A) x
B) x^2
C) 2x
D) 4x
...
第二部分:填空题(共30分)
1. 已知一个矩形的长为8,宽为5,它的面积是______。
...
第三部分:解答题(共30分)
1. 某农田中有15只鸡和兔,它们共有44只脚。
请问鸡和兔的数量各是多少?
...
2. 已知一根绳子长12米,需要分成3段,其中第一段比第二段长1米,第二段比第三段长2米。
请问每段绳子的长度是多少?
...
第四部分:应用题(共40分)
1. 某商店举行出售洗衣机活动,原价2000元的洗衣机打8折出售,消费者购买洗衣机后再领取100元优惠券。
如果消费者购买洗衣机并使用优惠券后,实际需要支付的金额是多少?
...
2. 小明骑自行车每小时可以行驶15公里,小红骑自行车每小时可以行驶12公里。
如果小明和小红同时从同一地点出发,以相同的速度朝相反的方向行驶,6个小时后,他们相距了多少公里?
...
以上为2023年南京市中考数学试卷的部分题目,请考生参考完成试卷。
祝您取得优异成绩!。
2023年江苏省南京市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷.用科学记数法表示3830000是()A. B. C. D.2.整数a满足,则a的值为()A.3B.4C.5D.63.若一个等腰三角形的腰长为3,则它的周长可能是()A.5B.10C.15D.204.甲、乙两地相距100km,汽车从甲地匀速行驶到乙地,则汽车行驶的时间单位:与行驶速度单位:之间的函数图象是()A. B. C. D.5.我国南宋数学家秦九韶的著作《数书九章》中有一道问题:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何?”问题大意:如图,在中,里,里,里,则的面积是()A.80平方里B.82平方里C.84平方里D.86平方里6.如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cmB.40cmC.42cmD.45cm二、填空题:本题共10小题,每小题3分,共30分。
7.计算:____;____.8.若式子在实数范围内有意义,则x的取值范围是_______.9.计算的结果是_______________.10.分解因式的结果是___________.11.计算的结果是__________________.12.某校九年级有8个班级,人数分别为37,a,32,36,37,32,38,若这组数据的众数为32,则这组数据的中位数为______.13.甲车从A地出发匀速行驶,它行驶的路程单位:与行驶的时间单位:之间的函数关系如图所示.甲车出发后,乙车从A地出发沿同一路线匀速行驶.若乙车经过追上甲车,则乙车的速度单位:的取值范围是___________________.14.在平面直角坐标系中,点O为原点,点A在第一象限,且若反比例函数的图象经过点A,则k的取值范围是___________________.15.如图,与正六边形ABCDEF的边CD,EF分别相切于点C,若,则的半径长为___________________.16.如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在处,,垂足为若,,则__________________三、解答题:本题共11小题,共88分。
2022年江苏省南京市中考数学试卷一、选择题。
(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)﹣3的相反数是()A.3B.﹣3C.D.2.(2分)化简(a2)3的结果为()A.a5B.a6C.a8D.a93.(2分)估计12的算术平方根介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.(2分)反比例函数为常数,k≠0)的图象位于()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限5.(2分)已知实数a,b,a>b,下列结论中一定正确的是()A.|a|>|b|B.>C.a2>b2D.a3>b36.(2分)直三棱柱的表面展开图如图所示,AC=3,BC=4,AB=5,四边形AMNB是正方形,将其折叠成直三棱柱后,下列各点中,与点C距离最大的是()A.点M B.点N C.点P D.点Q二、填空题。
(本大题共10小题,每小题2分,共20分,请把答案填写在答题卡相应位置上)7.(2分)地球与月球的平均距离约为384000km,用科学记数法表示384000是.8.(2分)若在实数范围内有意义,则x的取值范围是.9.(2分)计算的结果是.10.(2分)方程x2﹣4x+3=0的解是.11.(2分)如图,▱ABCD的顶点A,C分别在直线l1,l2上,l1∥l2,若∠1=33°,∠B =65°,则∠2=°.12.(2分)若24+24=2a,35+35+35=3b,则a+b=.13.(2分)已知二次函数y=ax2﹣2ax+c(α,c为常数,a≠0)的最大值为2,写出一组符合条件的a和c的值:.14.(2分)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标是(﹣1,0),点D 的坐标是(﹣2,4),则点C的坐标是.15.(2分)如图,四边形ABCD内接于⊙O,它的3个外角∠EAB,∠FBC,∠GCD的度数之比为1:2:4,则∠D=°.16.(2分)如图,在平面直角坐标系中,横、纵坐标均为整数的点按如下规律依序排列:(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1),(1,2),(0,3),(4,0),(3,1),(2,2),(1,3),…,按这个规律,则(6,7)是第个点.三、解答题。
2023年江苏省南京市中考数学会考试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,小明在打网球时,使球恰好能打过网,而且落点恰好在离网6米的位置上,则球拍击球的高度h 为( )A .815B . 1C . 43D .852.如图,O 为□ABCD 的对角线交点,E 为AB 的中点,DE 交AC 于点F ,若S □ABCD =12,则S △DOE 的值为( )A .1B .32C .2D .943.若三角形的三个外角的度数之比为2:3:4,则与之对应的三个内角的度数之比为 ( )A .4:3:2B .3:2:4C .5:3:1D .3:1:5 4.数据3,19,35,26,26,97,96的极差为( ) A .94 B .77 C .9 D .无法确定5.下列等式成立的是( )A .a b =+B . =D .ab =-6.已知点P (4,a+1)到两坐标轴的距离相等,则a 的值为( )A .3B .4C .-5D .3或-57.在△ABC 中,∠BAC=90°,AD ⊥BC 于D ,若AB=3,BC=5,则DC 的长度是( )A .85B .45C .165D .2258.