七年级第一学期期末数学试卷 (15)
- 格式:doc
- 大小:191.00 KB
- 文档页数:5
2023—2024学年第一学期七年级校内期末质量检测数学学科试卷(完卷时间:120分钟;满分:150分)注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡.2.答案必须写在答题卡上,否则不能得分.一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果某天中午的气温是,记作,那么这天晚上的气温是零下可记作( )A. B. C. D. 【答案】A【解析】【分析】此题考查负数的意义,解题的关键是运用负数来描述生活中的实例.首先审清题意,明确正数和负数所表示的意义;再根据题意作答.【详解】解:某天中午的气温是,记作,那么这天晚上的气温是零下可记作,故选:A .2. 截至2022年底,我国海上风电累计装机已超千瓦,连续两年位居全球首位,占比达一半左右.将数用科学记数法表示为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于与小数点移动的位数相同.【详解】解:,故选:B .3. 下列运算正确的是( )A. B. C. D. 4℃4+℃5℃5-℃4-℃5+℃9+℃4℃4+℃5℃5-℃300000003000000063010⨯7310⨯80.310⨯8310⨯10n a ⨯110a ≤<n n a n 1730000000310=⨯325x y xy+=65xy xy -=22527+=a a a 22880-=a b a b【答案】D【解析】【分析】本题考查了合并同类项,掌握合并同类项法则是解答本题关键.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【详解】解:A. 与不是同类项,不能合并,故该选项不正确,不符合题意;B. ,故该选项不正确,不符合题意;C. ,故该选项不正确,不符合题意;D. ,故该选项正确,符合题意;故选:D .4. 如图,A 地和B 地都是海上观测站,A 地在灯塔O 的北偏东方向,B 地在灯塔O 的西北方向,则的度数是( )A. B. C. D. 【答案】A【解析】【分析】本题主要考查了与方位角有关的计算,先根据方位角的描述得到, ,由此即可得到答案.【详解】解:∵A 地在灯塔O 的北偏东方向,B 地在灯塔O 的西北方向,∴, ,∴,故选:A .的3x 2y 65xy xy xy -=222527a a a +=22880-=a b a b 30︒AOB ∠75︒70︒65︒55︒30AOC ∠=︒45BOC ∠=︒30︒30AOC ∠=︒45BOC ∠=︒304575AOB AOC BOC ∠=+=︒+︒=︒∠∠5. 如图,点C 为线段AB 上一点,若,,则( )A. 10B. 7C. 5D. 4【答案】D【解析】【分析】本题主要考查了线段的和差.熟练掌握线段的和差计算,是解决问题的关键.根据线段是由与组成求解即可.【详解】∵点C 在线段AB 上,,,∴.故选:D .6. 如果,那么下列等式不一定成立的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了等式的基本性质:“如果,那么”,“如果,那么”,“如果,那么()”,根据此性质进行逐一判断即可求解,掌握性质是解题的关键.【详解】解:A.将两边同时乘以可得,结论正确,故不符合题意;B.将两边同时减可得,结论正确,故不符合题意;C.当时,变形错误,故符合题意;D.将两边同时加上可得,结论正确,故不符合题意;故选:C .7. 若表示a 、b 两数的点在数轴上的位置如图所示,则下列结论正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了根据数轴判断式子的符号,有理数的加减以及乘法运算法则;先观察数轴可知,7AB =3BC =AC =AB AC BC 7AB =3BC =4AC AB BC =-=a b =22a b-=-22a b -=-1a b =0a b -=a b =a c b c ±=±a b =ac bc =a b =a b c c=0c ≠a b =2-a b =20a b ==1a b=a b =b -b a-<0ab <0a b +=0b a ->1b <-,|,然后根据有理数的加减和乘法法则,对各个选项中的式子进行判断即可.【详解】解:观察数轴可知:,,,∴,,,,∴A ,C ,D 选项错误,B 选项正确,故选:B .8. 若的值为5,则值为( )A. B. C. D. 9【答案】C【解析】【分析】本题考查求代数式的值,根据题意得出,整体代入代数式,即可求解.【详解】解:∵,则∴,故选:C .9. 下列说法正确的是( )A. 如果,那么点C 为线段中点.B. 把弯曲的公路改直,就能缩短路程,数学原理是“两点确定一条直线”.C. 如果,,,那么A ,B ,C 三点在一条直线上.D. 已知且,依据“同角的补角相等”可得.【答案】C【解析】【分析】本题考查线段中点定义、线段的基本事实、余角和补角的性质,熟练掌握这些性质是解题关键.分别根据线段中点定义、线段的基本事实、线段的和差,余角的性质,进行分析可得答案.【详解】解:A .如果,点C 不一定在线段上,所以错误,不符合题意;B .把弯曲的公路改直,就能缩短路程,数学原理是“两点之间线段最短”,所以错误,不符合题意;C .如果,,,那么A ,B ,C 三点在一条直线上,正确,符合题意;D .已知且,依据“同角的余角相等”可得,所以错误,不符合题意.故选:C .10. 已知关于x 的方程的解为正整数,则符合条件的所有整数k 的和为( )01a <<|b a >1b <-01a <<b a >b a ->0ab <0a b +<0b a -<41-+a b 285-++a b 13-5-3-44a b -=415a b -+=44a b -=285-++a b ()2452453a b =--+=-⨯+=-AC BC =AB 1AB =2BC =3AC =A B ∠∠=︒+9090B C ∠+∠=︒A C ∠=∠AC BC =AB 1AB =2BC =3AC =A B ∠∠=︒+9090B C ∠+∠=︒A C ∠=∠11136---=kx xA. 8B. 5C. 3D. 1【答案】B【解析】【分析】本题考查了一元一次方程的解,能得出关于k 的一元一次方程是解此题的关键.先根据等式的性质求出方程的解是,根据方程的解为正整数和k 为整数求出k ,再求出和即可.【详解】解:,,,,,,∵关于x 的方程的解为正整数,k 为整数,∴或,解得:或,∴和为.故选:B .二、填空题(本题共6小题,每小题4分,共24分)11. 2024的倒数是______.【答案】【解析】【分析】本题考查了倒数,乘积是1的两数互为倒数,据此解答即可.【详解】解:,2024的倒数是,故答案为:.12. 单项式的系数为______.721x k =-11136---=kx x 11136---=kx x ()()2116kx x ---=2216kx x --+=2621kx x -=+-()217k x -=721x k =-11136---=kx x 211k -=217k -=1k =4145+=120241202412024⨯= ∴120241202432xy【答案】【解析】【分析】本题考查了单项式,根据单项式中的数字因数叫做单项式的系数可得答案.【详解】单项式的系数为.故答案为:.13. 一个角的余角等于,那么这个角等于______度.【答案】30【解析】【分析】本题主要考查了求一个角的余角,解题的关键是根据和为的两个角互为余角,列出算式进行计算即可.【详解】解:∵一个角的余角等于,∴这个角为.故答案为:30.14. 《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8钱,多3钱;每人出7钱,少4钱,问人数是多少?若设人数为x ,则可列方程______.【答案】【解析】【分析】本题主要考查了一元一次方程的应用,解题的关键是找出题目中的等量关系,设人数为x ,根据每人出8钱,多3钱;每人出7钱,少4钱,列出方程即可.【详解】解:设人数为x ,根据题意得:,故答案为:.15. 如果,那么的值为______.【答案】3【解析】【分析】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.根据非负数的性质列出算式,求出x 、y 的值,代入计算即可.【详解】解:∵,∴,,232xy 2260︒90︒60︒906030︒-︒=︒8374x x -=+8374x x -=+8374x x -=+()2210x y -++=x y -()2210x y -++=20x -=10y +=解得:,,∴,故答案为:3.16. 将一张长方形纸片按如图所示方式折叠,,为折痕,若点的对应点恰好落在折痕上,且,则______.(用含的式子表示)【答案】【解析】【分析】本题考查了折叠问题,平角的定义,设,则,根据折叠的性质可得,,进而得出,根据,即可求解.【详解】解:设,则,∵折叠,∴,又∵即∴∴,故答案为:.