一元一次不等式解法步骤
- 格式:docx
- 大小:3.32 KB
- 文档页数:2
一元一次不等式解题技巧解一元一次不等式,教材中介绍的是基本方法,但题目千变万化,遇到每一个题目要擅长观察所给不等式的特点,结合其他知识,灵活巧妙地变通解题步骤,才可收到事半功倍的效果。
1、巧去括号例1 解不等式分析:因为,所以先去中括号比先去小括号简便。
解:先去中括号,得两边同时减去,得。
2、巧添括号例2 解不等式分析:不等式两边都有(x-17),所以我们不是去括号,而是添括号,将各项整理出(x-17)。
解:原不等式可化为:即3、巧用分式基本性质例3 解不等式。
分析:直接去分母较繁,若先用分式的基本性质,能够使化小数为整数和去分母一次到位。
解:由分式的基本性质,得即。
4、巧化分母为1例4 解不等式分析:此题按常规应先利用分数的基本性质将不等式中的小数化为整数,然后按步骤求解。
但我们发现。
巧妙地去掉分母,从而简化理解题过程。
解:原式可化为。
移项合并,得,即。
5、巧凑整例5 解不等式。
分析:观察各项未知数的系数和常数项,注意到,,所以把各项拆开移项凑整,比直接去分母简便。
解:原不等式可化为。
移项合并,得。
所以。
6、巧组合例6 解不等式。
分析:注意到左边的第一项和右边的第二项中的分母有公约数3,左边的第二项和右边的第一项的分母有公约数4,移项局部通分化简,可简化解题过程。
解:移项通分,得。
化简,得。
去分母,得。
解得。
7、巧变形例7 解不等式。
解:原不等式可化为即,即。
解一元一次不等式的六个技巧解一元一次不等式的基本方法是五步法:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.但,怎样才能正确而迅速地解一元一次不等式呢同学们可结合一元一次不等式的特点,采取一些灵活、简捷的方法与技巧.现撷取几例介绍,供大家参考:一、巧抵消例1、 解不等式53x —23-x >9+426x - 解析:由于426x -=-23-x ,原不等式可变为:53x —23-x >9-23-x 则:53x >9,所以x >15 评注:把原不等式中相关的式子变形,然后进行抵消,使解题过程变得简捷.其中蕴含着整体思想.二 、巧凑整例2 、解不等式25.0125.05.2x x +-<-. 两边同乘以4得 x x 2210--<-.移项、合并同类项得 x<-12.评注:本题若两边同乘以2,直接去分母,也可以解决问题.但,考虑到分子中的小数,由不等式的性质,不等式两边同乘以一个适当的数“2”,可将小数转化为整数,这样,为下面的运算提供了方便.三、巧拆分例3、 解不等式13965401072814+-<---x x x . 由不等式变形得 132)82(42+-<---x x x .去括号、移项、合并同类项得 8x<4.则x<21 评注:当分子里包含的各项系数能被分母整除时,可以把它拆开,这样省去了去分母这一步骤,也就简化了运算过程,这样还能少犯运算错误,直可谓是一举两得.四、巧分配例4、 解不等式x x ---]21432[23)(>-1 解析:注意到13223=⨯,采用乘法分配律去括号时,可由外往里, 则有:x x ---314>-1,所以43x ->3,故,x <-4. 评注:去括号一般是内到外,也就是,按小、中、大括号的顺序进行.但,有时可反其道而行之,即由外到内去括号,这往往能另辟捷径.五、巧合并例5、 解不等式 )2()1(41)2(3)1(43--->---x x x x . 由不等式变形得 )2()2(3)1(41)1(43--->-+-x x x x . 去括号、移项、合并同类项得 -x>-3.∴x<3.评注:直接去括号较繁,注意到左边各项均含有因式(x-1) 、(x-2),根据不等式括号内代数式的特征把 (x-1) 、(x-2) 看作一个整体,先带括号进行移项、合并同类项运算就会简便得多.六、巧整合例6、 解不等式 3{2x-1-[2(2x-1)+3]}>-3.解析: 把2x-1看作一个整体,则有: 3{(2x-1)-[2(2x-1)+3]}>-3. 大、中括号得,3(2x-1)-6(2x-1)-9>-3,整体合并,得-3(2x-1)>6,所以有,x <21-. 评注:本题如果按照常规解法,也是可行的,但运算量较大.这种方法中,把2x-1看作一个整体,去括号、合并同类项后,再解不等式,就显得轻松多了.可见得,在解题过程中,若恰当运用整体思想,则大有收益,妙不可言.。