我们知道,等腰三角形是轴对称图形,下列说法中,正确的是( )A .等腰三角形顶角的平分线所在的直线是它的对称轴B . 等腰三角形底边上的中线所在的直线是它的对称轴C . 等腰三角形底边上的高线所在的直线是它的对称轴D .以上都对 9.从1到9这九个自然数中任取一个,既是2的倍数,又是3的倍数的概率是( )A .91B . 31C . 21D . 97 10.下列说法中,正确的个数有( )①延长直线AB ;②取线段AB 的中点C ;③以0为圆心作弧;④已知∠α,作∠α的余角的一半.A .0个B .1个C .2个D .3个11. 下列各式中,运算结果为负数的是( )A .(-2)×(-3)÷(+4)B .(+1)÷(-1)×(-1)÷(+1)C .1111()()()24816-⨯-÷-⨯D .(-3)×(-5)×(-7)÷(-9)二、填空题12.已知关于x 的函数同时满足下列三个条件:①函数的图象不经过第二象限;②当2<x 时,对应的函数值0<y ;③当2<x 时,函数值y 随x 的增大而增大.你认为符合要求的函数的解析式可以是: (写出一个即可).13.如图,将左边的矩形绕点B 旋转一定角度后,位置如右边的矩形,则∠ABC= .14.如图,D 为等边△ABC 内一点,且BD=AD ,BP=AB ,∠l=∠2,则∠P= .解答题15.若(1)12m x x m ->+-的解为1x <-,则m 的取值范围是 .16.不等式322104x x --+>的所有整数解的积为 . 17.若数据3,4,5,6,x 的平均数为4,则x = .18.计算:)31()3(22xy y x ⋅-= .19.·a 2 ·a 3 =a 8 ,则M= ;若2x+1 =16,则x=_______.20.如图所示,△ABC 中,DE 是AC 的中垂线,AE=5,△ABC 的周长为30,则△ABD 的周长是 .21.轴对称图形和轴对称的区别在于前者是对 个图形而言的,而后者是对 个图形而言的.22.自由下落物体的高度h(米)与下落的时间t(秒)的关系为24.9h t=.现有一铁球从离地面19米高的建筑物的顶部作自由下落,到达地面需要的时间是秒.(精确到0.1秒)23.关于x的方程22220x ax a b++-=的根为.三、解答题24.已知:如图AB BC ACAD DE AE==,求证:∠1 =∠2.25.如图,等腰梯形ABCD中,上底AD=24 cm,下底BC=28 cm,动点P从A开始沿AD边向D以1 cm/s的速度运动,动点Q从点C开始沿CB边向B以3 cm/s的速度运动,P,Q 分别从点A,C同时出发,当其中一点到端点时,另一点也随之停止运动,设运动时间为t(s).(1)t取何值时,四边形PQCD为平行四边形?(2)t取何值时,四边形PQCD为等腰梯形?26.如图,在矩形ABCD中,AB=2BC,在CD上取一点E.使AE=AB,求∠EBC的度数.27.4(2)532x a +-=+的解小于31(23)32a a x x ++=的解,求a 的取值范围. 115a >-28. 如图是由 16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑. 请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑;使它们成为轴对称图形.29.某学校共有2个大阅览室和4个小阅览室,经过测试,同时开放 1 个大阅览室和2个小阅览室,可供 372名同学阅读;同时开放 2 个大阅览室和 1个小阅览室,可供 474名同学阅读.(1)问1个大阅览室和1个小阅览室分别可供多少名同学阅读?(2)若6个阅览室同时开放,能不能供 780名同学阅读?请说明理由.30.第一次从外面向仓库运进化肥 48. 5 t ,第二次从仓库里运出化肥 54 t ,结果怎样?试列出有理教运算的算式,通过计算作答.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.A5.D6.D7.C8.D9.A10.C11.C二、填空题12.2-=x y 提示:答案不惟一,如652-+-=x x y 等)13.90o14.30°15.1m < 16.17.218.33x y - 19.3a ,320.2021.1,222.2.023.a b -+或a b --三、解答题24.在△ABC 和△ADE 中,AB BC AC AD DE AE==,∴△ABC ∽△ADE. ∴∠BAC=∠DAE,∴∠BAD=∠CAE .在△ABD 和△ACE 中,AB AC AD AE=,∠BAD=∠CAE,∴△ABC ∽△CAE,∴∠1=∠2 25.(1) t取6 s时,四边形PQCD为平行四边形;(2)t取7s时,四边形PQCD为等腰梯形26.15°27.1a>-28.1529.(1)大阅览室可供 192人阅读,小阅览室可供 90人阅读 (2)2×192十4×9O=744<780,不能供 780名同学同时阅读.30.运出5. 5 t。
江苏省南京市中考数学模拟试卷(含答案)(考试时间:120分钟分数:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.函数y=2﹣中,自变量x的取值范围是()A.x>﹣3 B.x≥﹣3 C.x≠﹣3 D.x≤﹣3 2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x73.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.4.在平面直角坐标系中,将点P向左平移2个单位长度后得到点(﹣1,5),则点P的坐标是()A.(﹣1,3) B.(﹣3,5)C.(﹣1,7)D.(1,5)5.下表是某校合唱团成员的年龄分布表:年龄/岁12 13 14 15频数 5 15 x10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差6.一个圆锥的主视图是边长为4cm的正三角形,则这个圆锥的侧面积等于()A.16πcm2B.12πcm2C.8πcm2D.4πcm2 7.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD=()A.3 B.4 C.4.8 D.58.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m9.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k 的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tan 10.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3二、填空题(本大题共8小题,每小题2分,本大题共16分)11.9的平方根是.12.分解因式:a3﹣4ab2=.13.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为6700000米,将6700000用科学记数法表示为.14.