中考数学强化训练(一) 实数的概念和运算
- 格式:docx
- 大小:158.34 KB
- 文档页数:5
实数的有关概念与计算姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·安徽中考真题)9-的绝对值是()A.9B.9-C.19D.19-【答案】A【分析】利用绝对值的定义直接得出结果即可【详解】解:9-的绝对值是:9故选:A【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点2.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∵调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∵调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∵调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∵调价后的价格为1.25x×0.75=0.9375x元,∵0.90x<0.9025x<0.91x<0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.3.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是( ) A .4-B .4-C .0D . 2.8-【答案】A【分析】根据正数比负数大,正数比0大,负数比0小,两个负数中,绝对值大的反而小解答即可.【详解】解:∵∵﹣4∵=4,4>3>2.8,∵﹣4<﹣3<﹣2.8<0<∵﹣4∵,∵比﹣3小的数为﹣4,故选:A .【点睛】本题考查有理数大小比较,熟知有理数的比较大小的法则是解答的关键.4.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( ) A .2-B .2C .1D .1- 【答案】D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∵m 和2m +互为相反数,∵m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键. 5.(2021·四川凉山彝族自治州·中考真题)下列数轴表示正确的是( )A .B .C .D . 【答案】D【分析】数轴的三要素:原点、正方向、单位长度,据此判断.【详解】解:A 、不符合数轴右边的数总比左边的数大的特点,故表示错误;B 、不符合数轴右边的数总比左边的数大的特点,故表示错误;C 、没有原点,故表示错误;D 、符合数轴的定定义,故表示正确;故选D .【点睛】本题考查了数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴,注意数轴的三要素缺一不可.6.(2021·四川泸州市·中考真题)2021的相反数是( )A .2021-B .2021C .12021- D .12021【答案】A【分析】直接利用相反数的定义得出答案.【详解】解:2021的相反数是:-2021.故选:A .【点睛】此题主要考查了相反数,正确掌握相关定义是解题关键.7.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作( ).A .5元B .5-元C .3-元D .7元【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B .【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解. 8.(2021·浙江中考真题)实数2-的绝对值是( )A .2-B .2C .12 D .12-【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B .【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.9.(2021·江苏连云港市·中考真题)3-相反数是( )A .13B .3-C .13-D .3【答案】D【分析】根据相反数的意义,只有符号不同的两个数称为相反数.【详解】解:3-的相反数是3.故选:D .【点睛】本题考查了相反数的意义.只有符号不同的两个数为相反数,0的相反数是0.10.(2021·甘肃武威市·中考真题)中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为( ) A .8510⨯B .9510⨯C .10510⨯D .85010⨯【答案】B【分析】结合科学计数法的表示方法即可求解.【详解】解:50亿即5000000000,故用科学计数法表示为9510⨯,故答案是:B .【点睛】本题考察科学计数法的表示方法,难度不大,属于基础题。
第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类,7等;(1)开方开不尽的数,如32π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等(这类在初三会出现)是有理数,而不是无判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a 的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a 的算术平方根,记作“a ”。
(2)a(a ≥0)的平方根的符号表达为。
(3)一个数a 的立方根,用表示,其中a 是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
实数运算1、(2013•衡阳)计算的结果为( )A .B .C . 3D . 5 考点: 二次根式的乘除法;零指数幂.专题: 计算题.分析: 原式第一项利用二次根式的乘法法则计算,第二项利用零指数幂法则计算,即可得到结果.解答: 解:原式=2+1=3.故选C点评: 此题考查了二次根式的乘除法,以及零指数幂,熟练掌握运算法则是解本题的关键.2、(2013•常德)计算+的结果为( )A . ﹣1B . 1C . 4﹣3D . 7 考点: 实数的运算.专题: 计算题.分析: 先算乘法,再算加法即可.解答: 解:原式=+=4﹣3=1.故选B .点评: 本题考查的是实数的运算,在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.3、(2013年河北)下列运算中,正确的是A.9=±3 B.3-8=2 C.(-2)0=0 D .2-1=12答案:D解析:9是9的算术平方根,9=3,故A 错;3-8=-2,B 错,(-2)0=1,C 也错,选D 。
4、(2013台湾、6)若有一正整数N 为65、104、260三个公倍数,则N 可能为下列何者?( )A .1300B .1560C .1690D .1800考点:有理数的混合运算.专题:计算题.分析:找出三个数字的最小公倍数,判断即可.解答:解:根据题意得:65、104、260三个公倍数为1560.故选B点评:此题考查了有理数的混合运算,弄清题意是解本题的关键.5、(2013•攀枝花)计算:2﹣1﹣(π﹣3)0﹣=﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题分析:本题涉及0指数幂、负指数幂、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣=﹣1.故答案为﹣1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握0指数幂、负指数幂、立方根考点的运算.6、(2013•衡阳)计算=2.考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣4)×(﹣)=4×=2.故答案为:2.点评:本题考查了有理数的乘法运算,熟记运算法则是解题的关键,要注意符号的处理.7、(2013•十堰)计算:+(﹣1)﹣1+(﹣2)0=2.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行二次根式的化简、负整数指数幂、零指数幂的运算,然后合并即可得出答案.解答:解:原式=2﹣1+1=2.故答案为:2.点评:本题考查了实数的运算,涉及了零指数幂、负整数指数幂的知识,解答本题的关键是掌握各部分的运算法则.8、(2013•黔西南州)已知,则a b=1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣1=0,a+b+1=0,解得a=1,b=﹣2,所以,a b=1﹣2=1.故答案为:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9、(2013杭州)把7的平方根和立方根按从小到大的顺序排列为 . 考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<. 故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.10、(2013•娄底)计算:= 2 .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 分析:分别进行负整数指数幂、零指数幂、特殊角的三角函数值、二次根式的化简等运算,然后按照实数的运算法则计算即可.解答: 解:原式=3﹣1﹣4×+2=2.故答案为:2.点评:本题考查了实数的运算,涉及了负整数指数幂、零指数幂、特殊角的三角函数值、二次根式的化简等知识点,属于基础题.11、(2013•恩施州)25的平方根是 ±5 .考点:平方根. 分析:如果一个数x 的平方等于a ,那么x 是a 是平方根,根据此定义即可解题. 解答: 解:∵(±5)2=25∴25的平方根±5.故答案为:±5.点评:本题主要考查了平方根定义的运用,比较简单.12、(2013陕西)计算:=-+-03)13()2( .考点:本题经常实数的简单计算、特殊角的三角函数值及零(负)指数幂及绝对值的计算。
备战2019年中考二轮讲练测第一篇专题整合篇专题01 实数的概念与运算(讲案)一讲考点——考点梳理(一)实数的基本概念(1)数轴的三要素为原点、正方向和单位长度. 数轴上的点与实数构成一一对应.(2)只有符号不同的两个数叫做互为相反数.实数a 的相反数为—a. 若a ,b 互为相反数,则b a +=0.(3)若两数乘积为1,则这两个数叫做互为倒数。
非零实数a 的倒数为a1. 若a ,b 互为倒数,则ab =1.(4)数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
实数a 的绝对值记作|a|,则⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a .(二)有效数字与科学记数法(1)有效数字:是指从一个近似数的左边第一个不是0的数字开始,一直到这个数的最后一位的所有数字.(2)科学记数法:把一个数表示成a×10n 的形式,其中1≤a <10的数,n 是整数.当该数的绝对值大于或等于1时,n 为它的整数位数减1;当该数的绝对值小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)(三)实数的分类与大小比较(1)实数的分类:有理数和无理数统称实数.(2)实数的大小比较:数轴上两个点表示的数,右边的点表示的数总比左边的点表示的数大;正数>0,负数<0,正数>负数;两个负数比较大小,绝对值大的< 绝对值小的.常用方法:性质法、数轴法、倒数法、平方法、比差法、比商法.(四)实数的运算1.数的开方(1)任何正数a 都有两个平方根,它们互为相反数.其中正的平方根a 叫a 的算术平方根.负数没有平方根,0的算术平方根为0.(2)任何一个实数a 都有立方根,记为3a .(3)=2a ⎩⎨⎧<-≥=)0()0(a a a a a .2.数的乘方:=n aa n a a a a 个⋅⋅,其中a 叫做底数,n 叫做指数. =0a 1(其中a ≠0 且a 是实数)=-p a pa 1(其中a ≠0)3. 实数运算:先算乘方与开方,再算乘除,最后算加减;如果有括号,先算括号里面的,同一级运算按照从左到右的顺序依次进行.同一级的运算是可以相互转化的.4. 运算律的应用:主要有加法的交换律、结合律,乘法的交换律、结合律,以及分配律.(五)探究数、式规律(1)一般按照“特殊——一般——特殊”的思维过程,使用“观察——猜想——验证”的思路,最终得出正确的结果;(2)列表法与举例法是在解答探索数式规律的问题时最常用的方法.二讲题型——题型解析(一)对实数基本概念的考查.例1、【2018年广东省中考】一个正数的平方根分别是x+1和x ﹣5,则x=_____.【答案】2【解析】【分析】根据正数的两个平方根互为相反数可得关于x 的方程,解方程即可得.【详解】根据题意知x+1+x ﹣5=0,解得:x=2,故答案为:2.(二)对有效数字与科学记数法的考查.例2、【2018年广西壮族自治区贵港市中考】一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A . 2.18×106B . 2.18×105C . 21.8×106D . 21.8×105【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.(三)对实数的分类与大小比较的考查例3、【2018年山东省菏泽市中考】下列各数:-2,0,,0.020020002…,,,其中无理数的个数是()A.4 B.3 C.2 D.1【答案】C【解析】分析:根据无理数与有理数的概念进行判断即可得.详解:是有理数,0是有理数,是有理数,0.020020002…是无理数,是无理数,是有理数,所以无理数有2个,故选C.【点评】本题考查了无理数的概念:无限不循环小数叫做无理数.常见的形式有:开方开不尽的数,如2等;;圆周率π及一些含有π的数都是无理数.要掌握实数、有理数、无理数的定义,以及非负数、非正数等一些相关的概念.