中考数学中如何求解一元一次不等式关键信息项1、一元一次不等式的定义及一般形式名称:____________________________解释:____________________________2、求解一元一次不等式的基本步骤步骤 1:____________________________步骤 2:____________________________步骤 3:____________________________步骤 4:____________________________步骤 5:____________________________3、常见的不等式符号及其含义符号 1:____________________________含义 1:____________________________符号 2:____________________________含义 2:____________________________符号 3:____________________________含义 3:____________________________4、不等式的性质性质 1:____________________________性质 2:____________________________性质 3:____________________________11 一元一次不等式的定义一元一次不等式是指只含有一个未知数,且未知数的次数是 1,不等号两边都是整式的不等式。
其一般形式为:$ax + b > 0$(或$ax + b < 0$,$ax + b \geq 0$,$ax + b \leq 0$),其中$a$、$b$为常数,且$a \neq 0$。
111 与一元一次方程的区别一元一次方程是等式,而一元一次不等式是用不等号连接的式子。
方程的解是使等式成立的未知数的值,而不等式的解是使不等式成立的未知数的取值范围。
一次函数一元一次方程和一元一次不等式讲解1.什么是一次函数一次函数,也称为一次多项式函数或线性函数,是指形如$y=a x+b$的函数,其中$a$和$b$是常数,$x$是自变量,$y$是因变量。
一次函数的图像为一条直线,具有特定的斜率和截距。
一次函数的基本形式为$y=ax+b$,其中$a$表示斜率,决定了函数图像的倾斜程度,$b$表示截距,决定了函数图像与$y$轴的交点。
2.一元一次方程的求解等式性质一元一次方程是指只含有一个变量的一次方程。
解一元一次方程的核心思想是通过运用和**方程统一变形原则**,将方程逐步化简,最终得到变量的解。
求解一元一次方程的一般步骤如下:1.对方程中的项进行整理和合并,使得方程成为$a x+b=0$的形式;2.根据方程统一变形原则,将方程中的常数项移至方程的右侧,得到$a x=-b$;3.利用解方程的等式性质,将方程两边同时乘以$\fr ac{1}{a}$,得到$x=\f ra c{-b}{a}$;4.化简得到最终解,即$x$的值。
通过以上步骤,可以求得一元一次方程的解。
3.一元一次不等式的求解等式性质一元一次不等式是指只含有一个变量的一次不等式。
求解一元一次不等式的方法与求解一元一次方程类似,同样可以运用和**不等式统一变形原则**。
求解一元一次不等式的一般步骤如下:1.对不等式中的项进行整理和合并,使得不等式成为$a x+b<c$或$a x+b>c$的形式;2.根据不等式的性质,将常数项移至不等式的右侧;3.根据不等式统一变形原则,将不等式两边同时乘以正数或除以负数,注意在乘或除的过程中要考虑到反号问题;4.根据不等式的性质,得到不等式的最终解。
需要注意的是,在进行不等式符号的翻转时,需要根据乘或除的正负进行对应,以确保不等式符号的方向正确。
4.总结一次函数、一元一次方程和一元一次不等式在数学中起着重要的作用。
掌握了一次函数的概念和性质,以及求解一元一次方程和不等式的方法,能帮助我们更好地理解和解决数学问题。
解一元一次不等式的五步法一元一次不等式是初中数学中的重要内容,解决不等式问题是数学学习过程中必不可少的一环。