若一个多边形的内角和是540°,则这个多边形是边形.15.四边形ABCD为⊙O的内接四边形,已知∠A:∠B=4:5,则∠A =度.16.如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G 作GE∥BC交AC于点E,如果BC=6,那么线段GE的长为.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.18.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为.三、解答题(本大题共10小题,共84分)19.计算与化简(1)|﹣1|﹣﹣(5﹣π)0+4cos45°(2)(a+b)2﹣a(a﹣2b)20.(1)解方程:;(2)解不等式组:.21.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.22.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为;(2)该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.23.某企业500名员工参加安全生产知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)求这次抽样调查的样本容量,并补全图①;(2)如果测试成绩(等级)为A,B,C级的定位优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.24.阅读理解:[x]表示不大于x的最大整数,例[2.3]=2,[﹣5.6]=﹣6(1)[8.2]=.[﹣]=.(2)[x]=2的x的取值范围.(3)直接写出方程[2x]=x2的解.25.已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tan C=,求⊙O的直径.26.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)27.已知:,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.28.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y =4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.答案一、选择题1.函数y=2﹣中,自变量x的取值范围是()A.x>﹣3B.x≥﹣3C.x≠﹣3D.x≤﹣3【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:x+3≥0,解得:x≥﹣3.故选:B.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x7【分析】A、利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,本选项错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3x2•4x2=12x4,本选项错误;B、原式不能合并,错误;C、x4÷x=x3,本选项正确;D、(x5)2=x10,本选项错误,故选:C.【点评】此题考查了同底数幂的除法,合并同类项,积的乘方与幂的乘方,以及单项式乘单项式,熟练掌握法则是解本题的关键.3.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B.【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.4.在平面直角坐标系中,将点P向左平移2个单位长度后得到点(﹣1,5),则点P的坐标是()A.(﹣1,3)B.(﹣3,5)C.(﹣1,7)D.(1,5)【分析】利用平移规律计算即可得到结果.【解答】解:由题意知,点P的坐标为(﹣1+2,5),即(1,5),故选:D.【点评】此题考查了坐标与图形变化﹣平移,熟练掌握平移性质是解本题的关键.5.下表是某校合唱团成员的年龄分布表:年龄/岁12131415频数515x10﹣x 对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第14、15个数据的平均数,可得答案.【解答】解:由表可知,年龄为14岁与年龄为15岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为13岁,中位数为:岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6.一个圆锥的主视图是边长为4cm的正三角形,则这个圆锥的侧面积等于()A.16πcm2B.12πcm2C.8πcm2D.4πcm2【分析】根据视图的意义得到圆锥的母线长为4,底面圆的半径为2,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:根据题意得圆锥的母线长为4,底面圆的半径为2,所以这个圆锥的侧面积=×4×2π×2=8π(cm2).故选:C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB 于点D,交AC于点E,连接CD,则CD=()A.3B.4C.4.8D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC==5.故选:D.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD 的长是解题关键.8.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m【分析】设小长方形的长为a,宽为b(a>b),根据矩形周长公式计算可得结论.【解答】解:设小长方形的长为a,宽为b(a>b),则a+3b=n,阴影部分的周长为2n+2(m﹣a)+2(m﹣3b)=2n+2m﹣2a+2m﹣6b=4m+2n﹣2n=4m,故选:D.【点评】本题考查整式的加减、列代数式、矩形的周长,解答本题的关键是明确整式的加减运算的计算方法和整体代入的思想.9.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tan【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.【解答】解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(3,0),∴D(﹣a﹣3,),∴=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故选:A.