(四)对实数的运算的考查例4、【广东省2018年中考数学试题】计算:|﹣2|﹣20180+()﹣1【答案】3.【解析】【分析】按顺序先分别进行绝对值化简、0次幂的计算、负指数幂的计算,然后再按运算顺序进行计算即可得.【详解】|﹣2|﹣20180+()﹣1=2﹣1+2=3.【点睛】本题主要考查了实数的混合运算,涉及到绝对值的化简、0指数幂的运算、负指数幂的运算,熟练掌握各运算法则是解题的关键.(五) 对实数中的非负数及性质的考查例5、已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是( )A .20或16B .20C .16D .以上答案均不对【答案】B .【解析】试题分析:根据题意得:,解得:.(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B .考点:1.等腰三角形的性质;2.非负数的性质;3.三角形三边关系;4.分类讨论.学科网(六)对数、式规律的考查例6、【2018年湖北省荆门市中考】将数1个1,2个,3个,…,n 个(n 为正整数)顺次排成一列:1,,,,,,…,,,…,记a 1=1,a 2=,a 3=,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2018=_____.【答案】630x -=4080x y -=⎧⎨-=⎩48x y =⎧⎨=⎩【点睛】本题考查了规律型——数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.三讲方法——方法点睛(一)解决有关实数的基本概念的问题要掌握相反数、倒数、绝对值等概念的内涵和区别.(二)(1)对于实数的分类要掌握实数、有理数、无理数的定义,以及非负数、非正数等一些相关的概念(2)实数大小的比较可以利用数轴上的点,右边的数总比左边的数大;以及绝对值比较法等比较实数大小的方法.除此之外常用的方法有“差值比较法”适用于比较任何两数的大小;“商值比较法”只适用于比较两个正数的大小;“平方法”、“倒数法”常用于比较二次根式的大小;“底数比较法”、“指数比较法”常用于比较幂的大小.(三)解决与非负数的性质相关的问题的关键是掌握:(1)常见的非负数有;任何一个实数a的绝对值是非负数,即|a|≥0;任何一个实数a的平方是非负数,即a2≥0;若a为非负数,则a也为非负数,即a≥0;(2)非负数具有的性质是:非负数有最小值,最小值为0;有限个非负数的和仍是非负数;几个非负数之和等于0,则每个非负数都等于0.(四)对于实数的运算(1)熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.(2)注意运算顺序,分清先算什么,再算什么.(五)科学记数法:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值大于10时,写成a×10n的形式,其中1≤|a|<10,n等于原数的整数位数减1;当原数绝对值小于1时,写成a×10-n 的形式,其中1≤|a|<10,n等于原数左边第一个非零的数字前的所有零的个数(包括小数点前面的零).(六)解决探索数、式规律问题的方法常见的有列表法和举例法.四练实题——随堂小练1.下列各数中,绝对值最大的数是( ) A.﹣3B.﹣2C.0D.1【答案】A.【解析】|﹣3|>|﹣2|>1>|0|,故选A.2.在﹣,0,﹣2,,1这五个数中,最小的数为( )A .0B .12-C .﹣2D 13.【答案】C .3.古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000 000=【答案】3.5×108.【解析】将350 000 000用科学记数法表示为:3.5×1084.已知x 、y 为实数,且y=92-x ﹣29x -+4,则x ﹣y= 【答案】﹣1或﹣7.【解析】由题意得x 2﹣9≥0,x 2﹣9≤0,∴x 2﹣9=0,解得x=±3,∴y=4,∴x ﹣y=﹣1或﹣7.5.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为 .【答案】(2n+1)2﹣(2n ﹣1)2=8n 6与0.5.(填“>”、“=”、“<”)【答案】>【解析】1-2,2>0,0.考点:实数大小比较.7. 高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[x]+[﹣x]=0;③若[x+1]=3,则x的取值范围是2≤x<3;④当﹣1≤x<1时,[x+1]+[﹣x+1]的值为0、1、2.其中正确的结论有(写出所有正确结论的序号).【答案】①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【解析】①[﹣2.1]+[1]=﹣3+1=﹣2,正确;②[x]+[﹣x]=0,错误,例如:[2.5]=2,[﹣2.5]=﹣3,2+(﹣3)≠0;③若[x+1]=3,则x的取值范围是2≤x<3,正确;④当﹣1≤x<1时,0≤x+1<2,﹣1<﹣x+1≤1,[x+1]+[﹣x+1]的值为2,故错误.故答案为:①③.考点:有理数的混合运算;新定义.8.(2-2014)0-2cos30°-(12)-1.-1.【解析】原式.9.计算:4sin45°+|﹣2|(13)0.【答案】3.【解析】考点:1.实数的运算;2.特殊角三角函数值;3.零指数幂.10.计算:(12)﹣1﹣|(1﹣π)0.【答案】.【解析】试题分析:根据负整数指数幂,去绝对值,二次根式的化简以及零指数幂的计算法则计算.试题解析:原式=2+1=3+考点:实数的运算;零指数幂;负整数指数幂.五练原创——预测提升1.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为( )A .0.54×107B .54×105C .5.4×106D .5.4×107【答案】C .【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,n 的值为这个数的整数位数减1,所以5400000=5.4×106,故选C .2.若2(a+3)的值与4互为相反数,则a 的值为( )A .﹣1B .﹣72C .﹣5D .12【答案】C.【解析】已知2(a+3)的值与4互为相反数,根据互为相反数的两个数的和为0可得2(a+3)+4=0,解得a=﹣5,故选C.3.数轴上点A 表示的实数可能是( )A .7B .10C .17D .26【答案】C.【解析】 ∵4<17<5,∴数轴上点A 表示的实数可能是17;故选C .4.下列各数:227,π,cos60°,0 A .1个B .2个C .3个D .4个【答案】B .【解析】据无理数定义得有,π 是无理数.故选B .学科网5.有一个数值转换器,原理如下:当输入的x=256时,输出的y 等于( )A 、2B 、4C 、2D 、22【答案】C .6.若21(3)0a b -++=,则a b =() A .1B .-1 C .3 D .-3【答案】D.【解析】∵21(3)0a b -++=,∴a-1=0,b+3=0,∴a=1,b=-3,∴1(3)3a b =-=-.故选D.7.按照如图的操作步骤,若输入x 的值为2,则输出的值是_____.(用科学计算器计算或笔算)【答案】2【解析】【分析】将x=2代入程序框图中计算即可得到结果.【详解】将x=2代入得:3×22﹣10=12﹣10=2,故答案为:2.【点睛】本题考查了代数式求值,熟练掌握运算法则是解本题的关键.8. 古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是 .【答案】5050.【分析】设第n 个三角形数为a n ,分析给定的三角形数,根据数的变化找出变化规律“a n =1+2+…+n =(1)2n n +”,依此规律即可得出结论.【解析】设第n 个三角形数为a n ,∵a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,…∴a n =1+2+…+n =(1)2n n +,将n =100代入a n ,得:a 100=100(1001)2+=5050,故答案为:5050.9. 阅读理解题:定义:如果一个数的平方等于-1,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(,a b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:()()()()253251372i i i i-++=++-+=+()()()21212221213i i i i i i i +´-=´-+´-=+-++=+;根据以上信息,完成下列问题:(1)填空:3i =_________,4i =___________;(2)计算:()()134i i +´-;(3)计算:232017i i i i ++++ .【答案】(1)﹣i ,1;(2)7﹣i ;(3)i .【分析】(1)把i 2=﹣1代入求出即可;(2)根据多项式乘以多项式的计算法则进行计算,再把i 2=﹣1代入求出即可;(3)先根据复数的定义计算,再合并即可求解.10. 观察下列等式:第一个等式:122211132222121a ==-+´+´++;第二个等式:2222232111322(2)2121a ==-+´+´++;第三个等式:3332342111322(2)2121a ==-+´+´++;第四个等式:4442452111322(2)2121a ==-+´+´++;按上述规律,回答下列问题:(1)请写出第六个等式:a 6= = ;(2)用含n 的代数式表示第n 个等式:a n == ;(3)a 1+a 2+a 3+a 4+a 5+a 6= (得出最简结果);。
第一讲 实 数专项一 实数及有关概念知识清单1. 实数的分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎨⎬⎪⎪⎩⎭⎩⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数负整数实数分数有限小数或无限循环小数正无理数无理数无限不循环小数负无理数 2.规定了_____、_____和_____的直线叫做数轴.实数与数轴上的点具有______的关系.3.相反数、绝对值、倒数定 义 性 质 相反数 只有______不同的两个数互为相反数,0的相反数是______若a 与b 互为相反数,则a+b=______ 绝对值 数轴上表示数a 的点到原点的______叫做数a 的绝对值 |a|=(0)00(0)a a a a a ⎧⎪=⎨⎪-⎩>()< 倒数 乘积为______的两个数互为倒数.0是唯一没有倒数的数,倒数等于它本身的数是_____若a 与b 互为倒数,则ab=1 考点例析例1 (2021•模考 福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10 907米.假设以马里亚纳海沟所在海域的海平面为基准,记为 0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10 907米处,该处的高度可记为 米.分析:在一对具有相反意义的量中,规定其中一个为正,则另一个就用负表示,理解了“正”与“负”的意义后再根据题意作答即可.解:例2 (2021•模考 郴州)如图,表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D分析:根据只有符号不同的两个数互为相反数可得答案.解:例3 (2021•模考 武威)下列实数是无理数的是( )A .-2B .16C .9D .11 分析:根据无理数的定义逐一分析.解:归纳:判断一个实数是不是无理数,关键是掌握几种常见的无理数:(1)含根号型,如322,等开方开不尽的数;⑵三角函数型:如sin60°,tan30°等;⑶特定结构型,如0.101 001 000 1…(每相邻两个1之间依次多一个0);⑷与π有关的数:如4π,π-1等.(注:在判断无理数时,不能只根据某些无理数的形式来判断,关键要看化简后的结果,如题中9含根号,但它是有理数)跟踪训练1.(2021•模考 无锡)-7的倒数是( )A .7B .17C .-17D .-7 2.(2021•模考 鄂尔多斯)实数-3的绝对值是( )A .3B .-33C .-3D .333.(2021•模考 天水)下列四个实数中,是负数的是( )A .-(-3) B. (-2)2 C. |-4| D.-54.(2021•模考 烟台)实数a ,b ,c 在数轴上对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定第4题图5.(2021•模考 株洲)一实验室检测A ,B ,C ,D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A B C D专项二 科学记数法知识清单科学记数法就是把一个数写成 的形式,其中a 的范围是 .当表示一个大于10 的数时,n 的值等于原数的整数位数减去1;当表示一个大于0小于1的数时,n 是负整数,且其绝对值等于原数左起第一个非零数前所有零的个数(包括小数点前的零).考点例析例1 (2021•模考 成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成,该卫星距离地面约36 000千米,将数据36 000用科学记数法表示为()A.3.6×103 B.3.6×104 C.3.6×105 D.36×104分析:根据科学记数法的表示方法表示即可.解:例2 (2021•模考滨州)冠状病毒的直径约为80~120纳米,1纳米=1.0×10-9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10-9米 B.1.1×10-8米 C.1.1×10-7米 D.1.1×10-6米分析:先将110纳米转化成110×10-9米,再根据科学记数法的表示方法移动小数点即可.解:归纳:对于含有计数(量)单位的数用科学记数法表示时,应先把计数(量)单位转化为数字,然后再表示为科学记数法的形式.常见的计数单位:1千可以表示为103 ,1万可以表示为104 ,1亿可以表示为108 ;常考的计量单位:1毫米可以表示为10-3 米,1纳米可以表示为10-9 米等.