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17. 计算:2x =1y =-()213x y -=--=ABCD AE BE D D ¢BE AEC ∠α'=AEB ∠=α603α︒+BEC β'∠=AEB αβ∠=+AED AED AEC BEC αβ'''∠=∠=∠+∠=+CEB BEC β'∠=∠=180226033αβα︒︒-==-AEB αβ∠=+BEC β'∠=AEB αβ∠=+AED AED AEC BEC αβ'''∠=∠=∠+∠=+CEB BEC β'∠=∠=180AED AED BEC '∠+∠+∠=︒180αβαββ++++=︒180226033αβα︒︒-==-2606033AEB ααβαα∠=+=+︒-=︒+603α︒+(1)(2)【答案】17.18 【解析】【分析】本题考查绝对值、有理数乘方以及有理数的四则混合运算;(1)先去括号,移项后再从左往右依次加减;(2)先求乘方并且去除绝对值的符号,再算乘除后算加减.【小问1详解】解:【小问2详解】解:18. 解方程:(1)(2)【答案】(1)(2)【解析】【分析】本题考查了解一元一次方程;(1)按照移项、合并同类项、系数化为1的步骤解一元一次方程;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程,即可求解..()()()4875++---+202415132--⨯-÷86-()()()4875++---+4875=-++4758=++-168=-8=202415132--⨯-÷1522=--⨯÷15=--6=-314112-=-x x11142-++=x x 5x =1x =【小问1详解】解:,移项,,合并同类项,,化系数为1,;【小问2详解】解:,去分母,,去括号,,移项,,合并同类项,,化系数为1,.19. 先化简,再求值:,其中,【答案】;【解析】【分析】本题主要考查整式的化简求值,原式去括号,再合并同类项化简原式,继而将、的值代入计算可得.【详解】解:当,时,原式20. 如图,已知,,若平分,求的度数.【答案】【解析】【分析】本题主要考查角的计算,角平分线的定义,根据角的和差、角平分线的定义,可得出答案.314112-=-x x 321114x x +=+525x =5x =11142-++=x x ()()4121x x +-=+4122x x +-=+2241x x -=-+1x -=-1x =()()222531232+--+-a ab aa 1a =-13b =37ab -8-a b ()()222531232+--+-a ab a a 22253164a ab a a =+----37ab =-1a =-13b =()13171783=⨯-⨯-=--=-135AOB ∠=︒30AOC ∠=︒OC AOD ∠BOD ∠75︒【详解】解:∵,平分,∴,∵,∴.21. 一段公路甲队单独修需30天,乙队单独修需20天.先由甲队单独修路10天后,再由甲、乙两队共同修路,还需多少天才能修完?(列方程解决问题)【答案】还需8天能修完【解析】【分析】本题考查了一元一次方程的应用,设还需天能修完,由题意:一段公路甲队独修需30天,乙队独修需20天,甲队独修路10天后,再由甲、乙两队共同修完,列出一元一次方程,解方程即可.【详解】解:设还需天能修完,由题意得:解得:,答:还需天能修完.22. 如图,点C 为线段上一点,点D 为线段延长线上一点且满足,(1)尺规作图:根据题意补全图形;(不写作法,保留作图痕迹)(2)若,,求线段的长.【答案】(1)见解析(2)【解析】【分析】本题考查的是作一条线段等于已知线段,线段的和差倍分关系,掌握“画一条线段等于已知线段”是解本题的关键.(1)以点B 为圆心,为半径画弧,与的延长线交于一点,该点即为点D ;(2)先求解线段,再结合,根据求出结果即可.【小问1详解】解:如图,线段即为所求作的线段,【小问2详解】解:∵,,30AOC ∠=︒OC AOD ∠30COD AOC ∠=∠=︒135AOB ∠=︒BOD ∠=13523075AOB AOD ∠-∠=︒-⨯︒=︒x x 111101303020x ⎛⎫⨯++= ⎪⎝⎭8x =8AB AB BD BC =2AC BC =6AB =AD 8AD =BC AB 2BC =BC BD =AD AB BD =+BD 2AC BC =6AB =∴,∴,∴.23. 某超市用3000元购进苹果、桔子两种水果共500千克,这两种水果的进价、标价如下表所示:类型价格苹果桔子进价(元/千克)73标价(元/千克)106(1)这两种水果各购进多少千克?(2)若苹果按标价的八折出售,桔子也打折出售,那么这两种水果全部售出后,要使超市获利率为,桔子应打几折出售?【答案】(1)购买苹果375千克,桔子购进125千克(2)桔子应该打折出售【解析】【分析】本题考查一元一次方程的应用,找准等量列方程是解题的关键.(1)根据两个等量关系:苹果质量桔子质量,购买苹果钱数购买桔子钱数列方程解题即可;(2)设桔子应打y 出售,根据利润售价进价,列方程解题即可.小问1详解】解:设购买苹果x 千克,桔子购进千克,根据题意得:,解得:,∴桔子购进(千克),答:购买苹果375千克,桔子购进125千克.【小问2详解】解:设桔子应打y 出售,根据题意得:,【123BC AB ==2BD BC ==628AD AB BD =+=+=20%8+500=+3000==-()500x -()735003000x x +-=375x =500125x -=()100.8737563125300020%10y ⎛⎫⨯-⨯+⨯-⨯=⨯ ⎪⎝⎭解得:,答:桔子应该打折出售.24. 综合与实践:某校七年级开展了“制作正方体纸盒”的实践活动课,他们利用长为(),宽为()的长方形纸板设计并制作出正方体盒子(纸板厚度及接缝处忽略不计),有以下两种设计方案:方案一:(设计无盖正方体盒子)如图1,当,在纸板四角剪去四个同样大小的小正方形,再沿虚线折合起来就可以做成一个棱长为()的无盖的正方体纸盒;方案二:(设计有盖正方体盒子)如图2,当,在纸板四角剪去两个同样大小的长方形和两个同样大小的正方形,剩余部分折合起来恰好可以做成一个有盖的正方体纸盒,其棱长与方案一中的无盖正方体棱长大小一样,请你在图2中画出符合要求的设计图;图1 图2 图3问题解决:(1)根据方案一操作,你发现与之间存在的数量关系为______;(2)根据方案二操作,你发现与之间存在的数量关系为______;实际应用:(3)如图3,将一张长,宽的纸板剪掉部分长方形或正方形后,剩余部分恰好可以分成六个同样大小的正方形,且折合起来得到一个有盖的正方体纸盒,求该正方体纸盒表面积的最大值.【答案】(1);(2);(3).【解析】【分析】本题考查了正方体的展开图等知识;(1)从而图形可以直观得出;(2)横着4个面,竖着3个面,从而得出结果;(3)从正方体的三类展开图可以得出结果.【详解】解:(1)如图1,的的8y =8a cm b cm a b =m cm a b >m b a b 18cm 15cm 3b m =34a b =2121.5cm∵,∴;(2)如图2,∵,,∴;(3)如图3,因为正方体的11种展开图中分为3类中,横排至少4个面,∴正方体的棱长最大是,∴表面积最大为:.25. 如图1,点O 在直线上,射线、在直线上方,,.图1 备用图 备用图(1)若,请说明射线是的角平分线;(2)射线在直线上方,平分,,①当时,求的度数②当时,是否存在常数k 使得的值为定值?若存在,请求出常数k 的值,若不存在,请说明理由.【答案】(1)见解析(2)①或;②存在;时,为定值【解析】【分析】(1)先求出,根据,求出,求出,得出,即可证明AB BC CD m ===3b m =4a =3b m =34a b =18445.÷=24.5 4.56121.5cm ⨯⨯=MN OA OB MN 30BON ∠=︒30∠>︒AON 105∠=︒AON OA BOM ∠OC MN OP COM ∠3AOB AOC ∠=∠50AOP ∠=︒BOC ∠2BOC AOC ∠=∠∠-∠k BOP CON 100BOC ∠=︒25︒2k =∠-∠k BOP CON 180150BOM BON ∠=︒-∠=︒105∠=︒AON 1053075AOB ∠=︒-︒=︒75AOM BOM AOB ∠=∠-∠=︒AOM AOB ∠=∠结论;(2)①分两种情况:当在左侧时,当在左侧时,分别画出图形,求出结果即可;②根据,,得出一定在内部,得出,,表示出,得出结果即可.【小问1详解】解:∵,∴,∵,∴,∴,∴,∴射线是的角平分线.