【点评】本题考查了平行四边形的性质,反比例函数图象上点的坐标特征,锐角三角函数,根据点C、D的纵坐标列出方程是解题的关键.10.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或3【分析】由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍);③若1<h<3时,当x=h时,y取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上,h的值为﹣1或5,故选:B.【点评】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.12.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.13.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为6700000米,将6700000用科学记数法表示为 6.7×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6700000用科学记数法表示为6.7×106.故答案是:6.7×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.若一个多边形的内角和是540°,则这个多边形是五边形.【分析】根据多边形的内角和公式求出边数即可.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:五.【点评】本题考查了多边形的内角和定理,熟记公式是解题的关键.15.四边形ABCD为⊙O的内接四边形,已知∠A:∠B=4:5,则∠A=80度.【分析】根据圆的内接四边形对角互补解答即可.【解答】解:因为四边形ABCD为⊙O的内接四边形,∠A:∠B=4:5,可设∠A为4x,∠B为5x,可得:4x+5x=180°,解得:x=20°,所以∠A=80°,故答案为:80【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.16.如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC交AC于点E,如果BC=6,那么线段GE的长为2.【分析】由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.【解答】解:∵点G是△ABC重心,BC=6,∴CD=BC=3,=2,∵GE∥BC,∴△AEG∽△ACD,∴==,∴GE=2.故答案为:2.【点评】此题考查了相似三角形的判定与性质以及三角形重心的性质.解题时注意:重心到顶点的距离与重心到对边中点的距离之比为2:1.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是175米.【分析】根据图象先求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程﹣甲所走的路程即可得出答案.【解答】解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m﹣2.5)×(180﹣30)=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.【点评】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.18.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为x=4或x≥8.【分析】过点B作BD⊥AC于点D,则△ABD是等腰直角三角形;再延长AD到E点,使DE=AD,再分别讨论点C的位置即可.【解答】解:过B点作BD⊥AC于D点,则△ABD是等腰三角形;再延长AD到E,使DE=AD,①当点C和点D重合时,△ABC是等腰直角三角形,BC=4,这个三角形是唯一确定的;②当点C和点E重合时,△ABC也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C在线段AE的延长线上时,即x大于BE,也就是x>8,这时,△ABC也是唯一确定的;综上所述,∠BAC=45°,AB=8,要使△ABC唯一确定,那么BC的长度x满足的条件是:x=4或x≥8.故答案为:x=4或x≥8.【点评】本题主要是考查等腰直角概念,正确理解顶点的位置是解本题的关键三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或验算步骤)19.计算与化简(1)|﹣1|﹣﹣(5﹣π)0+4cos45°(2)(a+b)2﹣a(a﹣2b)【分析】(1)先求出、(5﹣π)0、cos45°的值,再求出答案即可;(2)先算乘法,再合并同类项即可.【解答】解:(1)原式=1﹣﹣1+4×=;(2)原式=a2+2ab+b2﹣a2+2ab=4ab+b2.【点评】本题考查了整式的混合运算、零指数幂、二次根式、特殊角的三角函数值等知识点,能求出每一部分的值是解(1)的关键,能熟练运用整式的运算法则进行化简是解(2)的关键.20.(1)解方程:;(2)解不等式组:.【分析】(1)分式方程两边都乘以(x﹣2),把分式方程化为整式方程,求解,再进行检验即可;(2)先求出两个不等式的解集,再求其公共解.【解答】解:(1)方程两边都乘以(x﹣2)得,1=x﹣1﹣3(x﹣2),解得x=2,检验:当x=2时,x﹣2=2﹣2=0,所以,原分式方程无解;(2),解不等式①得,x≥﹣1,解不等式②得,x<2,所以,不等式组的解集是﹣1≤x<2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.【分析】由四边形ABCD是平行四边形,可得AB∥CD,OA=OC,继而证得△AOE≌△COF,则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,OA=OC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴AE=CF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为;(2)该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【解答】解:(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:;故答案为:;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.某企业500名员工参加安全生产知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)求这次抽样调查的样本容量,并补全图①;(2)如果测试成绩(等级)为A,B,C级的定位优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.