本文将介绍解决一元一次不等式的五步法,帮助初学者更好地掌握不等式的解法。
第一步:化简不等式化简不等式是解不等式的第一步,将不等式中的所有系数和常数移到一边,将未知数移到另一边,使不等式变成如下形式:ax + b > 0 或 ax + b < 0其中a、b为已知数,x为未知数。
第二步:确定不等式的符号确定不等式的符号是解不等式的第二步,根据不等式中的关系符号(大于号或小于号)确定解的范围,即解集的符号,如下所示:当ax + b > 0时,解集为x > -b/a当ax + b < 0时,解集为x < -b/a第三步:画数轴画数轴是解不等式的第三步,将解集的符号标在数轴上,如下所示:当ax + b > 0时,解集为x > -b/a,将解集标在数轴上,如下图所示:———o———————————————>第四步:确定解集确定解集是解不等式的第四步,根据数轴上的标注,确定解集的范围,如下所示:当ax + b > 0时,解集为x > -b/a,数轴上标注的解集为从-b/a 开始向右延伸的无限区间。
当ax + b < 0时,解集为x < -b/a,数轴上标注的解集为从-b/a 开始向左延伸的无限区间。
第五步:检验解集检验解集是解不等式的最后一步,将解集代入原不等式,检验解集是否符合原不等式的条件,如下所示:当ax + b > 0时,将解集x > -b/a代入原不等式,若原不等式成立,则解集为正确解集,否则解集错误。
当ax + b < 0时,将解集x < -b/a代入原不等式,若原不等式成立,则解集为正确解集,否则解集错误。
总结解一元一次不等式的五步法包括化简不等式、确定不等式的符号、画数轴、确定解集和检验解集五个步骤,若按照这五个步骤顺序进行,能够正确解决一元一次不等式问题,帮助初学者更好地掌握不等式的解法。
一元一次不等式 考点一、不等式的概念 1、不等式:用不等号表示不等关系的式子,叫做不等式。
例 判断如下各式是否是一元一次不等式? word-x≥5 2x-y<02x 34x 5x22 x532、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数二 不等式的解 :的值,都叫做这个不等式的解。
三 不等式的解集:3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简 例 判断如下说法是否正确,为什么?称这个不等式的解集。
X=2 是不等式 x+3<2 的解。
X=2 是不等式 3x<7 的解。
不等式 3x<7 的4、求不等式的解集的过程,叫做解不等式。
解是 x<2。
X=3 是不等式 3x≥9 的解5、用数轴表示不等式的方法四 一元一次不等式:考点二、不等式根本性质例 判断如下各式是否是一元一次不等式1、不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以〔或除以〕同一个正数,不等号的方向不变。
-x<5 2x-y<02x 3x22 x 5 ≥3x3、不等式两边都乘以〔或除以〕同一个负数,不等号的方向改变。
例 五.不等式的根本性质问题4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运 例 1 指出如下各题中不等式的变形依据算改变。
②如果不等式乘以 0,那么不等号改为等号所以在题目中,要求出乘以的 数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的1〕由 3a>2 得 a> 2 32) 由 3+7>0 得 a>-7数就不等为 0,否如此不等式不成立; 考点三、一元一次不等式3〕由-5a<1 得 a>- 1 54)由 4a>3a+1 得 a>11、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是 1, 例 2 用>〞或<〞填空,并说明理由且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
一元一次不等式一元一次不等式是数学中的基本概念之一,它在解决实际问题中具有广泛的应用。
本文将详细介绍一元一次不等式的定义、性质以及解法,并通过实例进行说明。