跟踪训练1.(2021•模考长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632 400 000 000元,其中632 400 000 000用科学记数法表示为()A.6.324×1011 B.6.324×1010 C.632.4×109 D.0.6324×10122.(2021•模考江西)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50 175亿元,比上年增长8.74%.将50 175亿用科学记数法表示为()A.5.017 5×1011 B.5.017 5×1012 C.0.501 75×1013 D.0.50 175×10143.(2021•模考苏州)某种芯片每个探针单元的面积为0.000 001 64 cm²,0.000 001 64用科学记数法可表示为()A.1.64×10-5 B.1.64×10-6 C.16.4×10-7 D.0.164×10-54.(2021•模考威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10-10 B.1×10-9 C.0.1×10-8 D.1×109专项三无理数的估算知识清单无理数的估算,最常见的就是对带根号的无理数的估算,通常用“夹逼法”,即将被开方数限定在两个连续的平方数之间,然后确定无理数的整数部分和小数部分.考点例析例1(2021•模考)A.3和4之间B.4和5之间C.5和6之间D.6和7之间,开方即可求得答案.解:例2 (2021•模考南通)若m<<m+1,且m为整数,则m=.分析:m的值.解:跟踪训练1.(2021•模考 黔东南州)实数 )A .4和5之间B .5和6之间C .6和7之间D .7和8之间2.(2021•模考 临沂)设a +2,则( )A .2<a <3B .3<a <4C .4<a <5D .5<a <63.(2021•模考 河南)请写出一个大于1且小于2的无理数 .4.(2021•模考 最接近的自然数是 .专项四 实数的大小比较知识清单实数的大小比较有以下几种常用方法:(1)在数轴上表示的两个数,右边的数总比左边的 ;(2)正数 零,负数 零,正数 负数;两个负数,绝对值大的 ;(3)作差比较法:若a-b>0,则a>b ;若a-b=0,则a=b ;若a-b<0,则a<b ;(4)平方比较法:,则a>b (a >0,b >0).考点例析例1 (2021•模考 聊城)在实数-10,41中,最小的实数是( )A .-1B .41 C .0 D 分析:思路一:把这几个数在数轴上表示出来,根据它们在数轴上的位置来比较大小;思路二:根据解:例2 (2021•模考 菏泽)下列各数中,绝对值最小的数是( )A .﹣5B .12C .﹣1 D分析:先求出四个数的绝对值,再进行比较即可得出结果.解:归纳:对含有无理数的实数在比较其大小时,可先估算出无理数的近似值,再和其他的有理数比较大小.跟踪训练1.(2021•模考 内江)下列四个数中,最小的数是( )A. 0B. 12020C. 5D. -12.(2021•模考 天门)下列各数中,比-2小的数是( )A .0B .-3C .-1D .|-0.6|3.(2021•模考 大庆)在﹣1,0 )A .﹣1B .0C .πD 4.(2021•模考 株洲)下列不等式错误的是( )A .﹣2<﹣1B C .52.13>0.3专项五 平方根、立方根知识清单1. 平方根:若一个数的____等于a ,则这个数叫做a 的平方根.一个正数有___个平方根,它们____,0的平方根是_____,负数____平方根.一个正数____的平方根,叫做它的算术平方根,0的算术平方根是 .2.立方根:若一个数的____等于a ,则这个数叫做a 的立方根.正数有一个____的立方根;负数有一个____的立方根;0的立方根是____.3.开平方:求一个非负数a 的______的运算,叫做开平方.4.开立方:求一个数a 的______的运算,叫做开立方.考点例析例1 (2021•模考 烟台)4的平方根是( )A .±2B .-2C .2D 分析:一个正数有两个平方根,它们互为相反数.例2 (2021•模考 常州)8的立方根是( )A .B .±C .2D .±2分析:根据立方根的定义求解即可.解:跟踪训练1.(2021•模考 0,则x 的值是( )A .﹣1B .0C .1D .22.(2021•模考 金昌)若一个正方形的面积是12,则它的边长是( )A .B .3C .D .43.(2021•模考 攀枝花)下列说法中正确的是( )A .0.09的平方根是0.3B 4C .0的立方根是0D .1的立方根是±14.(2021•模考 恩施州)9的算术平方根是 .5.(2021•模考 徐州)7的平方根是 .6.(2021•模考 的结果是 .专项六 实数的运算知识清单1. 实数的运算法则(1)加法:同号两数相加,取相同符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大数的绝对值减去较小数的绝对值;一个数同零相加仍得这个数.(2)减法:减去一个数,等于加上这个数的相反数.(3)乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,积为零.(4)除法:两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不为零的数都得零;除以任何一个不为零的数等于乘以这个数的倒数.2.求______________的运算,叫做乘方,乘方可以转化为乘法运算.3.用字母表示运算律:交换律:a+b=________,ab=________;结合律:(a+b )+c=a+(b+c )_________,(ab )c=________;乘法对加法的分配律m (a+b+c )=_________.4.实数的运算顺序:先算_____,再算______,最后算______;有括号的要先算_____;同级运算,要按________的顺序依次进行计算.5.若实数0≠a ,m 为整数,则0a =______,m a -=______.考点例析例1 (2021•模考 铜仁)计算:2÷12﹣(﹣1)20200. 分析:先根据除法法则、乘方的意义、算术平方根的定义、零指数幂的运算公式分别求得2÷12=4,(﹣1)2020=1=20=1,然后再进行实数的运算.解:归纳:在进行实数的运算时,一定要养成良好的习惯:运算前要认真审题,确定顺序(包括使用简便方法);运算过程中,要耐心细致;得出结果后,要认真检查,谨防出错.要特别注意a 0=1(a ≠0),(-1)2n+1=-1(n 是整数),(-1)2n =1(n 是整数).例2 (2021•模考 =0,则(a+b )2020= .分析:由非负数的意义,得a-2=0,b+1=0,求出a ,b 的值,代入计算即可.解:归纳:对非负数的考查是中考的一个热点,一个数的绝对值a ,一个非负数的算术平方根()0≥a a ,一个数的偶数次方n a 2是初中阶段常见的非负数.在解题时要正确理解并熟练应用非负数的性质:非负数有最小值(为零),但无最大值;如果几个非负数的和等于零,那么每一个非负数都等于零.例3 (2021•模考 娄底)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .189分析:由前三个正方形可知规律为:左上方的数等于序号数,左下方的数比左上方的数大1,右上方的数是左下方数的2倍,右下方的数为左下方数与右上方数的乘积加上序号数,由此即可求得答案. 归纳:实数问题中的找规律问题是中考的常考内容,解题的关键是通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后进行归纳总结,得出一般的结论,从而将问题解决. 跟踪训练 1.(2021•模考 凉山州)-12020=( )A .1B .-1C .2020D .-20202.(2021•模考 咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( )A .3+(-2)B .3-(-2)C .3×(-2)D .(-3)÷(-2)3.(2021•模考 雅安)已知2a -+|b ﹣2a|=0,则a+2b 的值是( )A .4B .6C .8D .104.(2021•模考 连云港)我市某天的最高气温是4℃,最低气温是-1℃,则这天的日温差是 ℃.5.(2021•模考 常州)计算:|-2|+(π-1)0= .6.(2021•模考 随州)(-1)2+9= .7.(2021•模考 张家界)观察下面的变化规律:213⨯=1-13,235⨯=13-15,257⨯=15-17,279⨯=17-19,…根据上面的规律计算:213⨯+235⨯+257⨯+…+220192021⨯= . 8.(2021•模考 宜宾)计算:()()1020*******π-⎛⎫----+- ⎪⎝⎭. 专项七 数轴与数形结合知识清单数和形是数学研究的两个方面,数形结合实质就是把问题中的数量关系转化为图形的性质,或者把图形的性质转化为数量关系来解决问题,这样可以使复杂的问题简单化、抽象的问题具体化. 考点例析例1 (2021•模考 北京)实数a 在数轴上对应点的位置如图1所示,若实数b 满足-a <b <a ,则b 的值可以是( )A .2B .-1C .-2D .-3图1分析:根据数轴可得1<a <2,所以-2<-a <-1.如图1,在数轴上找出-a 的对应点,即可确定符合条件的b 的值.解:例2 (2021•模考 铜仁)实数a ,b 在数轴上对应的点的位置如图2所示,下列结论正确的是( )A.a>b B.﹣a<b C.a>﹣b D.﹣a>b图2分析:先由数轴,得-2<a<-1,0<b<1,所以1<-a<2,-1<-b<0,再根据实数的大小比较方法进行比较即可求解.解:归纳:实数与数轴上的点具有一一对应的关系,把数和点对应起来,也就是说把“数”和“形”结合起来,二者相互补充,相辅相成,把许多复杂问题转化为简单的问题.跟踪训练1.(2021•模考盐城)实数a,b在数轴上对应的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|第1题图2.(2021•模考福建)如图,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1 B.1 C.2 D.3第2题图3.(2021•模考枣庄)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1第3题图参考答案专项一实数及有关概念例1 -10 907 例2 B 例3 D1.C 2.A 3.D 4.A 5.D专项二科学记数法例1 B 例2 C1.A 2.B 3.B 4.B专项三无理数的估算例1 B 例2 51.C 2.C 3.2专项四实数的大小比较例1 D 例2 B1.D 2.B 3.C 4.C专项五平方根、立方根例1 A 例2 C1.C 2.A 3.C 4.3 5 6.3专项六实数的运算例1 0.例2 1 例3 C1.B 2.C 3.D 4.5 5.3 6.4 7.202020218.1.专项七数轴与数形结合例1 B 例2 D1.C 2.C 3.D。
实数的有关概念及计算考点训练【考点一 实数的有关概念】1.(2022•玉环市一模)如果向东走5米记作+5米,那么﹣3米表示( )A .向东走5米B .向西走5米C .向东走3米D .向西走3米2.(2022•海曙区校级一模)在﹣6,3,0,4这四个数中,负数有( )A .1个B .2个C .3个D .4个3.(2022•鹿城区校级三模)下列实数中,为无理数的是( ) A .﹣5 B .0 C .23D .√7 4.(2022•丽水二模)实数π,0,﹣1,√2中,有理数的个数为( )A .3B .2C .1D .05.(2022•上虞区模拟)实数2,0,﹣2,√2中,为负数的是( )A .2B .0C .﹣2D .√2 6.(2020•杭州模拟)下列对实数π−12说法正确的是( )A .它是一个有理数B .它是一个单项式C .它是一个分数D .它的值等于1.07【考点二 科学记数法与近似数】【例2】(2022•宁海县模拟)中国疾控中心免疫规划首席专家王华庆在2022年3月25日国务院联防联控机制新闻发布会上表示,我国60岁以上的老年人中有2.12亿人完成了新冠病毒疫苗的全程接种.其中2.12亿用科学记数法表示为( )A .2.12×107B .2.12×108C .0.212×109D .2.12×1091.(2022•拱墅区校级二模)中国信息通信研究院测算.2020﹣2025年,中国5G 商用带动的息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元,其中数据10.6万亿用科学记数法表示为( )A .10.6×104B .1.06×1013C .10.6×1013D .1.06×1082.(2022•瑞安市校级三模)截至北京时间5月24日6时30分左右,全球累计确诊新冠肺炎病例约为167000000例,累计死亡348万例.数字“167000000”用科学记数法可表示为( )A .1.67×109B .0.167×109C .1.67×108D .16.7×1083.(2022•长兴县模拟)新型冠状病毒有包膜,颗粒呈圆形或者椭圆形,常为多形性.某种新冠病毒的直径大约为0.00000012米,这个数用科学记数法表示为( )A .1.2×10﹣7B .12×10﹣8C .120×106D .0.12×10﹣94.(2022•萧山区二模)2019年11月,联合国教科文组织正式宜布,将每年的3月14日定为“国际数学日”.国际数学日之所以定在3月14日,是因为“3.14”是圆周率数值最接近的数字.将圆周率“π”用四舍五入法取近似值3.14,是精确到( )A .个位B .十分位C .百分位D .千分位5.(2020•西湖区校级模拟)自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000073米,将0.000073用科学记数法表示为 .6.(2020•温岭市一模)疫情无情人有情,截至2月18日17时,仅我市慈善总会就接收到防控新冠肺炎疫情捐赠12525390元,用科学记数法表示这个捐赠款数,并精确到万元,可记作 元.