【分析】(1)抽查人数的样本容量可由A级所占的比例40%,根据总数=某级人数÷比例来计算;可由总数减去A、C、D、E的人数求得B级的人数,再补全条形统计图;(2)用样本估计总体,用总人数×达到优秀的员工的百分比,就是要求的结果.【解答】解:(1)依题意有:20÷40%=50(人),则这次抽样调查的样本容量为50.50﹣20﹣5﹣8﹣5=12(人).补全图①为:;(2)依题意有500×=370(人).答:估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数为370人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.会画条形统计图.也考查了用样本估计总体.24.阅读理解:[x]表示不大于x的最大整数,例[2.3]=2,[﹣5.6]=﹣6(1)[8.2]=8.[﹣]=﹣3.(2)[x]=2的x的取值范围2≤x<3.(3)直接写出方程[2x]=x2的解.【分析】(1)根据[x]表示不大于x的最大整数即可求解;(2)结合题目给出[x]的定义,可以判断[x]=2中,x与2的大小关系;(3)结合题目给出[x]的定义,可以判断[2x]=x2中,2x与x2的大小关系,从而列出不等式组,确定x的范围,最后求出x的值;【解答】解:(1)小于8.2的最大整数位8,小于﹣最大的整数位﹣3;故答案为:8;﹣3.(2)∵:[x]表示不大于x的最大整数,∴2≤x<3.故答案为:2≤x<3.(3)由题意可得,解得:0≤x≤2∵x2为整数∴x=0,,,2方程[2x]=x2的解为:0,,,2【点评】此题考查了一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式的解.25.已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tan C=,求⊙O的直径.【分析】(1)连接OD,利用D是AC中点,O是AB中点,那么OD就是△ABC的中位线,利用三角形中位线定理,可知OD∥BC,而DE⊥BC,则∠DEC=90°,利用平行线的性质,有∠ODE=∠DEC=90°,即DE是⊙O的切线;(2)连接BD,由于AB是直径,那么∠ADB=90°,即BD⊥AC,在△ABC中,点D 是AC中点,于是BD是AC的垂直平分线,那么BA=BC,在Rt△CDE中,DE=2,tan C =,可求CE=4,再利用勾股定理可求CD=2,同理在Rt△CDB中,CD=2,tan C=,可求BD=,利用勾股定理可求BC=5,从而可知BA=BC=5.【解答】(1)证明:连接OD.∵D为AC中点,O为AB中点,∴OD为△ABC的中位线,∴OD∥BC,∵DE⊥BC,∴∠DEC=90°,∴∠ODE=∠DEC=90°,∴OD⊥DE于点D,∴DE为⊙O的切线;(2)解:连接DB,∵AB为⊙O的直径,∴∠ADB=90°,∴DB⊥AC,∴∠CDB=90°∵D为AC中点,∴AB=BC,在Rt△DEC中,∵DE=2,tan C=,∴EC=,由勾股定理得:DC=,在Rt△DCB中,BD=,由勾股定理得:BC=5,∴AB=BC=5,∴⊙O的直径为5.【点评】本题主要是作出合适的辅助线.利用了三角形中位线的判定和性质、平行线的性质、切线的判定、直径所对的圆周角等于90°、三角函数值、勾股定理.26.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)【分析】(1)设甲种材料每千克x元,乙种材料每千克y元,根据题意列出方程,解方程即可;(2)设生产B产品a件,生产A产品(60﹣a)件.根据题意得出一元一次不等式组,解不等式组即可得出结果;(3)设生产成本为W元,根据题意得出W是a的一次函数,即可得出结果.【解答】解:(1)设甲种材料每千克x元,乙种材料每千克y元,依题意得:,解得:;答:甲种材料每千克25元,乙种材料每千克35元.(2)设生产B产品a件,生产A产品(60﹣a)件.依题意得:解得:38≤a≤40;∵a的值为非负整数,∴a=38、39、40;答:共有如下三种方案:方案1、A产品22个,B产品38个,方案2、A产品21个,B产品39个,方案1、A产品20个,B产品40个;(3)生产A产品22件,B产品38件成本最低.理由如下:设生产成本为W元,则W与a的关系式为:W=(25×4+35×1+40)(60﹣a)+(35×3+25×3+50)a=55a+10 500,即W是a的一次函数,∵k=55>0∴W随a增大而增大∴当a=38时,总成本最低;即生产A产品22件,B产品38件成本最低.【点评】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用;根据题意中的数量关系列出方程组、不等式组、一次函数关系式是解决问题的关键.27.已知:,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.【分析】(1)作辅助线,过点A作AE⊥PB于点E,在Rt△PAE中,已知∠APE,AP 的值,根据三角函数可将AE,PE的值求出,由PB的值,可求BE的值,在Rt△ABE中,根据勾股定理可将AB的值求出;求PD的值有两种解法,解法一:可将△PAD绕点A顺时针旋转90°得到△P'AB,可得△PAD≌△P'AB,求PD长即为求P′B的长,在Rt△AP′P中,可将PP′的值求出,在Rt△PP′B中,根据勾股定理可将P′B的值求出;解法二:过点P作AB的平行线,与DA的延长线交于F,交PB于G,在Rt△AEG中,可求出AG,EG的长,进而可知PG的值,在Rt△PFG中,可求出PF,在Rt△PDF中,根据勾股定理可将PD的值求出;(2)将△PAD绕点A顺时针旋转90°,得到△P'AB,PD的最大值即为P'B的最大值,故当P'、P、B三点共线时,P'B取得最大值,根据P'B=PP'+PB可求P'B的最大值,此时∠APB=180°﹣∠APP'=135°.【解答】解:(1)①如图,作AE⊥PB于点E,∵△APE中,∠APE=45°,PA=,∴AE=PE=×=1,∵PB=4,∴BE=PB﹣PE=3,在Rt△ABE中,∠AEB=90°,∴AB==.②解法一:如图,因为四边形ABCD为正方形,可将△PAD绕点A顺时针旋转90°得到△P'AB,可得△PAD≌△P'AB,PD=P'B,PA=P'A.∴∠PAP'=90°,∠APP'=45°,∠P'PB=90°∴PP′=PA=2,∴PD=P′B===;解法二:如图,过点P作AB的平行线,与DA的延长线交于F,与DA的延长线交PB于G.在Rt△AEG中,可得AG===,EG=,PG=PE﹣EG=.。
2023年南京市中考数学试题及答案第一题某商品在打折后的价格是原价的80%,打折后售价为160元,请问原价是多少元?答案:200元第二题在一桶含有100个红球和150个蓝球的桶中,先取1个球,再取另一个球,取出2个红球的概率是多少?答案:0.148第三题若直线$y=2x+b$和$x=2y-2$交于点$P$,求直线$OP$的斜率,其中$O$为坐标原点。