【小问2详解】解:设度,则度,,①当在左侧时,如图所示:则,∵平分,∴,∵,∴,OC OA OC OA 3AOB AOC ∠=∠2BOC AOC ∠=∠OC AOB ∠27575BOP BOC COP AOC AOC AOC ∠=∠+∠=∠+︒-∠=︒+∠302CON BON BOC AOC ∠=∠+∠=︒+∠()27530k k AO k BOP CON C =-∠+︒-︒∠-∠30BON ∠=︒180150BOM BON ∠=︒-∠=︒105∠=︒AON 1053075AOB ∠=︒-︒=︒75AOM BOM AOB ∠=∠-∠=︒AOM AOB ∠=∠OA BOM ∠AOC x ∠=3AOB x ∠=18030150BOM ∠=︒-︒=︒OC OA 1504MOC x ∠=︒-OP COM ∠17522COP COM x ∠=∠=︒-50AOP ∠=︒75250x x ︒-+=︒解得:,∴;当在左侧时,如图所示:,∴,∵平分,∴,∵,∴,解得:,∴;综上分析可知,或;②存在;∵,,∴一定在内部,如图所示:∵,,又∵平分,∴,25x =︒4100BOC AOB AOC x ∠=∠+∠==︒OC OA 32BOC x x x ∠=-=1502MOC x ∠=︒-OP COM ∠1752COP COM x ∠=∠=︒-50AOP ∠=︒7550x x ︒--=︒12.5x =︒225BOC x ∠==︒100BOC ∠=︒25︒3AOB AOC ∠=∠2BOC AOC ∠=∠OC AOB ∠180301502COM BOC AOC ∠=︒-∠-︒=︒-∠OP COM ∠1752COP COM AOC ∠=∠=︒-∠∵,,∴,∴当,即时,为定值.【点睛】本题主要考查了几何图形中角度的计算,角平分线的定义,角的倍数关系,一元一次方程的应用,解题的关键是数形结合,注意进行分类讨论.27575BOP BOC COP AOC AOC AOC ∠=∠+∠=∠+︒-∠=︒+∠302CON BON BOC AOC ∠=∠+∠=︒+∠∠-∠k BOP CON()75302k AOC AOC=︒+∠-︒-∠()27530k AOC k =-∠+︒-︒20k -=2k =∠-∠k BOP CON。
七年级数学上册期末试卷(附含答案)(满分:120分考试时间:120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数:0−5−(−7)−|−8|(−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+b<0ab<0则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6m时水位变化记为+6m那么水位下降6m时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1−203中最小的数是()A.−1B.−2C.0D.37. 若A和B都是4次多项式则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段AB则AB盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a b的点在数轴上的位置如图所示下列结论错误的是()A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −11的倒数是________ ________的绝对值是1________的立方是8.212. 在月球表面白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C.则月球表面昼夜的温差为________∘C.13. 若|a|=5b=−2且ab>0则a+b=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负):(+4, −8)(−5, +6)(−3, +2)(+1, −7)则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下:+8−3+12−7−10−3−8+10+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.16.(10分) 某淘宝商家计划平均每天销售某品牌儿童滑板车100辆但由于种种原因实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为:(单位:海里)+80−40+60+75−65−80此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18. (10分)请画一条数轴然后在数轴上把下列各数表示出来:312−4−2120−11并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20. (10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位:元)分别为+2−3+2+1−2−10−2.当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线AB分别交x轴y轴于点A(a,0)和点B(0,b)且a b满足a2+4a+4+|2a+b|=0.(1)a=________ b=________.(2)点P在直线AB的右侧且∠APB=45∘:①若点P在x轴上则点P的坐标为_________②若△ABP为直角三角形求点P的坐标.22. (10分)某个体儿童服装店老板以每件32元的价格购进30件T恤针对不同的顾客30件T恤的售价不完全相同若以47元为标准超出的钱记为正不足的钱记为负则记录的结果如下表所示:问:该服装店在售完这30件T恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解:∵ 0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∵ 负数共有2个.故选B.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据ab<0结合乘法法则易知a b异号而a+b<0根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解:∵ ab<0∵ a b异号又∵ a+b<0∵ 负数的绝对值大于正数的绝对值.故选D.3.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:1958000用科学记数法可表示为1.958×106.故选C.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6m时水位变化记作−6m.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2A正确3的倒数是1B正确3(−3)−(−5)=−3+5=2C正确−1104这三个数中最小的数是−11D错误.故选D.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1|−2|=2根据负数的绝对值越大这个数就越小得到−2<−1而0大于任何负数小于任何正数则有理数−1−203的大小关系为−2<−1<0<3.【解答】解:∵ |−1|=1|−2|=2∵ −2<−1∵ 有理数−1−203的大小关系为−2<−1<0<3.故选B.7.【答案】C【考点】多项式的项与次数【解析】若A和B都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解:若A和B都是4次多项式则A+B的结果的次数一定是次数不高于4次的整式.故选C.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段AB则线段AB盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段AB起点在整点时覆盖16个数②当线段AB起点不在整点即在两个整点之间时覆盖15个数.故选C.9.【答案】C【考点】有理数大小比较数轴【解析】根据a b两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解:∵ a b两点在数轴上的位置可知:−1<a<0b>1|a|<|b|∵ a−b<0a+b>0b−1>0故A B D错误故C正确.故选C.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a−101b的大小关系然后根据正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解:根据实数a b在数轴上的位置可得a<−1<0<1<b∵ 1<|a|<|b|∵ 选项A错误∵ 1<−a<b∵ 选项B正确∵ 1<|a|<b∵ 选项C正确∵ −b<a<−1∵ 选项D正确.故选A.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−23,±1,2【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解.【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解:白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C所以月球表面昼夜的温差为:127∘C−(−183∘C)=310∘C.