【考点三 相反数、倒数、绝对值】【例3】(2022•江汉区校级模拟)实数−√2的相反数是( )A .−√2B .√2C .√2D .√2 1.(2020•江岸区模拟)−√3的相反数为( )A .√3B .−√33 C .3 D .﹣3 2.(2021•兰溪市模拟)实数﹣3的绝对值是( ) A .﹣3 B .13 C .3 D .−13 3.(2022•下城区校级二模)2的相反数是 ,﹣3的绝对值是 . 4.(2022秋•拱墅区月考)−12的倒数是 ;绝对值等于2的数是 .5.(2022秋•义乌市校级月考)已知|ab ﹣2|+|a ﹣1|=0,则b = .6.(2022秋•临平区月考)式子4+|x ﹣1|能取得的最小值是 ,这时x = ;式子3﹣|2x ﹣1|能取得的最大值是 ,这时x = .【考点四 平方根、立方根及实数的估算】【例4】(2022春•嵊州市期末)计算√(−3)2的结果是( )A .9B .﹣3C .3或﹣3D .3 1.(2022•婺城区一模)正数2的平方根可以表示为( )A .22B .±√2C .√2D .−√22.(2022秋•温州校级期中)下列计算结果正确的是( )A .±√4=2B .√4=±2C .√4=2D .√(−4)2=−43.(2022秋•拱墅区月考)若x 2=3,则x 的值是( )A .−√3B .√3C .±9D .±√34.(2022秋•萧山区校级期中)若m <0,则|2m |= ;√81的平方根是 .5.(2022秋•慈溪市期中)已知实数x ,y 满足|x −4|+√y +5=0,求式子x ﹣y 的值 .6.(2022秋•海曙区校级期中)大于−√3且小于π的所有整数和是 .7.(2022秋•温州校级期中)小于√5+1的正整数有 个.【考点五 实数的大小比较】【例5】(2022•瓯海区一模)下列四个数最大的是( )A .﹣1B .−12C .√2D .2 1.(2022秋•杭州期中)在数2,0,﹣2,−√3中,最大的数是( )A .−√3B .0C .﹣2D .22.(2022秋•杭州期中)下列大小关系判断正确的是( ) A .0>|﹣10| B .−19>−(−110) C .﹣3>−√10 D .﹣32>﹣π3.(2022秋•拱墅区校级月考)若X 为实数,记[X ]表示不超过X 的最大整数,则[﹣3.5]=( )A .﹣4B .﹣3C .3D .44.(2022秋•义乌市校级期中)比较大小:√7 2.5(填“>”、“<”或“=”).5.(2022秋•萧山区期中)比较大小:(1)﹣2 ﹣3; (2)|﹣5| √−83.【考点六 实数的运算】【例6】(2022春•富阳区期中)计算:(﹣3)2﹣30+3﹣1= .1.(2022秋•临平区期中)计算:(1)√52−33+√(35)2+(45)2; (2)√−273+√(−3)2−√−13. 2.(2022秋•萧山区期中)计算:(1)√−643+√16; (2)√(−2)2+|3.14−π|+3.14.3.(2022秋•海曙区校级期中)计算: (1)(34+712−76)÷(−160); (2)√(−5)2−|2−√2|−√−273+(−√3)2. 4.(2022秋•杭州期中)(1)若a 是最小的正整数,b 是绝对值最小的数,c =|√7−√11|,|x +2|+√y −3=0. 则a = ;b = ;c = ;x = ;y = .(2)若a 与b 互为相反数,c 与d 互为倒数,|e|=√2,求代数式4(a +b )+(﹣cd )2﹣e 2的值.5.(2022秋•苍南县期中)观察下列一组算式的特征及运算结果,探索规律:(1)√1×5+4=√9=3,(2)√2×6+4=√16=4,(3)√3×7+4=√25=5,(4)√4×8+4=√36=6.(1)观察算式规律,计算√5×9+4= ;√19×23+4= .(2)用含正整n 的式子表示上述算式的规律: .(3)计算:√1×5+4−√2×6+4+√3×7+4−√4×8+4+⋯+√2021×2025+4.【考点七 非负数的性质】【例7】(2021秋•奉化区期中)若(x ﹣2017)2+|2018+y |+√2019−m =0,则(x +y )m = .1.(2022秋•温州期中)已知|x −3|+(y +2)2+√z =0,则(z +y )x =( )A .6B .﹣6C .8D .﹣82.(2022春•仙居县期中)√a 2+2a +1−2的最小值是( )A .﹣2B .﹣1C .0D .23.(2022秋•慈溪市期中)已知实数x ,y 满足|x −4|+√y +5=0,求式子x ﹣y 的值 .4.(2013春•余姚市校级月考)若√a +3+(b −1)2=0,则a−b 4= .5.(2022秋•萧山区校级期中)(1)已知某正数的平方根为a +3和2a ﹣15,求这个数是多少?(2)已知m ,n 是实数,且√2m +1+|3n −2|=0,求m 2+n 2的平方根.。
1.1实数的概念与运算强化训练(一)一、实数的概念及分类1、上升5cm,记作+5cm,下降6cm,记作( )A 、6cmB 、-6cmC 、+6cmD 、负6cm2、0是( )A 、整数B 、正有理数C 、负有理数D 、无理数3、某市2009年的最高气温是39℃,最低气温是零下7℃,则计算该市2009年的温差,下列各式正确的 是( )A 、()()739--+B 、()()739-++C 、()()739+++D 、()()739+-+4、下面几个数中,属于正数的是( )A 、3B 、12-C 、2-D 、0 5、在实数中02)33(,)3(,...,45678.2,71,2,3,0---ππ,无理数的个数为( ) A 、 3 个 B 、4个 C.5个 D. 6个6、下列四个数中,比0小的数是………………………………( )A 、23B 、3C 、πD 、1- 7、在实数32-,0,2,π,9中,无理数有( ) A 、1个 B 、2个 C 、3个 D 、4个8、在数轴上,与3-最接近的整数是( )A 、-3B 、-2C 、-1D 、0二、实数的性质1、(1)15-的绝对值是 ;(2)2010-= 。
2、(1)-21的相反数是 ;(1)()6--的相反数是 。
3、如图,数轴上点A 所表示的数的倒数是( )第3题A . 2-B . 2C .12 D . 12- 4、下列各组数中,互为相反数的是()A 、2与21 B 、21)(-与1 C 、-1与2)1(- D 、2与|-2| 5、下列各组数中,互为相反数的一组是( )A 、22-与B 、112与)(- C 、112与- D 、22-与 6、如果0=+b a ,那么a ,b 两个实数一定是( )A 、都等于0B 、一正一负C 、互为相反数D 、互为倒数7、如果a 与2-互为倒数,那么a 是( )A 、-2B 、-21C 、21 D 、2 8、下列说法错误的是( )A 、-1的相反数是1B 、-1的倒数是1C 、-1的绝对值是1D 、-1的平方是19、如果)0(1≠-=b ba ,那么a ,b 两个实数一定是( ) A. 一正一负 B. 相等的数 C.互为相反数 D.互为倒数10、在数轴上画出表示下列各数的点:0π,22-,4、11、实数b a ,在数轴上的位置如下图所示,则下列各式正确的是( )A 、b a ->-B 、b a ->C 、b a <D 、b a >12、如图,数轴上A B ,两点表示的数分别为1-和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A 、23--B 、13--C 、23-+D 、13+13、如图,数轴上表示1、2两数的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 所表示C A O B (第11题图)的数是( )A 、2-1B 、1-2C 、2-2D 、2-2三、实数的运算1、计算12--的结果是 ( )A 、3-B 、2-C 、1-D 、32、计算12--||结果正确的是( )A 、 3B 、1C 、1-D 、3-3、下列运算正确的是( )A 、532=+B 、()532a a =C 、6-23-=D 、43515a aa =÷ 4、-3的立方是( )A 、-27B 、-9C 、9D 、275、2)21(-的值是( ) A 、41 B 、21- C 、21 D 、41- 6、下列四个运算中,结果最小的是( )(原创) A.()12-+- B. ()12-- C. ()12⨯- D. ()12÷-7、下列等式一定成立的是( )A 、916916+=+B 、22a b a b -=-C 、44ππ⨯=⨯D 、2()a b a b +=+ 8、25的算术平方根是( )A 、5B 、 5C 、–5D 、±59、化简)22(28+-得( )、A 、-2B 、22-C 、2D 、224-10、 2(3)--的值为( )A 、3B 、3-C 、3±D 、9-11、估计68的立方根的大小在 ( )A 、2与3之间B 、3与4之间C 、4与5之间D 、5与6之间12、若02sin 30x =,则x 的平方根为 ( )A 、1B 、1±C 3±、D 、313、吋是电视机常用规格之一,1吋约为拇指上面一节的长,则7时长相当于()A、课本的宽度B、课桌的宽度C、黑板的高度D、粉笔的长度。
专题01 实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
【例1】.在下列各组中,哪个选项表示互为相反意义的量( )A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【解析】表示互为相反意义的量:足球比赛胜5场与.负5场故选A【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。
圆圆在该快递公司寄一件8千克的物品,需要付费( )。
A. 17元B. 19元C. 21元D. 23元【解析】8千克超过了5千克,且超过8-5=3(千克) ,13+2(8-5)=19(元).故选B考点02 数轴1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C表示的数是( )A.﹣0.5 B.﹣1.5C.0 D.0.5【解析】解:∵数轴上的点A,B分别表示数﹣2和1,∴AB=1﹣(﹣2)=3.∵点C是线段AB的中点,∴AC=CB=AB=1.5,∴把点A向右移动1.5个单位长度即可得到点C,即点C表示的数是﹣2+1.5=﹣0.5.故选A.考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。
2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。
2024中考数学复习核心知识点精讲及训练—实数(含解析)1.理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.2.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).4.理解有理数的运算律,并能运用运算律简化运算.5.能运用有理数的运算解决简单的问题.6.了解无理数和实数的概念,知道实数与数轴上的点一一对应.能求实数的相反数与绝对值.7.能用有理数估计一个无理数的大致范围.考点1:实数的分类考点2:实数的相关概念1.数轴:规定了原点、单位长度和正方向的直线叫做数轴.数轴上所有的点与全体实数一一对应. 2.相反数:只有符号不同,而绝对值相同的两个数称为互为相反数,若a、b互为相反数,则a+b=0. 3.倒数:1除以一个不等于零的实数所得的商,叫做这个数的倒数.若a、b互为倒数,则ab=1.4.绝对值:数轴上表示数a的点与原点的距离,记作|a|.5.科学记数法:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值大于10时,写成a×10n的形式,其中1≤|a|<10,n等于原数的整数位数减1;当原数绝对值小于1时,写成a×10−n 的形式,其中1≤|a|<10,n等于原数左边第一个非零的数字前的所有零的个数(包括小数点前面的零). 6.近似数:近似数与准确数的接近程度通常用精确度来表示,近似数一般由四舍五入取得,四舍五入到哪一位,就说这个近似数精确到哪一位.7.平方根:(1)算术平方根的概念:若x2=a(x>0),则正数x叫做a的算术平方根.(2)平方根的概念:若x2=a,则x叫做a的平方根.(3)表示:a的平方根表示为,a的算术平方根表示为.(4)8.立方根:(1)定义:若x3=a,则x叫做a的立方根.(2)表示:a的立方根表示为.(3).考点3:实数的大小比较(1)数轴比较法:数轴上两个点表示的数,右边的点表示的数总比左边的点表示的数大;(2)类别比较法:正数>0>负数;两个负数比较大小,绝对值大的反而小;(3)差值比较法:a-b >0⇔a >b;a-b=0⇔a=b;a-b <0⇔a <b(4)平方比较法:)>>>0(b b a 2b a ⇒考点4:实数的运算1.数的乘方:求n 个相同因数a 的积的运算叫做乘方,乘方的结果叫幂.在a n 中,a 叫底数,n 叫指数.2.实数的运算:(1)有理数的运算定律在实数范围内都适用,常用的运算定律有加法结合律、加法交换律、乘法交换律、乘法结合律、乘法分配律.(2)运算顺序:先算乘方(开方),再算乘除,最后算加减;有括号的先算括号里面的.3.零次幂;a ≠0,则a 0=14.负整数指数幂:若a ≠0,n 为正整数,则.5.-1的奇偶次幂:n 1n 1=-(为偶数)();n 1((1)n =-为奇数)【题型1:实数的概念】【典例1】(2023•攀枝花)﹣3的绝对值是()A .3B .C .D .﹣3【答案】A【分析】根据一个负数的绝对值是它的相反数即可求解.【解析】解:﹣3的绝对值是3.故选:A .1.(2023•南充)如果向东走10m 记作+10m ,那么向西走8m 记作()A.﹣10m B.+10m C.﹣8m D.+8m【答案】C【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解析】解:如果向东走10m记作+10m,那么向西走8m记作﹣8m.故选:C.2.(2023•青岛)的相反数是()A.﹣B.C.﹣7D.7【答案】A【分析】根据实数a的相反数是﹣a进行求解.