答案:-0.5第四题已知$\log_a b=0.75$,求$\log_a (b^{-1})$的值。
答案:-0.75第五题已知$\sin\theta=-\frac{1}{2}$,$\theta$是第三象限的角,求$\cos\theta$的值。
答案:$-\frac{\sqrt{3}}{2}$第六题设$f(x)=-x^2-3x+10$,求$f(x)$的最大值。
答案:13第七题求下面方程组的解:$$\begin{cases}2x-3y=4 \\4x+5y=15\end{cases}$$答案:$x=3, y=0$第八题已知等边三角形ABC的边长为6,点M是边AB上的一点,且AM=2,求三角形ACM的面积。
答案:$3\sqrt{3}$第九题如图所示,正方形ABCD的边长为6,点E是边AD上的一点,且AE=3,连接BE,求$\triangle BDE$的面积。
答案:9第十题已知ABCD是一个平行四边形,如图所示,AE是周长为28的正方形所在的边,求$BD$的长度。
答案:$16\sqrt{2}$以上是2023年南京市中考数学试题及答案,请同学们认真阅读并思考,勤加练习,提高自己的数学能力。
祝大家考试顺利!。
2022年江苏省南京市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下面简单几何体的主.视图是()2.如果菱形的周长是8cm,高是1cm,那么这个菱形两邻角的度数比为()A.1:2B.1:4C.1:5D.1:63.下列命题属于真命题的个数有()①三角形的两边之和大于第三边,两边之差小于第三边;②两条直线被第三条直线所截,同位角相等:③相等的角是对顶角;④有两角和其中一角的对边对应相等的两个三角形是全等三角形.A.1个B.2个C.3个D.4个4.若x为任意实数时,二次三项式26-+的值都不小于0,则常数c满足的条件是()x x cA.c≥0B.c≥9C.c>0 D.c>95.下列说法中,错误的是()A.长方体、立方体都是棱柱B.竖放的直三棱柱的侧面是三角形C.竖放的直六棱柱有六个侧面,侧面为长方形C.球体的三种视图均为同样大小的图形6.一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为()A.15,15 B.10,15 C.15,20 D.10,207.在平面直角坐标系中,点(1,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限8.在△ABC中,分析下列条件:①有一个角等于60°的等腰三角形;②有两个角等于60°的三角形;③有3条对称钠的三角形;④有两边相的三角形. 其中能说明△ABC是等边三角形的有()A.①B.①②C.①②③D.①②③④9.用四舍五入法得到的近似数0.002030的有效数字有 ( )A .6个B .4个C .3个D .2个二、填空题10.当太阳光与地面成55°角时,直立于地面的玲玲测得自己的影长为1.16m ,则玲玲的身高约为 m .(精确到0.01m ) 11.如图,已知 AB 是⊙O 的直径,BD =OB ,∠CAB=30°,请根据已知条件和所给图形,写出三个正确结论. (除 OA= OB =BD 外):① ;② ;③ .12.已知反比例函数8y x =-的图象经过点P (a-1,4),则a=_____. -113.一次函数21y x =-+的图象经过抛物线2+1(0)y x mx m =+≠的顶点,则 m= .14.如图,已知在⊙O 中,直径10MN =,正方形ABCD 的四个顶点分别在⊙O 及半径OM OP ,上,并且45POM ∠=,则AB 的长为 .15.二次函数y =-2x 2+4x -9的最大值是 .-716.多边形的内角和的度数y 与边数n 之间的关系为y=(n-2)·180°,其中常量为 ,变量为 .17.不等式组的整数解是 .18.如图,∠1 = 101°,当∠2 = 时,a ∥b .19.一种细胞膜的厚度是0.00000000学记数法表示为 .20.方程组53x yx y+=⎧⎨-=⎩的解也是方程10x-my=7的解,则m=_______.3321.在△ABC中,∠A=60°, ∠C=52°, 则与∠B相邻的一个外角为°.22.元旦联欢会上,七(4)的50名同学围坐在一起做击鼓传花的游戏,其中26 名男生和 24 名女生的座位是随意安排的,若花在每个同学手中的停留时间相同,则花落在男生手中的机会是手中的机会是,落在女生的机会是.23.13∣的倒数是.24.23-的倒数是,23-的绝对值是.三、解答题25.如图,在右边格点图中画出一个和左边格点图中的三角形相似的图形.26.如图,有长为 24m 的篱笆,一面靠墙 (墙长为lOm),围成中间隔有一道篱笆的长方形花圃,设花圃宽 AB 为x(m),面积为 S(m2).(1)求S与x 的函数关系式;(2)如果要围成面积为 45m2的花圃,AB 的长是多少?(3)能围出比 45 m2更大的花圃吗?若能,求出最大的面积,并说明围法;若不能,说明理由.27.如图是由几个相同的小立方体搭成的几何体的俯视图,小正方形中的数字的是在该位置上小立方体的个数,请面出这个几何体的主视图和左视图.28.两个大小不同的圆可以组成以下五种图形,请找出每个图形的对称轴,并说说它们的对称轴有什么共同特征?29.对于分式23x ax b-+,当 x=-1时,分式无意义;当 x=4时,分式的值为 0,试求代数式ab的值.8330.如图所示,初三(2)班的一个综合实践活动小组去 A.B 两个超市调查去年和今年五一节期间的销售情况,图中是调查后小敏与其他两位同学交流的情况. 根据他们的对话,请你分别求出 A.B 两个超市今年五一节期间的销售额.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.B4.B5.B6.A7.A8.C9.B二、填空题10.1.6611.CD 是⊙O 的切线,∠D=30°,AC=CD12.13.414.515.16.2、180°;y 、n17.1,218.79°19.10810-⨯20.21.11222.1325,122523.324.32-,23三、解答题25.如图所示,答案不唯一26.(1) 2(243)324S x x x x =⋅-=-+(2)由已知得(243)45x x ⋅-=,整理得28150x x -+=,13x =,25x =, ∵墙长 10 m ,∴x=3不合题意 ,舍去.∴x=5.即AB=5 (m).(3) ∵2324S x x =-+,即23(4)48S x =--+∴x=4 时,S 最大值=48.又∵墙长为 lOm ,当 x=4 时,BC=12,∴x=4,不合题意舍去.∵ 24-3x ≤10,∴143x ≥,∴1483x ≤<,∴当143AB =,BC = 10 时,围成的面积比45 m 2 大,为1403m 2 27. 略28.略.29.8330. A 超市今年五一节期间的销售额为 115 万元,B 超市今年五一节期间的销售颧为 55 万元。