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5b=−2且ab>0可知a=−5代入原式计算即可.【解答】解:∵ |a|=5b=−2且ab>0∵ a=−5∵ a+b=−5−2=−7.故答案为:−7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解:由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为:12.三解答题(本题共计8 小题共计78分)15.【答案】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.【解答】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:(1)4−3−5+300=296.故答案为:296.(2)21+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法:同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值.相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质:偶次方非负数的性质:绝对值【解析】解:(1)由题意得得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.【解答】解:(1)由题意得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).22.【答案】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。
2023-2024学年北京市海淀区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的倒数是.()A. B. C.5 D.2.“霜降见霜,谷米满仓”,2023年我国粮食再获丰收.据统计,去年秋粮的种植面积为亿亩,比前年增加了700多万亩,奠定了增产的基础.将1310000000用科学记数法表示应为.()A. B. C. D.3.下列各组有理数的大小关系中,正确的是.()A. B. C. D.4.方程的解是.()A. B. C. D.5.下列运算结果正确的是.()A. B.C. D.6.已知等式,则下列等式中不一定成立的是()A. B. C. D.7.如图,D是线段AB的中点,C是线段AD的中点,若,则线段CB的长度为.()A.2acmB.C.3acmD.8.已知有理数x,y在数轴上对应点的位置如图所示,那么下列结论正确的是.()A. B. C. D.9.如图,在正方形网格中有A,B两点,点C在点A的南偏东方向上,且点C在点B的东北方向上,则点C可能的位置是图中的.()A.点处B.点处C.点处D.点处10.某玩具厂在生产配件时,需要分别从棱长为2a的正方体木块中,挖去一个棱长为a的小正方体木块,得到甲、乙、丙三种型号的玩具配件如图所示将甲、乙、丙这三种配件的表面积分别记为、、,则下列大小关系正确的是注:几何体的表面积是指几何体所有表面的面积之和.()A. B. C. D.二、填空题:本题共6小题,每小题2分,共12分。
11.如果单项式与是同类项,那么__________.12.若关于x的一元一次方程的解为正数,则m的一个取值可以为__________.13.小明一家准备自驾去居庸关长城游玩.出发前,爸爸用地图软件查到导航路程为,小明用地图软件中的测距功能测出他家和目的地之间的距离为,如图所示,小明发现他测得的距离比爸爸查到的导航路程少.请你用所学数学知识说明其中的道理:__________.14.有这样一个问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余18本,如果每人分4本,则还缺22本.这个班有多少学生?设这个班有x名学生,则可列方程为__________只列不解15.如图所示的网格是正方形网格,则__________填“>”“<”或“=”16.记为M,为我们知道,当这两个代数式中的x取某一确定的有理数时,M和N的值也随之确定,例如当时,若x和M,N的值如下表所示.x的值2cM的值3bN的值ab则a和c的值分别是:①__________;②__________.三、计算题:本大题共2小题,共20分。
2023-2024学年天津市部分区七年级(上)期末数学试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个数中,是负整数的是()A.0B.C.D.2.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为亿亩.将250000000用科学记数法表示应为()A. B. C. D.3.如图所示的几何体,从上往下看的视图是()A. B. C. D.4.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若把气温为零上记作,则表示气温为()A.零上B.零下C.零上D.零下5.下面的计算正确的是()A. B.C. D.6.如果是关于x的方程的解,那么a的值为()A. B.4 C.6 D.107.若多项式为常数化简后的结果不含字母y,则a的值为()A. B.0 C.2或 D.68.如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它的北偏东的方向上,观测到小岛B在它的南偏西的方向上,则的度数是()A.B.C.D.9.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A. B. C. D.10.A,B,C三点在同一直线上,线段,,那么A,C两点的距离是()A.1cmB.9cmC.1cm或9cmD.以上答案都不对11.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.设人数为x,则可列方程为()A. B. C. D.12.观察如图“蜂窝图”,按照这样的规律,第2024个图案中的“”的个数是()A.6074B.6072C.6073D.6068二、填空题:本题共6小题,每小题3分,共18分。
13.已知一个角是,则它的余角是______.14.按括号内的要求,用四舍五入法求近似数:精确到______.15.如图所示,在我国“西气东输”的工程中,从A城市往B城市架设管道,有三条路可供选择,在不考虑其他因素的情况下,架设管道的最短路线是______,依据是______.16.若,则______,______.17.如图,,OC平分,OD平分,则的大小为______度18.已知数轴上A,B两点所对应的数分别是1和3,P为数轴上任意一点,对应的数为,B两点之间的距离为______;式子的最小值为______.三、计算题:本大题共1小题,共8分。
2022-2023学年(上)七年级期末试卷数学(人教版)注意事项:1.本试卷共8页,三个大题,满分120分,考试时间90分钟.请用黑色水笔直接答在答题卷上.2.答卷前将答题卷密封线内的项目填写清楚.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案前的代号字母填涂在答题卷上指定位置. 1.下列平面图形中,经过折叠能围成一个正方体的是( )A. B. C. D.2.疫情期间,某市红十字会累计接收社会各界爱心人士捐赠口罩、隔离衣、手套等88批次物资,价值约为5100000元,则5100000用科学记数法可表示为( ) A.55.110⨯B.65.110⨯C.651.010⨯D.75.110⨯3.如图,数轴的单位长度为1,如果点A 表示的数是2-,那么点B 表示的数是( )A.1-B.0C.1D.24.有理数2-,12-,0,32中,绝对值最大的数是( ) A.2-B.12-C.0D.325.下列判断正确的是( ) A.2235x y xy -+是二次三项式 B.225m n 的系数是2C.23a bc 与2bca 不是同类项D.单项式232x yz -的次数是56.一个几何体由4个相同的小正方体搭成,从正面看和从左面看到的形状图如图所示,则原立体图形不可能是( )A. B. C. D.7.下列方程中,解为2x =的是( ) A.360x +=B.320x -=C.112x -= D.11042x -+= 8.下列图中的1∠也可以用O ∠表示的是( )A. B. C. D.9.“盈不足问题”作为我国数学的古典问题,在2000多年前的《九章算术》一书中就有很详尽而深刻的阐述.书中记载:今有人买鸡,人出九,盈十一;人出六,不足十六.问人数、物价各几何?意思是:有若干人一起买鸡,如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.买鸡的人数、鸡的价钱各是多少?