【解析】解:的相反数是﹣,故选:A.3.(2023•娄底)2023的倒数是()A.2023B.﹣2023C.D.【答案】D【分析】乘积是1的两数互为倒数,由此即可得到答案.【解析】解:2023的倒数是.故选:D.4.(2023•吉林)月球表面的白天平均温度零上126℃记作+126℃,夜间平均温度零下150℃应记作()A.+150℃B.﹣150℃C.+276℃D.﹣276℃【答案】B【分析】正数和负数是一组具有相反意义的量,据此即可得出答案.【解析】解:零上126℃记作+126℃,则零下150℃应记作﹣150℃,故选:B.【题型2:实数的分类】【典例2】(2023•荆州)在实数﹣1,,,3.14中,无理数是()A.﹣1B.C.D.3.14【答案】B【分析】无理数即无限不循环小数,据此进行判断即可.【解析】解:实数﹣1,,,3.14中,无理数是,故选:B.1.(2023•怀化)下列四个实数中,最小的数是()A.﹣5B.0C.D.【答案】A【分析】正数>0>负数;一个正数越大,其算术平方根越大;据此进行判断即可.【解析】解:∵1<2,∴<,即1<,则<,那么﹣5<0<<,则最小的数为:﹣5,故选:A.2.(2023•浙江)下面四个数中,比1小的正无理数是()A .B .﹣C .D .【答案】A 【分析】无理数即无限不循环的小数,结合实数比较大小的方法进行判断即可.【解析】解:A .∵1>,∴>,即1>,且是正无理数,则A 符合题意;B .﹣是负数,则B 不符合题意;C .是分数,不是无理数,则C 不符合题意;D .∵π>3,∴>1,则D 不符合题意;故选:A .3.(2023•凉山州)下列各数中,为有理数的是()A .B .3.232232223…C .D .【答案】A【分析】运用有理数和无理数的概念进行逐一辨别、求解.【解析】解:∵=2,∴选项A 符合题意;∵3.232232223…,,是无理数,∴选项B,C,D不符合题意,故选:A.【题型3:数轴】【典例3】(2023•南通)如图,数轴上A,B,C,D,E五个点分别表示数1,2,3,4,5,则表示数的点应在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上【答案】C【分析】根据算术平方根的定义,估算无理数的大小,再根据数轴上A,B,C,D,E五个点在数轴上的位置进行判断即可.【解析】解:∵3<<4,而数轴上A,B,C,D,E五个点分别表示数1,2,3,4,5,∴表示数的点应在线段CD上,故选:C.1.(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.【答案】C【分析】直接利用二次根式有意义的条件得出x的取值范围,进而在数轴上表示即可.【解析】解:二次根式在实数范围内有意义,解得:x≤1,则实数x的取值范围在数轴上表示为:.故选:C.2.(2023•自贡)如图,数轴上点A表示的数是2023,OA=OB,则点B表示的数是()A.2023B.﹣2023C.D.﹣【答案】B【分析】结合已知条件,根据实数与数轴的对应关系即可求得答案.【解析】解:∵OA=OB,点A表示的数是2023,∴OB=2023,∵点B在O点左侧,∴点B表示的数为:0﹣2023=﹣2023,故选:B.3.(2023•济南)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.ab>0B.a+b>0C.a+3<b+3D.﹣3a<﹣3b【答案】D【分析】从图中判断a的值和b的取值范围,再根据有理数的运算及不等式的性质来计算.【解析】解:从图中得出:a=2,﹣3<b<﹣2.(1)a和b相乘是负数,所以ab<0,故A选项错误;(2)a和b相加是负数,所以a+b<0,故B选项错误;(3)因为a>b,所以a+3>b+3,故C选项错误;(4)因为a是正数,所以﹣3a<0,又因为b是负数,所以﹣3b>0,即﹣3a<﹣3b,故选项D正确,答案为:D.【题型4:科学记数法】【典例4】(2023•淮安)健康成年人的心脏每分钟流过的血液约4900mL.数据4900用科学记数法表示为()A.0.49×104B.4.9×104C.4.9×103D.49×102【答案】C【分析】根据科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,n为整数,由此可得答案.【解析】解:4900=4.9×103.故选:C.1.(2023•北京)截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为()A.23.9×107B.2.39×108C.2.39×109D.0.239×109【答案】B【分析】用科学记数法表示绝对值较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解析】解:239000000=2.39×108,故选:B.2.(2023•绍兴)据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是()A.27.4×107B.2.74×108C.0.274×109D.2.74×109【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解析】解:274000000=2.74×108.故选:B.【题型5:实数的大小比较】【典例5】(2023•扬州)已知a=,b=2,c=,则a、b、c的大小关系是()A.b>a>c B.a>c>b C.a>b>c D.b>c>a【答案】C【分析】一个正数越大,其算术平方根越大,据此进行判断即可.【解析】解:∵3<4<5,∴<<,即<2<,则a>b>c,故选:C.1.(2023•潍坊)在实数1,﹣1,0,中,最大的数是()A.1B.﹣1C.0D.【答案】D【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【解析】解:∵﹣1<0<1<,∴在实数1,﹣1,0,中,最大的数是,故选:D.2.(2023•青海)写出一个比﹣大且比小的整数﹣1(或0或1).【答案】﹣1(或0或1).【分析】估算出的取值范围即可求解.【解析】解:∵1<2<4,∴,∴﹣2<﹣<﹣1,∴比﹣大且比小的整数有﹣1,0,1.故答案为:﹣1(或0或1).3.(2023•甘孜州)比较大小:>2.(填“<”或“>”)【答案】>.【分析】先把2写成,然后根据被开方数大的算术平方根也大即可得出比较结果.【解析】解:∵,又∵,∴,故答案为:>【题型6:平方根、算术平方根和立方根】【典例6】(2023•浙江)﹣8的立方根是()A.﹣2B.2C.±2D.不存在【答案】A【分析】根据立方根的定义求出的值,即可得出答案.【解析】解:﹣8的立方根是==﹣2,故选:A1.(2023•无锡)实数9的算术平方根是()A.3B.±3C.D.﹣9【答案】A【分析】根据算术平方根的定义,即可解答.【解析】解:实数9的算术平方根是3,故选:A.2.(2023•郴州)计算=3.【答案】3.【分析】如果x3=a,那么x叫做a的立方根.记作:,由此即可得到答案.【解析】解:=3.故答案为:3.3.(2023•邵阳)的立方根是2.【答案】2.【分析】先求出的值,再根据立方根的定义解答即可.【解析】解:=8,=2.故答案为:2.【题型7:实数的运算】【典例7】(2023•上海)计算:+﹣()﹣2+|﹣3|.【答案】﹣6.【分析】根据立方根定义,二次根式的化简,负整数指数幂,绝对值的性质进行计算即可.【解析】解:原式=2+﹣9+3﹣=2+﹣2﹣9+3﹣=﹣61.(2023•广西)计算:(﹣1)×(﹣4)+22÷(7﹣5).【分析】先算括号里面的,再算乘方,乘除,最后算加减即可.【解析】解:原式=(﹣1)×(﹣4)+4÷2=4+2=62.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.【答案】5.【分析】根据特殊角的三角函数值、负整数指数幂的运算法则、绝对值的性质、二次根式的性质计算.【解析】解:原式=4×+3+2﹣2=2+3+2﹣2=5.3.(2023•娄底)计算:(π﹣2023)0+|1﹣|+﹣tan60°.【答案】2.【分析】利用零指数幂,绝对值的性质,二次根式的运算法则,特殊锐角的三角函数值进行计算即可.【解析】解:原式=1+﹣1+2﹣=2.1.某校仪仗队队员的平均身高为175cm,如果高于平均身高2cm记作+2cm,那么低于平均身高2cm应该记作()A.2cm B.﹣2cm C.175cm D.﹣175cm【答案】B【分析】正数和负数是一组具有相反意义的量,据此即可求得答案.【解析】解:由题意,高于平均身高2cm记作+2cm,高于平均身高和低于平均身高具有相反意义,所以低于平均身高2cm记作﹣2cm.故选:B.2.﹣3的相反数是()A.﹣B.3C.﹣3D.【答案】B【分析】根据相反数的概念解答求解.【解析】解:﹣3的相反数是﹣(﹣3)=3.故选:B.3.第19届亚运会将于2023年9月23日在杭州举行,其主体育场及田径项目比赛场地——杭州奥体中心体育场,俗称“大莲花”,总建筑面积约216000平方米,将数216000用科学记数法表示为()A.216×103B.21.6×104C.2.16×105D.0.216×106【答案】C【分析】把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法,由此即可得到答案.【解析】解:216000用科学记数法表示为2.16×105.故选:C.4.若|a|=﹣a,a一定是()A.正数B.负数C.非正数D.非负数【答案】C【分析】根据负数的绝对值等于他的相反数,可得答案.【解析】解:∵非正数的绝对值等于他的相反数,|a|=﹣a,a一定是非正数,故选:C.5.若a和b互为相反数,则a+b+3的值为()A.2B.3C.4D.5【答案】B【分析】运用互为相反数的两数相加为0进行求解.【解析】解:∵a和b互为相反数,∴a+b+3=0+3=3,故选:B.6.将﹣3﹣(+6)﹣(﹣5)+(﹣2)写成省略括号的和的形式是()A.﹣3+6﹣5﹣2B.﹣3﹣6+5﹣2C.﹣3﹣6﹣5﹣2D.﹣3﹣6+5+2【答案】B【分析】原式利用减法法则变形即可得到结果.【解析】解:﹣3﹣(+6)﹣(﹣5)+(﹣2)=﹣3﹣6+5﹣2.故选:B.7.4的算术平方根是()A.±2B.﹣2C.2D.【答案】C【分析】根据算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为,求出4的算术平方根即可.【解析】解:4的算术平方根是:,故选:C.8.如图,在数轴上,手掌遮挡住的点表示的数可能是()A.0.5B.﹣0.5C.﹣1.5D.﹣2.5【答案】B【分析】设小手盖住的点表示的数为x,则﹣1<x<0,再根据每个选项中实数的范围进行判断即可.【解析】解:设小手盖住的点表示的数为x,则﹣1<x<0,则表示的数可能是﹣0.5.故选:B.9.实数a,b在数轴上对应点的位置如图所示,下列结论中错误的是()A.a<﹣2B.b<1C.a>b D.﹣a>b【答案】B【分析】由数轴可得a<﹣2<0<b<1,|a|>|b|,然后将各项进行判断即可.【解析】解:由数轴可得a<﹣2<0<b<1,|a|>|b|,则A,C均不符合题意,B符合题意;由|a|>|b|可得a+b<0,则﹣a>b,那么D不符合题意;故选:B.10.在数﹣1、0、、中,为无理数的是()A.﹣1B.0C.D.【答案】D【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【解析】解:数﹣1、0、、中,为无理数的是.故选:D.11.在﹣2,3,,0,﹣1.7五个数中,正数有()A.1个B.2个C.3个D.4个【答案】B【分析】根据正数大于0,负数小于0判断即可.【解析】解:在﹣2,3,,0,﹣1.7五个数中,正数有3,,共2个.故选:B.12.64的平方根是()A.±4B.4C.±8D.8【答案】C【分析】±8的平方都等于64,可得64的平方根是±8.【解析】解:∵±8的平方都等于64;∴64的平方根是±8.故选:C.13.比较大小:3>(填写“<”或“>”).【答案】>【分析】将3转化为,然后比较被开方数即可得到答案.【解析】解:∵3=,且9>7,∴3>,故答案为:>.14.实数a,b在数轴上对应点的位置如图所示,则﹣a>b.(填“>”,“=”,“<”)【答案】>.【分析】根据数轴得出﹣2<a<﹣1,0<b<1,继而得出1<﹣a<2,即可求解.【解析】解:根据数轴可知﹣2<a<﹣1,0<b<1,∴1<﹣a<2,∴﹣a>b,故答案为:>.15.代数式在实数范围内有意义,则x的取值范围是x≥5.【答案】x≥5【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【解析】解:由题意得,x﹣5≥0,解得x≥5,故答案为:x≥5.16.的平方根是±2.【答案】±2.【分析】根据平方根、算术平方根的定义进行计算即可.【解析】解:由于=4,所以的平方根是=±2,故答案为:±2.17.计算(3﹣π)0=1.【答案】1【分析】直接利用零指数幂:a0=1(a≠0)求解可得.【解析】解:(3﹣π)0=1,故答案为:1.18.计算:(﹣1)10×2+(﹣2)3÷4.【答案】0.【分析】先计算乘方,再计算乘除,后计算加减.【解析】解:(﹣1)10×2+(﹣2)3÷4=1×2﹣8×=2﹣2=0.19.计算:.【答案】3+6.【分析】直接利用二次根式的性质、负整数指数幂的性质、零指数幂的性质分别化简,进而得出答案.【解析】解:原式=3+9﹣1﹣2=3+6.20.计算:.【答案】﹣3.【分析】根据特殊角的三角函数值,零次幂,负整数指数幂,化简绝对值进行计算即可求解.【解析】解:===﹣3.1.下列各数中,是负数的是()A.|﹣1|B.﹣22C.D.(﹣3)0【答案】B【分析】利用绝对值的意义,有理数的乘方法则,二次根式的性质和零指数幂的意义对每个选项进行逐一判断即可得出结论.【解析】解:∵|﹣1|=1>0,是正数,∴A选项不符合题意;∵﹣22=﹣4<0,是负数,∴B选项符合题意;∵=3>0,是正数,∴C选项不符合题意;∵(﹣3)0=1>0,是正数,∴D选项不符合题意.故选:B.2.若ab≠0,那么+的取值不可能是()A.