1. 一元一次不等式的定义一元一次不等式是指一个变量的一次方程与不等式的组合,形如ax + b > 0(或 < 0),其中a和b为已知实数,且a ≠ 0。
这种不等式通常用于表示某些量的范围或条件。
2. 一元一次不等式的基本性质(1)性质1:两个一元一次不等式可以进行加减运算,得到的结果仍然是一个一元一次不等式。
(2)性质2:一元一次不等式两边同时乘(或除)一个正数,不等式的方向不变;两边同时乘(或除)一个负数,不等式的方向发生改变。
(3)性质3:对于一元不等式ax + b > 0,如果a > 0,则该不等式的解集是x > -b / a;如果a < 0,则该不等式的解集是x < -b / a。
3. 解一元一次不等式的步骤(1)将不等式转化为等式:将不等式中的大于号(或小于号)改为等号。
(2)求解等式:解一元一次方程ax + b = 0,得到方程的解为x = -b / a。
(3)确定解的范围:根据一元一次不等式的性质,确定解的范围。
(4)表示解集:将解的范围写成不等式的形式,并表示为解集。
4. 实例演示假设有一元一次不等式2x - 3 > 5,我们按照上述步骤来解决这个不等式。
(1)转化为等式:2x - 3 = 5。
(2)求解等式:2x = 8,x = 4。
(3)确定解的范围:由于系数2 > 0,所以解的范围为x > 4。
(4)表示解集:解集可以表示为(4, +∞)。
通过以上步骤,我们成功解决了一元一次不等式2x - 3 > 5,得出解集为(4, +∞)。
总结:一元一次不等式在数学中具有广泛的应用,特别是在实际问题的建模和解决过程中。
对于一元一次不等式的解法,我们需要明确其定义和基本性质,然后按照一定的步骤进行求解,最终得到表示解集的形式。
一元一次不等式的解法步骤
1、确定不等式的基本形式
2、将不等式转化为加减法形式
将不等式中的常数项b移到不等式的右边变为负数,即a某>c-b(或a某<c-b),然后将不等式的系数a除以,如果除以的数是负的,则不等号的方向要反转,即某<c-b/a(或某>c-b/a)。
3、将解集表示出来
将求出的式子表示成类似“某>(或<)解”的形式即可确定解的集合,表示为某∈(解,∞)(或某∈(-∞,解))。
4、检验解的可行性
将得到的解代入不等式中进行检验,如果不等式成立,则该解是可行的,否则就是不可行的。
综上所述,解一元一次不等式的步骤为确定基本形式、转换为加减法形式、将解集表示出来、检验解的可行性。
掌握这些步骤后,就能轻松地解决一元一次不等式问题。
当然,有一些特殊情况需要特别注意,如分母为0、含有根号等,这时我们需要采取一些特殊的方法去解决。
一元一次不等式解法步骤
一元一次不等式是数学中常见的一种不等式类型,解决一元一次不等式可以帮助我们找到满足不等式条件的变量取值范围。
下面将介绍一元一次不等式的解法步骤。
1. 理解一元一次不等式的基本形式
一元一次不等式的基本形式为ax + b > c(或ax + b < c),其中a、b、c是已知实数,x是未知数。
不等式中的符号可以是大于号(>)或小于号(<),表示不等式的方向。
2. 移项化简
首先将不等式中的常数项移至一边,即将b移到不等式的另一边。
这样可以使得不等式的右边为0,简化后续计算。
3. 解一元一次方程
将一元一次不等式中的等号去掉,得到对应的一元一次方程。
然后解这个方程,找到方程的根。
这个根将不等式分割成两个区间,分别是满足不等式和不满足不等式的区间。
4. 判断不等号方向
根据一元一次不等式的不等号方向,判断满足不等式的区间。
如果不等号是大于号(>),则满足不等式的区间在方程的根的右侧;如果不等号是小于号(<),则满足不等式的区间在方程的根的左侧。
5. 表示解集
将满足不等式的区间以符号形式表示出来。
如果不等号是大于号(>),则解集可以表示为x > 根;如果不等号是小于号(<),则解集可以表示为x < 根。
6. 检验解集
将解集代入原始的一元一次不等式中,检验解集的准确性。
如果解集中的数值满足原始不等式,那么解集是正确的;如果不满足原始不等式,则需要重新检查解集的求解过程。
通过以上的步骤,我们可以解决一元一次不等式,并得到满足不等式条件的变量取值范围。
在实际应用中,一元一次不等式可以用于解决各种问题,例如线性规划、优化等。
因此,掌握一元一次不等式的解法步骤对于数学学习和实际问题求解都是非常重要的。