若设鸡的价钱是x 文钱,根据题意列一元一次方程正确的是( )A.111696x x -+= B.111696x x +-= C.111669x x -+= D.161196x x -+=: 10.如图,下列各三三形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A.21y n =+B.2ny n =+C.12n y n +=+ D.21ny n =++二、填空题(每小题3分,共15分).11.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.解释其中道理所用的数学知识是______.12.矿井下A ,B ,C ,三处的高度分别是37m -、129m -、71.3m -,那么最高处比最低处高______m. 13.比较大小: 2.7--______()3.3--(填“<”、“>”、“=”)14.当k =______时,多项式()221325x k xy y xy +----中不含xy 项.15.将一张长方形的纸按照如图所示折叠后,点C 、D 两点分别落在点C '、D '处,若EA 平分D EF ∠',则DEF ∠=______.三、解答题(本大题共8题,共75分) 16.(8分)计算:()2161393⎛⎫⨯--÷- ⎪⎝⎭. 17.(9分)把下列各数在数轴上表示出来,并用“<”号把它们连接起来.3-,4-,0, 2.5-,112-.18.(9分)化简并求值:()()()22223262x xy xy yxy ---++-,其中2x =,1y =-.19.(9分)解方程:3157146x x ---=. 20.(9分)某校七年级组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了其中4个参赛者的得分情况.(1)补全表格;(2)参赛者E 说他得85分,请你判断可能吗?并说明理由.21.(10分)某风景名生区的原门票价格是:成人票每张100元,学生票每张80元.为吸引游客,风景名胜区管委会决定实行打折优惠,其中成人票打8折,学生票打6折.(1)设某旅游团有成人x 人,学生y 人,请用含x 、y 的代数式表示出该旅游团打折后所付的门票费; (2)若某旅游团的成人比学生多12人,所付门票费比不打折少1228元,求该旅游团成人和学生各有多少人? 22.(10分)阅读下面材料: 数学课上,老师给出了如下问题:如图1,80AOB ∠=︒,OC 平分AOB ∠,若20BOD ∠=︒,请你补全图形,并求COD ∠的度数. 小明做题时画出了如图2的图形,小静说“我觉得这个题有两种情况,小明考虑的是OD 在AOB ∠外部的情况,事实上,OD 还可能在AOB ∠的内部”.请你完成以下问题: (1)写出小明的解答过程;(2)根据小静的想法,在图3中画出另一种情况对应的图形,并求出此时COD ∠的度数. 23.(11分)如图1,摆放一副三角尺,使得点O 在AB 边上,将三角尺COD 绕点O 旋转.(1)若45AOD ∠=︒,求COB ∠的度数; (2)若120AOD ∠=︒,求COB ∠的度数;(3)当()0180AOD αα∠=︒<<︒时,直接写出COB ∠的度数(结果可用α表示).2022-2023学年(上)七年级期末试卷 数学参考答案及评分标准(人教版)一、选择题1.B2.B3.D4.A5.D6.C7.D8.A9.B 10.B 二、填空题11.两点之间,线段最短 12.92 13.<14.315.120°三、解答题 16.()2161393⎛⎫⨯--÷- ⎪⎝⎭()26993=⨯-÷-41=+5=.……8分17.(1)图略.……6分(2)略.……9分18.解:原式22223662x xy xy y x y =-+-+-2243x y =-,……5分当2x =,1y =-时,原式()22423116313=⨯-⨯-=-=.……9分19.解:去分母,得()()33112257x x --=-,……2分 去括号,得93121014x x --=-,……4分 移项,得91014312x x -=-++,……6分 合并同类项,得1x -=,……8分 系数化为1,得1x =-. 20.解:(1)如表.……4分(2)解:设答对了x 道题,由题意得()52085x x --=,……7分 解得:1056x =,……8分∵x 为正整数,∴不可能.……9分21.解:(1)由题意,得旅游团打折后所付的门票费为:()8048x y +元;……4分 (2)设该旅游团学生有a 人,则成人有()12a +人,由题意,得……5分()()80100124880121228a a a a ++--+=,……8分解得:19a =,∴成人有121931+=人.……9分 答:该旅游团学生有19人,则成人有31人.……10分 22.解:(1)因为OC 平分AOB ∠,80AOB ∠=︒, ∴1402BOC AOB ∠=∠=︒.……2分∴20BOD ∠=︒,∴60COD BOC BOD ∠=∠+∠=︒……4分 (2)如图,……6分∵OC 平分AOB ∠,80AOB ∠=︒, ∴1402BOC AOB ∠=∠=︒,……8分 ∴20BOD ∠=︒,∴402020COD BOC BOD ∠=∠-∠=︒-=︒︒.……10分23.解:(1)分为两种情况,当射线OD 在直线AB 上方时;如图2,当AOD ∠是锐角时,∵45AOD ∠=︒,∴9045AOC ︒∠=-︒,∴()18018090459045135BOC AOC ∠=-∠=︒-︒-︒+︒︒==︒︒,……2分 当射线OD 在直线AB 下方时;如图3∵45AOD ∠=︒,∴4590135AOC AOD COD ︒︒∠=∠+∠=+=︒, ∴180********BOC AOC ∠=︒-∠=︒-=︒︒;……3分 (2)分为两种情况,当射线OD 在直线AB 上方时;如图4,∴120AOD ∠=︒,∴1209030AOC AOD COD ∠=∠-∠=︒-︒=︒∴180********BOC AOC ∠=︒-∠=︒-︒=︒;……5分 当射线OD 在直线AB 下方时;如图5,∴120AOD ∠=︒,∴180********BOD AOD ∠=-∠=-︒=︒︒︒, ∴90906030BOC BOD ∠=-∠=-︒=︒︒︒;……7分 (3)90α︒+或90α︒-或270α︒-或90α-︒.……11分。
2023-2024学年广东省广州市七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一1.(3分)﹣的相反数是()A.﹣B.C.﹣5D.52.(3分)2023年9月21日,在距离地球400000米的中国空间站,“天宫课堂”第四课开讲,之所以选择400000米的飞行高度,其中一个原因是可以对空间站进行保护,使其避免受到地球磁场的干扰,从而保护宇航员.数据400000用科学记数法表示为()A.4×106B.4×105C.40×104D.453.(3分)若﹣x3y a与x b y是同类项,则a+b的值为()A.2B.3C.4D.54.(3分)已知x=3是方程2(x﹣1)﹣a=0的解,则a的值是()A.B.C.4D.﹣45.(3分)计算:﹣24+(﹣2)4=()A.﹣32B.﹣16C.32D.06.(3分)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.7.(3分)如图,∠AOB=15°,∠AOC=90°,点B,O,D在同一直线上,则∠COD的度数为()A.75°B.15°C.105°D.165°8.(3分)已知线段AB=14cm,点C是直线AB上一点,BC=2cm,若M是AC的中点,N 是BC的中点,则线段MN的长度是()A.7cm B.9cm C.7cm或5cm D.6cm或8cm 9.(3分)甲,乙两超市为了促销一种定价相同的同种商品,甲超市连续两次降价,每次降价都是10%,乙超市一次性降价20%.现要购买这种商品,价格较低的是()A.甲超市B.乙超市C.甲、乙超市的价格相同D.不确定10.(3分)如图所示,用棋子摆成英文字母“H”字样,按照这样的规律摆下去,摆成第2024个“H”需要()个棋子.A.10117B.10120C.10122D.10125二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)|﹣5|﹣3的值是.12.(3分)已知a﹣4与﹣2互为相反数,则代数式的值是.13.(3分)多项式3x2y a﹣4y2+2x是五次三项式,则a的值为;二次项系数为.14.(3分)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为度.15.(3分)如图,C,D是线段AB上两点,若CB=3cm,DB=7cm,且D是AC的中点,则AB的长为.16.(3分)已知A=x2+xy﹣2x﹣3,B=﹣x2+3xy﹣9.若3A﹣B的值等于﹣2,则代数式x2﹣x+3的值是.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)如图,已知三点A,B,C,按下列要求画图:(1)画射线AC;(2)延长CB至D,使得CD=BC+AB.18.(4分)计算:.19.(6分)解方程:.20.(6分)先化简,再求值:,其中,.21.