﹣2B.0C.1D.2【答案】C【分析】由ab≠0,可得:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;分别计算即可.【解析】解:∵ab≠0,∴有四种情况:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;①当a>0,b>0时,+=1+1=2;②当a<0,b<0时,+=﹣1﹣1=﹣2;③当a>0,b<0时,+=1﹣1=0;④当a<0,b>0时,+=﹣1+1=0;综上所述,+的值为:±2或0.故选:C.3.如图,检测4个篮球,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度看,最接近标准的球是()A.B.C.D.【答案】D【分析】由已知和要求,只要求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.【解析】解:通过求4个篮球的绝对值得:|+10|=10,|+8|=8,|﹣12|=12,|﹣5|=5,﹣5的绝对值最小.所以这个球是最接近标准的球.故选:D.4.实数a与b在数轴上对应点的位置如图所示,则正确的结论是()A.a<0B.a<b C.b+5>0D.|a|>|b|【答案】C【分析】根据数轴可以发现b<a,且,由此即可判断以上选项正确与否.【解析】解:A.∵2<a<3,a>0,答案A不符合题意;B.∵2<a<3,﹣4<b<﹣3,∴a>b,∴答案B不符合题意;C.∵﹣4<b<﹣3,∴b+5>0,∴答案C符合题意;D.∵2<a<3,﹣4<b<﹣3,∴|a|<b|,∴答案D不符合题意.故选:C.5.如图,数轴上被墨水遮盖的数的绝对值可能是()A.B.C.D.【答案】C【分析】明确被覆盖数的范围,根据负数的绝对值取其相反数,得出答案.【解析】解:由图可知,设被覆盖的数为a,则﹣4<a<﹣3,∵当a<0时,|a|=﹣a,∴3<|a|<4,∵3<<4,满足题意,故选:C.6.大多数红绿灯都是固定时间设置,某市正在逐步推行智能感应红绿灯,这种红绿灯可以自动搜集车流量信息,根据通行车辆的多少自动调节红绿灯的时长,若某十字路口某时间段自动搜集的车流量中,东西走向直行与左转车辆分别约占总流量的,;南北走向直行与左转车辆分别约占总流量的,.因右转车辆不受红绿灯限制,所以在设置红绿灯时,按东西走向直行、左转,南北走向直行、左转的次序依次亮起绿灯作为一个周期时间(当某方向绿灯亮起时,其他3个方向全为红灯),若一个周期时间为2分钟,则此时南北走向左转绿灯时长为()A.32秒B.24秒C.18秒D.16秒【答案】A【分析】先重新计算南北走向直行流量占比,再用120乘以占比可得一个周期时间为2分钟南北走向直行绿灯时长.【解析】解:∵右转车辆不受红绿灯限制,∴南北走向直行占题四种走向流量的比例为:=,∴一个周期时间为2分钟,设置南北走向直行绿灯时长为120×=32s,故选:A.7.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,如图,这个三角形给出了的展开式的系数规律(按n的次数由大到小的顺序):请依据上述规律判断:若今天是星期三,则经过1510天后是()A.星期四B.星期五C.星期六D.星期天【答案】A【分析】结合一个星期7天,即相应的尾数是7个数一循环,利用所给的规律求得1510天的尾数即可判断.【解析】解:∵1510=(14+1)10∴(14+1)10=1410+10×149×1+…+10×14×19+110,∴(14+1)10÷7的余数为:1,即1510÷7的余数为:1,∴若今天是星期三,则经过1510天后是星期四.故选:A.8.在算式中的“□”里填入一个运算符号,使得它的结果最小()A.+B.﹣C.×D.÷【答案】D【分析】分别填入四个运算符号,计算出每个算式的结果,然后进行比较即可.【解析】解:若填入的符号为+,算式为:;若填入的符号为﹣,算式为:;若填入的符号为×,算式为:;若填入的符号为÷,算式为:,∵,,∴,∴若填入的符号为÷,算式的结果最小,故选:D .9.如图,已知矩形ABCD 的边长分别为6,4,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A 1B 1C 1D 1;第二次,顺次连接四边形A 1B 1C 1D 1各边的中点,得到四边形A 2B 2C 2D 2;…如此反复操作下去,则第n 次操作后,得到四边形A n B n ∁n D n 的面积是()A .B .C .D .【答案】B【分析】连接A 1C 1,D 1B 1,可知四边形A 1B 1C 1D 1的面积为矩形ABCD 面积的一半,则S 1=×4×6=12,再根据三角形中位线定理可得C 2D 2=C 1,A 2D 2=B 1D 1,则S 2=C 1×B 1D 1=ab ,依此可得规律.【解析】解:如图,连接A 1C 1,D 1B 1,∵顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1,∴四边形A1BCC1是矩形,∴A1C1=BC,A1C1∥BC,同理,B1D1=AB,B1D1∥AB,∴A1C1⊥B1D1,∴S1=×4×6=12,∵顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2,∴C2D2=C1,A2D2=B1D1,∴S2=C1×B1D1=×12=3,……依此可得S n=,故选:B.10.若,b=(﹣1)﹣1,,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>a>b D.c>b>a 【答案】B【分析】利用零指数,负整数指数幂的运算法,计算a、b、c的值,再比较大小.【解析】解:∵,b=(﹣1)﹣1=﹣1,,∴a>c>b,故选:B.11.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】A【分析】首先得出,进而求出的估计值.【解析】解:∵,∴,∴,∴的值在2到3之间.故选:A.12.若a=﹣3,,则a,b的大小关系为()A.a>b B.a=b C.a<b D.无法判断【答案】C【分析】先将化简,再比较大小.【解析】解:,则3>﹣3,∴a<b.故选:C.13.实数a,b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.a+2<b+2B.a<1C.a+b>0D.﹣2a<﹣2b 【答案】D【分析】根据有数轴上的各点来确定﹣1<a<0,b>1>0,来判断数的大小.【解析】解:A选项中因为在数轴上得到a<b,左右两边同时加上2,所以a+2<b+2成立,符合题意故正确;B选项中,从数轴中直接观察到a<1,符合题意故正确;C选项中,因为a>﹣1,b>1,所以a+b>0,符合题意故正确;D选项中,从数轴中观察到a<0,b>0,a是负数,乘负数,结果为正数,b为负数,乘负数,结果为负数,所以﹣2a>﹣2b,故D选项不符合题意,是错误的.故答案为D.14.实数m、n在数轴上的位置如图所示,化简|n﹣m|﹣m的结果为()A.n﹣2m B.﹣n﹣2m C.n D.﹣n【答案】D【分析】根据实数m、n在数轴上的位置,可得到n﹣m<0,再化简绝对值,得出结果.【解析】解:由实数m、n在数轴上的位置可知,n﹣m<0,所以|n﹣m|﹣m=m﹣n﹣m=﹣n,故选:D.15.若a是不为1的有理数,则我们把称为a的差倒数.如2的差倒数为,﹣1的差倒数为.已知:a1=3,a2是a1差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依次类推,a2023的值是()A.3B.C.D.【答案】A【分析】根据差倒数定义计算得出,依次推导3个数据为一组,,a2023=3.【解析】解:根据差倒数的定义知,以这3个数为一组,第2022个数为第674组数的第3个数据,则,那么a2023=3.故选:A.16.如图将一张纸片剪成4个正三角形,称为第一次操作;然后将其中一个正三角形再剪成4个小正三角形,共得到7个正三角形,称为第二次操作;将其中一个正三角形再剪成4个正三角形,共得到10个正三角形,称为第三次操作;….根据以上操作,若要得到2023个正三角形,则需要操作的次数为()A.671B.672C.673D.674【答案】D【分析】根据已知第一次操作后得到4个小正三角形,第二次操作后得到7个小正三角形;第三次操作后得到10个小正三角形;…继而即可求出剪m次时正三角形的个数为2023.【解析】解:∵第一次操作后得到4个小正三角形,第二次操作后得到7个小正三角形;第三次操作后得到10个小正三角形,……∴第m次操作后,总的正三角形的个数为3m+1.则:2023=3m+1,解得:m=674,故若要得到2023个小正三角形,则需要操作的次数为674次.故选:D.17.下列表格中的四个数都是按照规律填写的,则表中x的值是()A.135B.170C.209D.252【答案】C【分析】根据表格找出方格中每个对应数字的表示规律然后求解.【解析】解:根据表格可得规律:第n个表格中,左上数字为n,左下数字为n+1,右上数字为2(n+1),右下数字为2(n+1)(n+1)+n,∴20=2(n+1),解得n=9,∴a=9,b=10,x=10×20+9=209.故选:C.18.如M={1,2,x},我们叫集合M,其中1,2,x叫做集合M的元素.集合中的元素具有确定性(如x 必然存在),互异性(如x≠1,x≠2),无序性(即改变元素的顺序,集合不变).若集合N={x,1,2},我们说M=N.已知集合A={2,0,x},集合,若A=B,则x﹣y的值是()A.2B.C.﹣2D.﹣1【答案】B【分析】利用新定义,根据元素的互异性、无序性推出只有=0,从而得出两种情况.讨论后即可得解.【解析】解:由题意知A={2,0,x},由互异性可知,x≠2,x≠0.因为B={},A=B,由x≠0,可得|x|≠0,≠0,所以,即y=0,那么就有或者,当得x=,当无解.所以当x=时,A={2,0,},B={2,,0},此时A=B符合题意.所以x﹣y=.故选:B.19.我们知道,同一个平面内,1条直线将平面分成a1=2部分,2条直线将平面最多分成a2=4部分,3条直线将平面最多分成a3=7部分,4条直线将平面最多分成a4=11部分…n条直线将平面最多分成a n部分,则=()A.B.﹣C.D.﹣【答案】B【分析】根据一条直线、两条直线、三条直线的情况可总结出规律:n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,依此求解即可.【解析】解:由题意得:有一条直线时,最多分成1+1=2部分;有两条直线时,最多分成1+1+2=4部分;有三条直线时,最多分成1+1+2+3=7部分;…,有n条直线时,分成的平面最多有m个.有以下规律:m=1+1+…+(n﹣1)+n=+1,∴a1=2,a2=4,a3=7,a4=11,a5=16,a6=22,a7=29,a8=37,a9=46,a10=56,∴=+++…+=﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣=﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣=﹣1﹣﹣﹣×+﹣×﹣×﹣=﹣1﹣﹣﹣﹣×﹣×﹣=﹣1﹣﹣﹣﹣=﹣1﹣﹣+﹣+﹣=﹣2+=﹣.故选:B.1.(2023•广西)若零下2摄氏度记为﹣2℃,则零上2摄氏度记为()A.﹣2℃B.0℃C.+2℃D.+4℃【答案】C【解析】解:由零下2摄氏度记为﹣2℃可知,零下记为“﹣“,零上记为“+”,∴零上2摄氏度记为:+2℃.故选:C.2.(2023•天津)据2023年5月21日《天津日报》报道,在天津举办的第七届世界智能大会通过“百网同播、万人同屏、亿人同观”,全球网友得以共享高端思想盛宴,总浏览量达到935000000人次,将数据935000000用科学记数法表示应为()A.0.935×109B.9.35×108C.93.5×107D.935×106【答案】B【解析】解:935000000=9.35×108,故选:B.3.(2023•广州)﹣(﹣2023)=()A.﹣2023B.2023C.D.【答案】B【解析】解:﹣(﹣2023)=2023,故选:B.4.(2023•淮安)下列实数中,无理数是()A.﹣2B.0C.D.5【答案】C【解析】解:A、﹣2是有理数,故此选项不符合题意;B、0是有理数,故此选项不符合题意;C、是无理数,故此选项符合题意;D、5是有理数,故此选项不符合题意;故选:C.5.(2023•温州)如图,比数轴上点A表示的数大3的数是()A.﹣1B.0C.1D.2【答案】D【解析】解:由数轴可得:A表示﹣1,则比数轴上点A表示的数大3的数是:﹣1+3=2.故选:D.6.(2022•安徽)下列为负数的是()A.|﹣2|B.C.0D.﹣5【答案】D【解析】解:A.|﹣2|=2,是正数,故本选项不合题意;B.是正数,故本选项不合题意;C.0既不是正数,也不是负数,故本选项不合题意;D.﹣5是负数,故本选项符合题意.故选:D.7.(2023•天津)计算的结果等于()A.B.﹣1C.D.1【答案】D【分析】根据有理数乘法法则计算即可.【解析】解:原式=+(×2)=1,故选:D.8.(2023•青岛)下列计算正确的是()A.B.C.D.【答案】C【解析】解:与无法合并,则A不符合题意;2﹣=,则B不符合题意;×==,则C符合题意;÷3==,则D不符合题意;故选:C.9.(2023•西藏)已知a,b都是实数,若(a+2)2+|b﹣1|=0,则(a+b)2023的值是()A.﹣2023B.﹣1C.1D.2023【答案】B【解析】解:∵(a+2)2+|b﹣1|=0,(a+2)2≥0,|b﹣1|≥0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2023=(﹣1)2023=﹣1.故选:B.10.(2023•海南)如图,数轴上点A表示的数的相反数是()A.1B.0C.﹣1D.﹣2【答案】A【解析】解:∵A点表示的数为﹣1,∴数轴上点A所表示的数的相反数是1.故选:A.11.(2023•西宁)算式﹣3□1的值最小时,□中填入的运算符号是()A.+B.﹣C.×D.÷【答案】B【解析】解:﹣3+1=﹣2,﹣3﹣1=﹣4,﹣3×1=﹣3,﹣3÷1=﹣3,∵﹣4<﹣3=﹣3<﹣2,∴算式﹣3□1的值最小时,“□”中填入的运算符号是﹣.故选:B.12.(2023•内蒙古)若a,b为两个连续整数,且a<<b,则a+b=3.【答案】3.【解析】解:∵1<3<4,∴1<<2,∴a=1,b=2,则a+b=1+2=3,故答案为:3.13.(2023•福建)某仓库记账员为方便记账,将进货10件记作+10,那么出货5件应记作﹣5.【答案】﹣5.【解析】解:∵进货10件记作+10,∴出货5件应记作﹣5,故答案为:﹣5.14.(2023•益阳)计算:|﹣1|﹣(﹣)2﹣12×(﹣).【答案】.【解析】解:原式=﹣1﹣3+4=.15.(2023•德阳)计算:2cos30°+(﹣)﹣1+|﹣2|+(2)0+.【答案】4.【解析】解:原式=2×﹣2+2﹣+1+3=4.。