2022年江苏省南京市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图1表示正六棱柱形状的高大建筑物,图2表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( ) A .P 区域B .Q 区域C .M 区域D .N 区域2.已知关于x 的一元二次方程221()04x R r x d -++=无实数根,其中 R 、r 分别是⊙O 1、⊙O 2的半径,d 为两圆的圆心距,则⊙O 1、⊙O 2的位置关系为( ) A .外切B .内切C .外离D .外切或内切3.在拼图游戏中,从如图左边的四张纸片中,任取两张纸片,能拼成如图右边的“小房子”的概率等于( ) A .1B . 12C .13D .234.小明和五名女同学和另四名男同学玩丢手帕游戏,小明随意将手帕丢在一名同学的后面,那么这名同学是女生的概率是( ) A .59B .49C .12D . 455.如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC 的大小是 ( ) A .40°B .45°C .50°D .60°6.一个跳水运动员从10米高台上跳水,他每一时刻所在的高度(单位:米)与所用时间(单位:秒)的关系是h =-5(t -2)(t +1).则运动员起跳到入水所用的时间( ) A .-5B .-1C .1D . 27.下列说法中,正确的个数是( )①样本的方差越小,波动性越小,说明样本稳定性越好;②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的; ④一组数据的标准差越大,则这组数据的方差一定越大. A .1个B .2个C .3个D .4个8.若))(3(152n x x mx x ++=-+,则m 的值为 ( ) A .5-B .5C .2-D .29.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,•除颜色外其他全部相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的概率为15%和45%,则口袋中白色球的个数很可能是( ) A .6 B .16C .18D .2410.如图,在△ABC 中,DE 是边AB 的垂直平分线,BC=8cm ,AC=5cm 则△ADC 的周长为( ) A .14 cm B .13 cm C .11 cm D .9 cm11.下面的图表是护士统计的一位病人一天的体温变化情况:时间 6:00 10:00 14:00 18:00 22:00 体温/℃37.638.338.039.137.9通过图表,估计这个病人下午16:00时的体温是( ) A .38.0℃ B .39.1℃ C .37.6℃ D .38.6℃ 12.16的平方根是±4,用算式表示正确的是( ) A .164=± B .164±= C .164±=± D .164±=± 13.若a a ±=-时,a 是( )A . 全体实数B . 正实数C .负实数D .零 二、填空题14. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .15.如图,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = . 16.如图,用一个半径为R ,圆心角为90°的扇形做成一个圆锥的侧面,•设圆锥底面半径为r ,则R :r=________.17.已知△ABC ,可以画△ABC 的外接圆且只能画 个;对于给定的⊙O ,可以画⊙O 的个内接三角形.18.如图,矩形纸片ABCD 中,AD=9,AB=3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为________.19.如图,直线 DE 经过点 A ,且∠1 =∠B ,∠2=50°,则∠3= .20.长、宽分别为a 、b 的矩形硬纸片拼成的一个“带孔”正方形如图所示.利用面积的不同表示方法,写出一个代数恒等式 . 21.如图,(1)能用一个大写字母表示的角是 ; (2)以A 为顶点的角是 ;(3)图中共有 个角(小于平角的角),它们分别是 .22.如果2x =-是方程10kx k +-=的解,那么k = . 23.比较大小:310.三、解答题24.如图,甲转盘被分成 3 个面积相等的扇形,乙转盘被分成 4 个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(),x y 落在第二象限内的概率; (2)直接写出点(),x y 落在函数1y x=-图象上的概率.25.某科技馆座落在山坡M 处,从山脚A 处到科技馆的路线如图所示.已知A 处海拔高度 为103.4m ,斜坡AB 的坡角为30,40m AB =,斜坡BM 的坡角为18,60m BM =,那么科技馆M 处的海拔高度是多少?(精确到0.1m )(参考数据:sin180.309= cos180.951= tan180.324=)26. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若AB=2 , AC=3. 求:(1)∠A 的度数; (2) ⌒CD 的长; (3)弓形CBD 的面积.27. 四张大小、质地均相同的卡片上分别标有数字1,2,3,4,5,6,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张卡片(不放回),再从桌子上剩下的5张中随机抽取第二张卡片.(1)用画状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况; (2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?28.如图,AD 平分∠BAC ,AB =AC ,则BD =CD ,试说明理由.29.配套的桌椅高度之间存在着一定的数量关系. 现测得两套不同的标准桌椅,相应的高度为:桌高 75.0 cm,椅子高 40. 5 cm;桌高70.2cm,椅子高37.5 cm.已知配套的桌高 y(cm)与椅子高 x(cm)之间存在的关系为y ax b=+.现有一套办公桌椅,椅子高为 44 cm,办公桌高为 80. 5 cm .请你判断一下这套办公桌椅是否配套.30.小惠的牡丹卡上还有余款 260 元,小惠想买一件衬衣和一件连衣裙,衬衣价格为 98 元/件,连衣裙价格为 180 元/件,小惠用牡丹卡购买这两件商品会透支吗?用有理数加法说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.A5.B6.D7.B8.C9.B10.B11.D12.C13.D二、填空题 14.(2+15.12516. 417.1,无数18.10 19.50°20.ab b a b a 4)()(22=--+(答案不唯一)21.(1)∠C 、∠B (2)∠CAD 、∠DAB 、∠CAB (3)7;∠B 、∠C 、∠l 、∠2、∠CAD 、∠DAB 、∠CAB22.-l23.<三、解答题 24.解:由题意,画树状图:由上图可知,点P (x,y )的坐标共有12种等可能的结果,其中点(x,y )落在第二象限的共有2种,∴点P (点(x,y )落在第二象限)=61. (2)点P (点(x,y )落在xy 1-=图象上)=41123=.25.解:过B 向水平线AC 作垂线BC ,垂足为C ,过M 向水平线BD 作垂线MD , 垂足为D ,则11402022BC AB ==⨯=. sin18MD BM =600.309=⨯18.54=.∴科技馆M 处的海拔高度是:103.42018.54141.94141.9(m)++=≈. 26.(1)30度;(2)π32;(3)4331-π.27.(1)略 (2)1528.△ABD ≌△ACD (SAS ),则BD=CD .29.配套30.会透支。