(8分)整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时完成这项工作.假设这些人的工作效率相同.(1)具体应先安排多少人工作?(2)若一开始就以增加后的人数工作,则需要多少小时完成?22.(10分)快递员王师傅配送快件,在东西向某段路进行配送快递,若规定向东为正,向西为负,王师傅从单位出发配送的10户的里程如下:﹣10,﹣3,+14,﹣2,﹣8,+6,﹣4,+12,+8,﹣5(单位:千米).(1)请问王师傅最后所在的位置在单位的什么地方,距离单位多远?(2)如果小电车每千米耗电量0.02度电,想问王师傅这一上午耗电量多少?23.(10分)已知O是直线AB上的一点,∠COD是直角,OE平分∠AOD.(1)如图1,OC与OD在直线AB的同侧.①若∠COE=20°,则∠DOB的度数为;②若∠COE=α,求∠DOB的度数.(2)如图2,OC与OD在直线AB的异侧,直接写出∠COE和∠DOB之间的数量关系,不必说明理由.24.(12分)定义一种新运算:观察下列各式,并解决问题.1△4=1×3+4=7,2△7=2×3+7=13,5△(﹣1)=5×3+(﹣1)=14.请你想一想:(1)5△8=,a△b=;(2)已知(﹣5)△(m△3)=12,求m的值;(3)判断a△b与b△a的大小关系,并说明理由.25.(12分)在数轴上,点A在原点O的左侧,点B在原点O的右侧,点A距离原点12个单位长度,点B距离原点2个单位长度.(1)A点表示的数为,B点表示的数为,两点之间的距离为;(2)若点P为数轴上一点,且BP=2,求AP的值;(3)若点P、Q、M同时向数轴负方向运动,点P从点A出发,点Q从原点出发,点M 从点B出发,且点P的运动速度是每秒6个单位长度,点Q的运动速度是每秒8个单位长度,点M的运动速度是每秒2个单位长度.运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?2023-2024学年广东省广州市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一1.【分析】的相反数是,再化简即可.【解答】解:﹣的相反数是,故选:B.【点评】本题考查了相反数,掌握相反数的定义是解答本题的关键.2.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:400000=4×105,故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.3.【分析】根据同类项中相同字母的指数相同的概念求解.【解答】解:∵﹣x3y a与x b y是同类项,∴a=1,b=3,则a+b=1+3=4.故选:C.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母指数相同的概念.4.【分析】使方程两边左右相等的未知数的值叫做方程的解.【解答】解:将x=3代入方程得,2×(3﹣1)﹣a=0,解得:a=4,故选:C.【点评】本题考查方程的解的定义.熟练掌握方程解的定义是解答本题的关键.5.【分析】先算乘方,再算加减,即可解答.【解答】解:﹣24+(﹣2)4=﹣16+16=0,故选:D.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.6.【分析】三棱柱展开后,侧面是三个长方形,上下底各是一个三角形.【解答】解:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有A是三棱柱的展开图.故选:A.【点评】此题主要考查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧.7.【分析】先利用角的和差关系可得∠BOC=75°,然后再利用平角定义进行计算即可解答.【解答】解:∵∠AOB=15°,∠AOC=90°,∴∠BOC=∠AOC﹣∠AOB=75°,∴∠COD=180°﹣∠BOC=105°,故选:C.【点评】本题考查了角的计算,角的概念,根据题目的已知条件并结合图形进行分析是解题的关键.8.【分析】本题需要分两种情况讨论,①当点C在线段AB上时,②当点C在线段AB的延长线上时,根据线段中点的定义,计算即可.【解答】解:①当点C在线段AB上时,如图所示:∵AB=14cm,BC=2cm,∴AC=14﹣2=12(cm),∵M是AC的中点,N是BC的中点,∴,,∴MN=MC+CN=6+1=7(cm);②当点C在线段AB的延长线上时,如图所示:∵AB=14cm,BC=2cm,∴AC=14+2=16(cm),∵M是AC的中点,N是BC的中点,∴,,∴MN=MC﹣CN=8﹣1=7(cm);综上所述,线段MN的长度是7cm,故A正确.故选:A.【点评】本题主要考查了线段上两点间的距离,主要利用了线段中点的定义,难点在于要分情况讨论.9.【分析】设相同商品原定价为a元,然后根据降价分别求出两个超市的价格,比较即可得解.【解答】解:设相同商品原定价为a元,甲超市连续两次降价10%,价格为:a×(1﹣10%)×(1﹣10%)=0.81a,乙超市一次性降价20%,价格为:a×(1﹣20%)=0.8a,∵0.81a>0.8a,∴价格较低的是乙超市.故选:B.【点评】本题考查了列代数式,列出两超市降价后的价格是解题的关键.10.【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【解答】解:图形①用棋子的个数=2×(2×1+1)+1;图形②用棋子的个数=2×(2×2+1)+2;图形③用棋子的个数=2×(2×3+1)+3;…,摆成第2024个“H”字需要棋子的个数=2×(2×2024+1)+2024=10122(个).故选:C.【点评】本题考查图形变化的规律,能根据所给图形发现所需棋子的个数依次增加4是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分.)11.【分析】先根据绝对值的性质去掉绝对值符号,再利用有理数的加减法则进行计算即可.【解答】解:原式=5﹣3=2,故答案为:2.【点评】本题主要考查了有理数的减法,解题关键是熟练掌握绝对值的性质和有理数的加减法则.12.【分析】根据相反数的性质列方程求得a的值后代入代数式中计算即可.【解答】解:∵a﹣4与﹣2互为相反数,∴a﹣4﹣2=0,解得:a=6,原式=﹣1=﹣,故答案为:﹣.【点评】本题考查代数式求值及解一元一次方程,结合已知条件求得a的值是解题的关键.13.【分析】根据多项式的项与次数即可求得答案.【解答】解:∵多项式3x2y a﹣4y2+2x是五次三项式,∴2+a=5,解得:a=3,其二次项系数为﹣4,故答案为:3;﹣4.【点评】本题考查多项式,熟练掌握相关定义是解题的关键.14.【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,再根据平角的度数是180°,∠ABE=20°,继而即可求出答案.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=20°,∴∠DBC=70°.故答案为:70.【点评】此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.15.【分析】先利用线段的和差关系可得DC=4cm,然后利用线段的中点定义可得AC=8cm,从而利用线段的和差关系进行计算,即可解答.【解答】解:∵CB=3cm,DB=7cm,∴DC=BD﹣BC=7﹣3=4(cm),∵D是AC的中点,∴AC=2CD=8(cm),∴AB=AC+BC=8+3=11(cm),故答案为:11cm.【点评】本题考查了两点间的距离,根据题目的已知条件并结合图形进行分析是解题的关键.16.【分析】把A与B代入3A﹣B=﹣2中,去括号合并求出2x2﹣3x的值,原式变形后代入计算即可求出值.【解答】解:∵A=x2+xy﹣2x﹣3,B=﹣x2+3xy﹣9,∴3A﹣B=3(x2+xy﹣2x﹣3)﹣(﹣x2+3xy﹣9)=3x2+3xy﹣6x﹣9+x2﹣3xy+9=4x2﹣6x =﹣2,即2x2﹣3x=﹣1,则原式=(2x2﹣3x)+3=﹣+3=2,故答案为:2.【点评】此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.【分析】(1)根据射线的定义画出图形;(2)根据要求作出图形.【解答】解:(1)如图,射线AC即为所求;(2)如图线段BC,BD即为所求.【点评】本题考查作图﹣复杂作图,两点之间的距离等知识,解题的关键是漏解射线,线段的定义.18.【分析】先算乘方,再算乘除,最后算加减即可.【解答】解:原式=﹣1﹣2×9÷=﹣1﹣18×3=﹣1﹣54=﹣55.【点评】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.19.【分析】按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可.