第1讲实数概念与运算一、知识梳理实数的概念1、实数、有理数、无理数、绝对值、相反数、倒数的概念。
(1)_____________叫有理数,_____________________叫无理数;______________叫做实数。
(2)相反数:①定义:只有_____的两个数互为相反数。
实数a的相反数是______0的相反数是________②性质:若a+b=0 则a与b互为______, 反之,若a与b 互为相反数,则a+b= _______(3)倒数:①定义:1除以________________________叫做这个数的倒数。
②a 的倒数是________(a≠0)(4)绝对值:①定义:一般地数轴上表示数a的点到原点的_______, 叫数a的绝对值。
②2、平方根、算术平方根、立方根(1)平方根:一般地,如果_________________________,这个数叫a的平方根,a的平方根表示为_________.(a≥0)(2)算术平方根:正数a的____的平方根叫做a的算术平方根,数a的算术平方根表示为为_____(a≥0)(3)立方根:一般地,如果_________,这个数叫a的立方根,数a的立方根表示为______。
注意:负数_________平方根。
实数的运算1、有效数字、科学记数法(1)有效数字:从一个数的_____边第一个_____起到末位数字止,所有的数字都是这个数的有效数字。
(2)科学记数法:一个数M 可表示为a ⨯10n 或a ⨯10-n形式,其中1//10a ≤∠,n 为正整数,当/M/≥10时,可表示为__________形式,当/M/<1时,可表示为____________形式。
2、实数的运算:(1)运算顺序:在进行混合运算时,先算______,再算_______,在最后算_________;有括号时,先算括号里面的。
(2)零指数:0a =__________(a≠0),负指数:p a -=________(a≠0,p 是正整数)。
一.实数知识过关1.实数有关的概念1. 有理数:__________________2. 无理数:无限不循环小数叫做无理数.3. 实数:有理数和_______统称为实数.4. 实数的分类:(1) 按定义分: (2)按性质分:5. 数轴:(1)规定了______、_______、_______的直线叫做数轴;(2)______和实数是一一对应的关系.6. 相反数、绝对值、倒数考点分类考点1 相反数、倒数和绝对值 例1:2023-的相反数是( )A.1B.-1C.2023D.20231已知点M 、N 、P 、Q 在数轴上的位置如图所示,则其中对应的绝对值最大的点是( )A. NB.MC.PD.Q考点2 无理数的识别例2 在实数389722,,,π-中,是无理数的是( ) A. 722- B.9 C.π D.38考点3 科学记数法例3 (1) 一天时间为86400秒,用科学记数法表示这一数字是( )A. 210864⨯B. 3104.86⨯C. 41064.8⨯D.510864.0⨯(2) 目前世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为( )A. 8104⨯B. 8104-⨯C.8104.0⨯D.8104⨯-考点4 非负数的性质例4 已知x,y 为实数,且0|2|31=-+-y x 则x -y 的值为( ) A.3 B.-3 C.1 D.-1考点5 绝对值的化简例5 已知有理数a,b 在数轴上如图所示,且||||b a =,则可化简为( )A.a -bB.a+bC.2aD.2b真题演练1.两千多年前,中国人就开始使用负数,如果收入100元记作+100元,那么支出60元应记作( ) A .﹣60元B .﹣40元C .+40元D .+60元2.下列各数不是有理数的是( ) A .1.21B .﹣2C .2πD .123.下列各数:−74,1.010010001,833,0,﹣π,﹣2.626626662…,0.1⋅2⋅,其中有理数的个数是( ) A .2B .3C .4D .54.在−13,227,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m 个,非负整数有n 个,分数有k 个,则m ﹣n +k 的值为( ) A .3B .4C .6D .55.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣2B .|a |>bC .a >﹣bD .|b |>|a |6.已知数a ,b ,c 在数轴上的位置如图所示,化简|a +b |﹣|a ﹣b |+|a ﹣c |的结果为( )A .﹣a ﹣2b ﹣cB .﹣a ﹣b ﹣cC .﹣a ﹣cD .﹣a ﹣2b +c7.﹣2022的相反数是( ) A .﹣2022B .2022C .﹣2021D .20218.−43的相反数是( ) A .34B .43C .−34D .−439.新的一年到来了,中考也临近了,你是否准备好了?请选出2023的相反数是( ) A .12023 B .−12023C .2023D .﹣202310.下列各数中,属于分数的是()A.﹣0.2B.π2C.234D.|a|a11.已知:(a﹣2)2+|b+3|+|c+4|=0,请求出:5a﹣b+3c的值是()A.0B.﹣1C.1D.无法确定12.数据2060000000用科学记数法表示为()A.206×107B.2.06×10C.2.06×109D.20.6×108 13.2022年11月27日,宁波舟山港累计完成集装箱吞吐量超过3108万标准箱,提前34天达到去年全年总水平.将3108万用科学记数法表示应为()A.3.108×106B.3.108×107C.31.08×106D.0.3108×108 14.新型冠状病毒是承载在飞沬上传播的,而飞沬的直径是5um(提示:1m=1000000um),只要能够过滤小于5um的颗粒的空气净化器都有用,我们常用的医用口罩等都是有用的,飞沬直径用科学记数法可表示为()A.5×106m B.5×10﹣6m C.50×10﹣6m D.0.5×10﹣5m 15.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣4C.0.7×10﹣9D.0.7×10﹣8课后练习1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.在一部中国古代数学著作中,涉及用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数,这部著作是()A.《几何原本》B.《九章算术》C.《孙子算经》D.《四元玉鉴》2.有理数a、b、c、d在数轴上的对应点如图所示,这四个数中绝对值最小的是()A.a B.b C.c D.d3.下列各数中最小的负整数是()A.﹣2021B.﹣2022C.﹣2023D.﹣14.2022年11月13日,第十四届中国国际航空航天博览会在珠海圆满落幕,本届航展参展规模远超预期、参展展品全领域覆盖、商贸交流活动成效显著.航展6天,共签订总值超过398亿美元的合作协议书,39800000000用科学记数法表示为()A.3.98×1011B.0.398×1010C.3.98×1010D.0.398×1011 5.已知|3a+1|+(b﹣3)2=0,则(ab)2022的值是()A.1B.﹣1C.0D.36.若(a+1)2+|b﹣2|=0,则(b+a)2021的值是()A.1B.﹣2021C.﹣1D.2021填空题(共21小题)7.2022年全国粮食达到13731亿斤,数据13731用四舍五入法精确到1000,并用科学记数法表示是.8.某头非洲大象的体重大约3880千克,则将3880千克精确到100千克用科学记数法表示记为千克.9.观察下面式子:21=2,22=4,23=8,24=16,25=32,26=64…,那么22023的结果的个位上的数字是.10.如图,周长为6个单位长度的圆上的六等分点分别为A,B,C,D,E,F,点A落在2的位置,将圆在数轴上沿负方向滚动,那么落在数轴上﹣2023的点是.11.数轴上,点B在点A的右边,已知点A表示的数是﹣1,且AB=2023,那么点B表示的数是.12.若a的相反数等于它本身,b是最小的正整数,c是最大的负整数,则代数式a﹣b+c =.13.若a.b互为相反数,c的倒数是−35,则a+b﹣6c的值是.冲击A+如图1所示,△ABC是以AB为底的等腰三角形,AC=BC=6,延长CB至P,使得BP=BC,连接AP,AP=4.(1)求证:直线AP为圆O的切线;(2)如图2所示,将△ABC沿着AC翻折至△ACQ处,QC边与圆交于点D,连接AD,求△ACD的面积.。
初中数学实数及其运算的知识点主要包括以下内容:1.实数的定义:①实数包括有理数和无理数。
②有理数是可以表示为两个整数之比的数(整数、小数、分数)。
③无理数是不能表示为两个整数之比的数(如π、√2等)。
2.实数在数轴上的表示:①实数可以在数轴上直观地表示,正数在原点右侧,负数在原点左侧,零在原点。
3.实数的性质:①实数的顺序性:实数可以比较大小。
②实数的封闭性:实数在加减、乘除(除数不为零)运算后仍然得到实数。
③实数的分配律、结合律和交换律:这些性质使得实数的运算符合代数的规则。
4.实数的运算:加法:①同号相加,取相同符号,和的绝对值为两个绝对值之和。
②异号相加,取绝对值较大的数的符号,和的绝对值为两数绝对值的差。
③加法结合律和交换律。
减法:①减去一个数等于加上这个数的相反数。
乘法:①同号相乘得正,异号相乘得负。
②乘法结合律和交换律。
除法:①除以一个数等于乘以这个数的倒数(除数不为零)。
②除法的除数不为零。
5.实数的乘方和开方:①乘方:a^n表示n个a相乘。
②开方:√a表示找到一个数,使得它的平方等于a(非负实数)。
6.实数的乘方根:①立方根:∛a表示找到一个数,使得它的三次方等于a。
②四次方根:∜a表示找到一个数,使得它的四次方等于a。
7.实数的绝对值:①实数a的绝对值记为|a|,表示a与0的距离,总是非负的。
8.实数的运算顺序:①先乘除,后加减。
②如果有括号,先计算括号内的表达式。
9.实数的有理数和无理数的性质:①有理数可以表示为分数,无理数不能。
②无理数包括无限不循环小数。
10.实数的应用:①实数在几何、物理、经济等领域的应用。
练习题知识点1:实数的定义和分类填空题1.实数1.5可以表示为分数______。
2.√9的平方是______。
算数题1.计算:(-2) + 32.计算:2 ×(-4)3.计算:(-3) ÷64.计算:√(16) + √(25)5.计算:(-3)^26.计算:(√2)^27.计算:(-5)^3知识点2:实数在数轴上的表示选择题1.在数轴上,0的右边是______。
慧德教育中考数学专题一——实数的概念与运算一,中考情况考察:实数的运算,是每年中考的必考内容之一,考察的知识点主要是实数的计算问题,也有对实数的基本概念的考察。
例如:数轴、相反数、绝对值、倒数的性质,科学计数法的表示。
总体来看,难度系数低,以选择填空为主。
也有少量的解答题。
解答题主要以运算和探索数、式规律为主。
近几年,探索类问题越来越多,对思维的考察已经超过了运算本身。
二,问题实质:1,把握住与实数相关的基本概念和性质,例如互为相反数的两数的关系,互为倒数的两数的关系,绝对值的求值和特点,实数与数轴的关系,科学记数法的表示方法;实数的分类方法,实数的大小比较方法。
2,对于数的运算问题,首先要明白运算的意义和法则,在解题时候要根据题目提供的数据特征,利用举特例、列图表等方式进行纵向和横向的比较,找出数据产生的共性,选择合理的数与式来表示。
3,对于以计算问主的应用体,要理清数量之间的关系,尤其要注意挖掘隐含条件,列出合理算式。
三,难点突破:难点一:实数的基本概念1,“—”的三种主要意义(1)性质符号,写在一个数字前面,表示这个数字是负数。
(2)相反数符号:表示一个数的相反数的时候,我们就在其前面加上“—”若原数为负数,那么应该添加括号。
若是字母,则直接添加负号。
(3)运算符号:用“—”表示减号。
2,数轴的概念数轴体现了最原始最简单的数形结合方法。
其三要素为:原点、方向、单位长度。
画数轴一定要注意单位长度保持一致。
3,相反数、倒数、绝对值概念。
(1)只有符号不同的两个数叫互为相反数。
若a,b两数互为相反数,那么a+b=0.(2)若两数乘积为1,则这两数叫做互为倒数。
若a,b(ab不为0)两个数互为倒数,则ab=1. (3)绝对值表示点到原点的距离,距离计算必大于0。
4,数轴与其他概念的关系在数轴上表示一对相反数(除原点外)的两个点同时具备两个条件:(1)到原点的距离相等,(2)分别位于原点的左右两侧。
九年级数学专题复习专题一实数九年级数学专题复习专题一实数主题一实数(一)实数的有关概念1.概念:(1)有理数:和统称为有理数。
(2)相反数:只有不同的两个数互为相反数。
若a、b互为相反数,则。
(3)数字轴:指定的直线,称为数字轴。
(4)倒数:乘积的两个数互为倒数。
若a(a≠0)的倒数为(5)绝对值:1a。
然后代数定义:a(a>0)oao=0(a=0)-a(a<0)几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
(6)无理数:小数叫做无理数。
(7)实数:和统称为实数。
(8)实数对应于时间点。
2.实数的分类:正整数0整数(有限或无限循环性数)负整数有理数正分数负分数实数无理数(无限非循环小数)正无理数负无理数整数有理数正数无理数真正的0有理数负数无理数注:“分类”原则:1)比例性(无重量、无泄漏)分数整数分数2)有标准3.科学记数法、近似数和有效数字N(1)科学记数法:把一个数记成±a×10的形式(其中1≤a<10,n是整数)(2)近似数是指根据精度接近精确数的值。