南京市2022 年初中毕业生学业考试
数学
一.选择题
1.为了方便市民出行.提倡低碳交通,近几年南京市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70 000辆.用科学计数法表示70 000是 A .0.7⨯105
B. 7⨯104
C. 7⨯105
D. 70⨯103
2.数轴上点A 、B 表示的数分别是5、-3,它们之间的距离可以表示为 A .-3+5 B. -3-5 C. |-3+5| D. |-3-5| 3.下列计算中,结果是6
a 的是 A .
B.
C.
D.
4.下列长度的三条线段能组成钝角三角形的是
A .3,4,4 B. 3,4,5
C. 3,4,6
D. 3,4,7
5.己知正六边形的边长为2,则它的内切圆的半径为 A . B.
C. 2
D.
6.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为
A . B. C. 或6
D. 或
二.填空题
7. 化简:8______;38______. 8. 若式子1x x +-在实数范围内有意义,则x 的取值范围是________.
9. 分解因式的结果是_______.
10.比较大小:
________
52
2
-.(填“>””<”或“=”号) 11.方程
13
2x x
=-的解是_______. 12.设12,x x 是方程
的两个根,且12x x +-12x x =1,
则12x x +=______,=_______.
13. 如图,扇形OAB 的圆心角为122°,C 是弧AB 上一点,则
_____°.
14. 如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO,下列结论
①AC⊥BD;②CB=CD;③△AB C≌△ADC;④DA=DC,其中正确结论的序号是_______.
15. 如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD.EF是△ODB的中位线,且EF=2,则AC的长为________.
16.如图,菱形ABCD的面积为120,正方形AECF的面积为50,则菱形的边长为_______.
三.解答题
17. 解不等式组并写出它的整数解.
18. 计算
19. 某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的乘积,得
到下列统计图,
(1)求该校九年级学生本次数学测试成绩的平均数;
(2)下列关于本次数学测试说法正确的是()
A.九年级学生成绩的众数与平均数相等
B.九年级学生成绩的中位数与平均数相等
C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数
D. 随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数。
20. 我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.
21.用两种方法证明“三角形的外角和等于360°”。
如图,、、是△ABC的三个外角.
求证°.
证法1:∵________.
∴+++++==540°.
∴.
∵ ________.
∴
请把证法1补充完整,并用不同的方法完成证法2.
22.某景区7月1日~ 7月7日一周天气预报如下,小丽打算选择这期间的一天或两天去该景区旅游,求下列
事件的概率;
(1) 随机选择一天,恰好天气预报是晴;
(2) 随机选择连续的两天,恰好天气预报都是晴.
23.下图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.
(1) 当速度为50km/h、100km/h时,该汽车的耗油量分别为_____L/km、____L/km.
(2) 求线段AB所表示的y与x之间的函数表达式
(3) 速度是多少时,该汽车的耗油量最低?最低是多少?
24.如图,在四边形ABCD中,E是AD上一点,延长CE到点F,使.
(1) 求证
(2) 用直尺和圆规在AD上作出一点P,使△BP C∽△CDP(保留作图痕迹,不写作法)。
25.图中是抛物线形拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为,且,
,以O为原点,OA所在直线为x轴建立直角坐标系.
(1) 求点P的坐标
(2) 水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?
26.如图,O是△ABC内一点,与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC。
连接DF、EG。
(1) 求证:AB=AC
(2) 已知AB=10,BC=12,求四边形DFGE是矩形时的半径.
27.如图,把函数y=x的图像上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图像;也可
以把函数y=x的图像上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图像.类似地,我们可以认识其他函数.
(1)把函数的图像上各点的纵坐标变为原来的_____倍,横坐标不变,得到函数的图像;也可以
把函数的图像上各点的横坐标变为原来的_____倍,纵坐标不变,得到函数的图像.
(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度,③向右平移个单位长度;④纵
坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变。
(i)函数的图像上所有的点经过④→②→①,得到函数_______的图像;
(ii)为了得到函数的图像,可以把函数的图像上所有的点
A.①→⑤→③
B.①→⑥→③
C.①→②→⑥
D.①→③→⑥
(3)函数的图像可以经过怎样的变化得到函数的图像?(写出一种即可)。