【解答】解:,去分母得:4(2x﹣6)﹣3(x+18)=12,去括号得:8x﹣24﹣3x﹣54=12,移项得:8x﹣3x=12+24+54,合并同类项得:5x=90,系数化为1得:x=18.【点评】本题主要考查了解一元一次方程,掌握解一元一次方程的步骤是关键.20.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣,y=时,原式=﹣3×(﹣)+()2=1+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.【分析】(1)根据题意可得,每个人每小时完成,设具体先安排x人工作,根据题意的工作方式可得出方程,解出即可;(2)设需要t小时完成,根据工作总量一定列出方程即可求出答案.【解答】解:由题意可得,每个人每小时完成,设具体先安排x人工作,则x×4+×(x+3)×6=1,解得:x=3.答:具体应先安排3人工作;(2)依题意得:(3+3)t=48,解得:t=8,答:需要8小时完成.【点评】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,找到等量关系,然后运用方程求解.22.【分析】(1)将所有里程加起来,再根据向东为正,向西为负判断王师傅最后所在的位置在单位的什么地方,距离单位多远;(2)不关注于配送方向,只算最终共跑了多少里程,然后再用总里程数×0.02度电,即可.【解答】解:(1)根据题意可得:﹣10+(﹣3)+14+(﹣2)+(﹣8)+6+(﹣4)+12+8+(﹣5)=8(km),∵向东为正,向西为负,∴王师傅最后所在的位置在单位的东边位置,距离单位有8km远,答:王师傅最后所在的位置在单位的东边位置,距离单位有8km远.(2)0.02×(10+3+14+2+8+6+4+12+8+5)=0.02×72=1.44(度),答:王师傅这一上午耗电量为1.44度.【点评】本题考查了数轴、正数与负数的相关知识,解题的关键在于灵活运用数轴知识与读懂题意.23.【分析】(1)①由∠COD为直角,∠COE=20°可求得∠EOD的度数.再由OE平分∠AOD,以及∠AOD和∠BOD为邻补角即可求出∠BOD.②同①可得结论;(2)设∠COE=α,可以求出∠EOD,再由角平分线以及邻补角可求出∠BOD,得出∠BOD和∠COE的关系.【解答】解:(1)①∵∠COD为直角,∴∠COD=90°.∵∠COE=20°,∴∠EOD=∠COD﹣∠COE=90°﹣20°=70°.∵OE平分∠AOD,∴∠AOD=2∠EOD=140°.∴∠BOD=180°﹣∠AOD=180°﹣140°=40°.②∵∠COD为直角,∴∠COD=90°.∵∠COE=α,∴∠EOD=∠COD﹣∠COE=90°﹣α.∵OE平分∠AOD,∴∠AOD=2∠EOD=180°﹣2α.∴∠BOD=180°﹣∠AOD=180°﹣(180°﹣2α)=2α.(2)设∠COE=α,∴∠EOD=∠COD﹣∠COE=90°﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=180°﹣2α.∴∠DOB=180°﹣∠AOD=2α,∴∠DOB=2∠COE.【点评】本题考查角度的计算,主要涉及角平分线,垂直,邻补角的相关知识,计算过程中注意合理利用已知条件,利用角的和差来求解要求的角.24.【分析】(1)根据题目中的例子,可以计算出所求式子的值;(2)根据(﹣5)△(m△3)=12,可以得到关于m的方程,再求解即可;(3)先判断a△b与b△a的大小关系,再根据作差法说明理由即可.【解答】解:(1)由题目中的例子可得,5△8=5×3+8=23,a△b=3a+b,故答案为:23,3a+b;(2)∵(﹣5)△(m△3)=12,∴(﹣5)△(3m+3)=12,∴(﹣5)×3+3m+3=12,解得m=8;(3)当a>b时,a﹣b>0,此时a△b>b△a;当a=b时,a﹣b=0,此时a△b=b△a;当a<b时,a﹣b<0,此时a△b<b△a.理由:∵a△b=3a+b,b△a=3b+a,∴a△b﹣b△a=3a+b﹣3b﹣a=2a﹣2b=2(a﹣b),∴当a>b时,a﹣b>0,此时a△b>b△a;当a=b时,a﹣b=0,此时a△b=b△a;当a<b时,a﹣b<0,此时a△b<b△a.【点评】本题考查有理数的混合运算、新定义,解答本题的关键是明确题意,利用新定义解答.25.【分析】(1)先由点A在原点的左边,距离原点12个单位长度确定点A对应的数是﹣12,同理可得点B表示的数,根据右边的数﹣左边的数=两点的距离可得A,B两点的距离;(2)分点P在点B的左边和右边,根据线段的和差可得AP的长;(3)设移动的时间为t秒,分别表示三个动点P,Q,M表示的数,分三种情况讨论,列等式可解答.【解答】解:(1)∵点A在原点的左边,距离原点12个单位长度,∴点A对应的数是﹣12,同理可得点B表示的数为2,∴A,B两点之间的距离为:2﹣(﹣12)=2+12=14,故答案为:﹣12,2,14;(2)分两种情况:①当点P在点B的右边时,AP=AB+BP=14+2=16;②当点P在点B的左边时,AP=AB﹣BP=14﹣2=12;综上,AP的值是16或12;(3)设移动的时间为t秒,则动点P,Q,M对应的数分别为﹣12﹣6t,﹣8t,2﹣2t,分三种情况:①点Q是PM的中点时,PQ=QM,∴﹣8t﹣(﹣12﹣6t)=2﹣2t﹣(﹣8t),∴t=,此时,点P表示的数为:﹣12﹣6×=﹣19.5,点Q表示的数为:﹣8×=﹣10,点M表示的数为:2﹣2×=﹣0.5.②点P是QM的中点时,PQ=MP,∴﹣12﹣6t﹣(﹣8t)=2﹣2t﹣(﹣12﹣6t),∴t=﹣13(舍),③点M是PQ的中点时,因为点M的速度小,所以此种情况不存在.【点评】此题重点考查解一元一次方程,列一元一次方程解应用题,数轴上的动点问题的求解等知识与方法,正确地用代数式表示移动过程中的点对应的数是解题的关键。
2022-2022北师大七年级上数学期末试题-15及答案2022-2022学年北师大七年级(上)期末数学试卷11题号得分一二三四五总分(满分100分,时间90分钟)一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.1的倒数是()211A.B.C.2D.-2222.下面四个几何体中,主视图与其它几何体的主视图不同的是()A.B.C.D.3.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示中国每年浪费食物总量折合粮食大约是210000000人一年的口粮,用科学计数法表示210000000为()A.2.1某10B.0.21某1099C.2.1某10D.21某108732322某8某某13某2m某5某3的和不含二次项,则m的值为()4.若多项式与多项式A.2B.-2C.4D.-45.线段AB被分为2:3:4三部分,已知第一部分和第三部分两中点间的距离是5.4cm,则线段AB的长度应为()A.8.1cmB.9.1cmC.10.8cmD.7.4cm2某1某16.把方程3某+3=3-2去分母,正确的是()A.18某22某1183某1B.3某2某13某1C.18某2某118某1D.3某22某133某17.若3某2my3与2某4yn是同类项,则mn的值是()A.0B.1C.7D.-1.8.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定15条直线,则n的值为()A.4B.5C.6D.7二、填空题(每题2分,共16分,把答案写在题中横线上)9.(-1)的绝对值是.10.已知:x=5是关于某的方程3某-2a=1的解,则a的值是.311.角度换算:42.13度=度分秒.12.系数为-5,只含字母m、n的三次单项式有个,它们是.13.若2a-b=-3,则多项式8a-4b+3的值是.14.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价为元.15.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①.∠AOB=∠COD;②.∠AOB+∠COD=90;③.若OB平分∠AOC,则OC平分∠BOD;④.∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的是.(填序号)第15题图某某1某某2某某316.一列方程如下排列:4+2=1的解是某=2;6+2=1的解是某=3;8+2=1的解是某=4;;根据观察得到的规律,写出解是某=6的方程是.三、解答题(17题8分,18题5分,19题5分,20题10分,共28分)17.(1)计算:3542122210.524348(2)计算:22222某y某y2某y某2某y2y,其中,某2,y2.18.先化简,再求值:19.关于某的方程某2m3某4与2m某的解互为相反数,求m的值.2某15某120.解方程:①2某110某16②6-8=12四、解答题(每题6分,共12分)21.一只蚂蚁从点A出发向北偏东30°方向,爬行了3cm到点B,再从点B出发向北偏西60°爬了3cm到点C.