取近似数的原则是“四舍五入”。
(3)有效数字:从左边第一个不是0的数字到精确数字,所有数字都有效叫做这个数字的有效数字。
(二)实数的运算:1.有理数加、减、乘、除、幂及其混合运算的算法(1)有理数加算法:①同号两数相加,取____的符号,并把____② 将两个绝对值不相等的数字相加,取__________________。
将两个相对的数字相加得到u。
③ 一个数字被加到0上。
(2)有理数减法法则:减去一个数,等于加上___。
(3)有理数乘法法则:① 将两个数字相乘,相同的符号,不同的符号,然后放入。
任何数字乘以0,都得____。
② 将不等于0的数相乘,乘积的符号为________________。
当_。
③ 当几个数相乘时,一个因子为0,乘积为4)有理除法规则:①除以一个数,等于______.____不能作除数。
中考实数计算知识点总结一、实数的表示与分类1. 实数的概念实数是指包括有理数和无理数在内的数的总称。
有理数是可以表示为分数形式的数,无理数是不能表示为分数形式的数。
2. 实数的类别(1)有理数:包括正整数、负整数、零、正分数和负分数。
(2)无理数:不能表示为有理数的数,如圆周率π、自然对数底e等。
3. 实数的表示实数可以用小数、分数、根式等形式进行表示。
其中,有限小数、无限循环小数、无限不循环小数都是实数。
二、实数的运算1. 实数的加法和减法实数的加法和减法遵循结合律、交换律和分配率。
对于任意实数a、b、c,有以下性质:(1)交换律:a + b = b + a;a - b ≠ b - a。
(2)结合律:(a + b) + c = a + (b + c);(a - b) - c ≠ a - (b - c)。
(3)分配率:a × (b + c) = a × b + a × c;a × (b - c) ≠ a × b - a × c。
2. 实数的乘法和除法实数的乘法和除法同样遵循结合律、交换律和分配率。
对于任意非零实数a、b、c,有以下性质:(1)交换律:a × b = b × a;a ÷ b ≠ b ÷ a。
(2)结合律:(a × b) × c = a × (b × c);(a ÷ b) ÷ c ≠ a ÷ (b ÷ c)。
(3)分配率:a × (b + c) = a × b + a × c;a ÷ (b + c) ≠ a ÷ b + a ÷ c。
3. 实数的乘方和开方(1)乘方:a的n次方(n为正整数)表示a连乘n次的结果。
例如,a的3次方表示a × a × a。
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第1课时实数概念及运算姓名班级学习目标:1.理解平方根与立方根的意义,能估算一个数的平方根(立方根)的大致范围。
2.了解无理数和实数的概念,认识实数与数轴上的点一一对应,会求一个数的相反数与绝对值,会比较实数大小,了解近似数与有效数字概念,会按要求取近似值。
3.会进行实数的简单混合运算,并能用运算简化运算。
学习重难点:实数的概念,无理数的定义,科学计数法,实数的混合运算。
学习过程:一、知识梳理(一)实数概念1.整数和统称有理数;叫无理数;有理数和无理数统称.2.数轴的三要素为、和 . 数轴上的点与构成___对应.3.实数a的相反数为________. 若a,b互为相反数,则ba+= .4.非零实数a的倒数为______. 若a,b互为倒数,则ab= .5.绝对值_______ (0)_______ (0)_______ (0)aa aa>⎧⎪==⎨⎪<⎩6.把一个数表示成10na⨯的形式,其中a满足______,n是整数.7.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到_____.(二)实数的有关运算8. 实数加法法则:(1)同号两数相加,取_____符号,并把________相加;(2)异号两数相加,绝对值相等时,和为_____;绝对值不等时,取_____较大的数的符号,并用_______减去_______.9. 实数减法法则:减去一个数,等于加上这个数的_________.10. 实数的乘法法则:两数相乘,同号得_____,异号得_____,并把________相乘.11. 实数的除法法则:两数相除,同号得_____,异号得_____,并把________相除.12.如果一个数的平方等于a,那么这个数叫做a的.a的平方根用符号表示为.其中正的平方根又叫做a的,记作.13.如果一个数的立方等于a,那么这个数叫做a的,记作.14.求一个数的平方根的运算叫做;求一个数的立方根的运算叫做 . 与乘方互为逆运算. 三、精典题例例1 实数120.32π7--、、、、中,无理数的个数是( )A .2B .3C .4D .5 例2 估计20的算术平方根的大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间例3 如图,A 、B 两点在数轴上表示的数分别是a 、b ,则下列式子中成立的是( ) A .0a b +<B .a b —<—C .1212a b ﹣>﹣D .0a b ﹣>四、课堂练习1.银原子的直径为0.0003微米,把0.0003这个数用科学记数法表示应为( ). A .30.310⨯-B .4310⨯C .5310⨯-D .4310⨯-2.下列运算正确的是( ).A .93=±B .33-=-C .93-=-D .239-=3.在-5,30sin ︒,30tan ︒,3π,16-,..0.23这六个实数中,无理数的个数为( ).A.1B.2C.3D.44.若21(2)30x y z -+++-=,则xyz =( ). A .-6B .6C .0D .25.计算:301()20162-+= .6.如果2a =,1b =-,比较大小:ba ab (填“<”、“=”或“>”). 7.定义2a b a b =※-,则()123※※=______.8.若1(1)0nn+-=,则(1)n-= .9.计算: (1)212552⨯+--.(2)19sin 30π+32-+-0°+()(3)()2517 2.458612⎛⎫-+-+⨯- ⎪⎝⎭(4)2324(3)25--÷++-10.观察下面的规律:1=11122⨯-;111=2323⨯-;111=3434⨯-;…… 解答下面的问题:(1)若n 为正整数,请你猜想1(1)n n ⨯+= ;(2)求和:1111++++12233420152016⨯⨯⨯⨯= . 中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
中考数学总复习实数及运算专题训练题中考数学总复习实数及运算专题训练题一、确定文章类型本文是一篇关于中考数学总复习的实数及运算专题训练题的文章。
文章将按照提纲的结构,依次介绍实数的概念、性质和运算,并通过例题和练习题进行训练和巩固。
二、编写提纲1.引言1、介绍中考数学总复习的重要性2、提出实数及运算在数学中的地位和作用 2.实数的概念3、介绍实数的定义4、强调实数的基本性质 3.实数的性质5、比较实数的大小6、实数的绝对值和无理数7、勾股定理及应用 4.实数的运算8、加、减、乘、除运算及运算律9、乘方和开方运算10、实数与方程的交集 5.例题与练习题11、通过典型例题展示实数及运算的解题思路和方法12、提供一定数量的练习题,供读者巩固所学知识和提高能力 6.结论13、总结实数及运算在中考数学总复习中的重要性和作用14、鼓励读者认真复习,加强训练,提高实数及运算的能力三、进行素材积累1.收集有关实数及运算的例题和练习题,以便在文章中提供参考和借鉴。
2.查阅相关参考书籍和网络资源,了解实数及运算的基本概念、性质和解题方法。
3.收集一些具有代表性的实数及运算的题目,以便在文章中进行展示和解析。
四、撰写文章结构1.引言1、强调中考数学总复习的重要性2、提出本文将重点介绍实数及运算的复习方法和训练题 2.实数的概念3、介绍实数的定义和基本性质4、强调实数在数学中的地位和作用 3.实数的性质5、比较实数的大小,介绍比较法、作图法和平方比较法等比较方法6、介绍实数的绝对值和无理数,强调实数的绝对值的概念和重要性7、介绍勾股定理及其应用,强调勾股定理在解决实际问题中的应用 4.实数的运算8、介绍实数的加、减、乘、除运算及运算律,强调运算法则和注意事项9、介绍乘方和开方运算,强调幂的运算性质和开方运算的技巧10、分析实数与方程的交集,强调实数在方程中的应用和重要性 5.例题与练习题11、通过典型例题解析实数及运算的解题思路和方法,提供解题技巧和经验12、提供一定数量的练习题,以便读者巩固所学知识和提高能力 6.结论13、总结实数及运算在中考数学总复习中的重要性和作用14、鼓励读者认真复习,加强训练,提高实数及运算的能力五、审校和修改1、对文章中的语法、拼写和标点进行仔细检查和修改,确保文章表达清晰、准确。
(一) 实数的概念和运算
(总分150分,时间100分钟)
一、填空题(每空3分,共57分)
1
.-的相反数是;3
1的倒数是;2的平方根是_________; 9的算术平方根是;实数8的立方根是. 16算术平方根是
2.计算:—3+2=;(—3)×2=.计算:28⨯=; 28-=. 计算102)7(-++π=_______.
3
的点到原点的距离为___________.
4.在1,-2
,,0, π五个数中最小的数是;
(填写“<”或“>”).
5.已知一个正数的平方根是32x -和56x +,则这个数是.
6.已知|x |=4,|y |=12,且xy <0,则x y
的值等于. 7.若,x y
为实数,且20x +=,则2010()x y +的值为___________.
8.在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且使等式成立,则第一个方格内的数是__________.
9.若将三个数11,7,3-表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________________.
10.有一列数…,那么第7个数是.
二、选择题(每题3分,共51分)
1234251017
--,,,,
11.-是的 ( )
A .相反数
B .倒数
C .绝对值
D .算术平方根
12.下列实数中,是无理数的为 ( )
A . 3.14
B . 13
C . 3
D . 9 13.在2,1,0,1-这四个数中,既不是正数也不是负数的是 ( )
A .1-
B .0
C .1
D .2
14.数轴上的点A 到原点的距离是6,则点A 表示的数为 ( )
A . 6或6-
B . 6
C . 6-
D . 3或3-
15.下列计算正确的是 ( )
A .(-1)-1=1
B .(-3)2=-6
C .π0=1
D .(-2)6÷(-2)3=(-2)2
16.2008北京奥运会火炬传递的路程约为13.7万公里.近似数13.7万是精
确到 ( )
A .十分位
B .十万位
C .万位
D .千位
17.德州市2009年实现生产总值(GDP )1545.35亿元,用科学记数法表示应
是(结果保留3个有效数字) ( )
A .81054.1⨯元
B .1110545.1⨯
C .101055.1⨯元
D .111055.1⨯元
18.2010年5月,湖州市第11届房交会总成交金额约2.781亿元.近似数2.781
亿元的有效数字的个数是 ( )
A .1
B .2
C .3
D .4
19.由四舍五入法得到的近似数8.8×103,下列说法中正确的是 ( )
A .精确到十分位,有2个有效数字
B .精确到个位,有2个有效数字
C .精确到百位,有2个有效数字
D .精确到千位,有4个有效数字
20.一个自然数的算术平方根为,则和这个自然数相邻的下一个自然数是( )
A .
B .
C D
21.如图,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的大小关系表示
正确的是( )
22a 1a +21a +1
A .a <1<-a
B .a <-a <1
C .1<-a <a
D .-a <a <1
22.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论正确的是 ( )
A .0a b +>
B .0ab >
C .0a b ->
D .||||0a b -> 23.如图所示,数轴上表示
C 、B ,点C 是AB
的中点,则点
A 表示的数是 (
)
A .
B .
C .
D
24.设,,,,则a b c d ,,,按由小到大的顺序排列正确的是 ( )
A .
B .
C .
D .
252的值 ( )
A .在1到2之间
B .在2到3之间
C .在3到4之间
D .在4到5之间 26.28 cm 接近于 ( )
A .珠穆朗玛峰的高度
B .三层楼的高度
C .姚明的身高
D .一张纸的厚度
27.设a 是实数,则|a |-a 的值 ( )
A .可以是负数
B .不可能是负数
C .必是正数
D .可以是正数也可以是负数
三、解答题(42分)
28.计算:0
4cos30+°.(4分) 224202a =2(3)b =-c =11()2
d -=c a d b <<<b d a c <<<a c d b <<<b c a d <<< 0 1 A
29.计算:(4分)
30. 计算:()01232822-+----
31
.计算:1021
()2)(2)3--+-
31.
100
1()260(2)2cos π--+-.
33
.计算:011
( 3.14)()12π----
34.已知:x =2-1,y =2,求xy y x -+22的值.(
5分)
92|21
|)3(12-+----
35.如图所示的集合圈中有5个实数,请你计算其中的有理数的和与无理数的积的差.(5分)
36.为了求20083222221+++++ 的值,可令S =20083222221++++= ,
则2S =200943222222+++++ ,
因此2S -S =122009-,所以20083222221+++++ =1
22009-
仿照以上推理,计算20093255551+++++ 的值.(5分)。