北(1)试画图确定B、C的位置;(2)从图上量出点C到点A的距离(精确到0.1cm);(3)指出点C在点A的什么方位东西A南第21题图22.如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.⑴指出图中∠AOD与∠BOE的补角;⑵试判断∠COD与∠COE具有怎样的数量关系.并说明理由.CEDBAO第22题图五、综合题(23题8分,24题10分,25题10分,共28分)23.为增强市民的节水意识,某市对居民用水实行“阶梯收费”.规定每户每月不超过月用水标准量部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元,该市规定的每户月用水标准量是多少吨?24.如图,点C在线段AB上,点M、N分别是AC、BC的中点.⑴若AC=8,CB=6,求线段MN的长;⑵若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?并说明理由;⑶若C在线段AB的延长线上,且满足AC-BC=b,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;⑷你能用一句简洁的语言,描述你所发现的结论吗?新-课-标-第-一-网AMCNB第23题图32022-2022学年北师大七年级(上)期末数学试卷12一、选择题(每题2分,共16分,将正确答案的字母填在括号内)111.-2的相反数是().A.2B.2C.2D.22.如图是由4个大小相同的正方体搭成的几何体,其主视图是().A.B.C.D.3.下面各式中正确的是().A.aaamnmnB.aaamm2mC.(a)(a)D.(ab)abmnnmmm4.下列调查方式中,应采用“普查”方式的是().A.调查某品牌手机的市场占有率B.调查我市市民实施低碳生活的情况C.对我国首架歼15战机各个零部件的调查D.调查某型号炮弹的射程5.未来三年,我国将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿用科学记数法表示为().A.0.845某104亿元B.8.45某103亿元C.8.45某104亿元D.84.5某102亿元6.为了解参加运动会的2000名运动员的年龄情况,从中抽查了100名运动员的年龄.就这个问题来说,下面说法中正确的是().A.2000名运动员是总体B.每个运动员是个体C.100名运动员是抽取的一个样本D.抽取的100名运动员的年龄是样本202220222022202240312022(2)(2)7.计算等于().A.2B.2C.2D.28.若某2-某-m=(某-m)(某+1)且某≠0,则m等于().A.-1B.0C.1D.29.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“61儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,共卖得金额87元.若设铅笔卖出某支,则依题意可列出的一元一次方程为().A.1.2某0.8某+2某0.9(60+某)=87B.1.2某0.8某+2某0.9(60﹣某)=87C.2某0.9某+1.2某0.8(60+某)=87D.2某0.9某+1.2某0.8(60﹣某)=872222某某y33某yy52某某yy10.已知,,则的值是().A.8B.2C.11D.13412.甲、乙、丙三辆车均在A、B两地间往返,三辆车在A、B两地间往返一次所需时间分别为5小时、3小时和2小时.现在三辆车同时在A 地视为第一次汇合,甲车先出发,1小时后乙车出发,再经过2小时后丙车出发.那么丙车出发()小时后,三辆车第三次同时汇合于A地.A.50B.51C.52D.53二.耐心填一填(本大题共6个小题,每小题4分,共24分)13.单项式的系数是__________.AN图(1)MB14.如图(1)所示,点M,N在线段AB上,且MB5cm,NB14cm,N是线段AM的中点,则线段AB为__________cm.15.某m某3与3某2的积不含某的二次项,则m的值是__________.16.钟面上3点40分时,时针与分针的夹角的度数是__________度.17.已知|某|3,2y214,且某+y<0,则某﹣y的值等于__________.18.某网店老板经营销售甲、乙两种款式的浮潜装备,每件甲种款式的利润率为30%,每件乙种款式的利润率为50%,当售出的乙种款式的件数比甲种款式的件数少40%时,这个老板得到的总利润率是40%;当售出的乙种款式的件数比甲种种款式的件数多80%时,这个老板得到的总利润率是__________.三.解答题(本大题共3个小题,19题11分,20题5分,21题10分,共26分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算(共11分,其中(1)小题5分,(2)小题6分)某102022-5(3)2(-24)4(3.14)2(1)(1)﹣(﹣3)(2)+(﹣3)2﹣某20.计算(5分)2232232(aa)(b)(2ab)(a2b)-221.解方程(每题5分,共10分)(1)4(某1)13(某2)(2)某3某2某2132四.解答题(本大题共个3小题,每小题10分,共30分)22.先化简,再求值(10分)5b(a3b)a(3a2b)(3ab)(a2b3)(a3),其中a、b满足2a8b50.23.(10分)重庆一中渝北分校积极组织学生开展课外阅读活动,为了解全校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求这次抽查的学生总数是多少人,并求出某的值;(2)将不完整的条形统计图补充完整;(3)若该校共有学生3600人,试估计每周课外阅读时间量满足2≤t<4的人数.24.列方程解应用题(10分)甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?五.解答题(本大题共2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.(10分)如图,直线AB与CD相交于点O,AOM90.新课标第一网(1)如图1,若OC平分AOM,求AOD的度数;(2)如图2,若BOC4NOB,且OM平分NOC,求MON的度数.MCMCNABOABOD(图1)(图2)D626.某品牌汽车生产厂为了占领市场提高销售量,对经销商采取销售奖励活动,在2022年10月前奖励办法以下表计算奖励金额,2022年10月后以新奖励办法执行.某经销商在新奖励办法出台前一个月共售出某品牌汽车的A型和B型共413台,新奖励办法出台后的第一个月售出这两种型号的汽车共510台,其中A型和B型汽车的销售量分别比新奖励办法出台前一个月增长25%和20%.2022年10月前奖励办法:销售量(某台)每台奖励金额(元)0<某≤100100<某≤300某>3002005001000(1)在新办法出台前一个月,该经销商共获得奖励金额多少元?新课标第一网(2)在新办法出台前一个月,该经销商销售的A型和B型汽车分别为多少台?2022-2022学年七年级(上)期末数学模拟试卷13一.选择题(每题3分,计30分)1.﹣5的绝对值是()A.B.C.+5D.﹣52.方程3某+6=0的解是()A.2B.﹣2C.3D.﹣33.温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1300000000用科学记数法表示为()A.13某108B.1.3某108C.1.3某109D.1.394.实数a、b在数轴上的位置如图所示,下列结论正确的是()A.a+b>0B.a﹣b<0C.ab>0D.a/b>05.化简﹣2(m﹣n)的结果为()A.﹣2m﹣nB.﹣2m+nC.2m﹣2nD.﹣2m+2n6.丁丁做了以下4道计算题:①(﹣1)2022=2022;②0﹣(﹣1)=﹣1;③.请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题;④7.形如的式子叫做二阶行列式,它的运算法则用公式表示为=ad﹣bc,依此法则计算的结果为()A.11B.﹣11C.5D.﹣28.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BCB.AC+BC=ABC.AB=2ACD.BC=AB79.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()A.B.C.D.10.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2022个这样的三角形镶嵌而成的四边形的周长是()A.2022B.2022C.2022D.2022二.填空题(每题3分,计30分)11.如果□+2=0,那么“□”内应填的实数是.12.一件商品按成本价提高20%后标价,又以9折销售,售价为270元.设这件商品的成本价为某元,则可列方程:.13.一个几何体的三视图如图所示,则这个几何体的名称是.14.如图,∠AOD=80°,∠AOB=30°,OB是∠AOC的平分线,则∠AOC的度数为度,∠COD的度数为度.15.若某2+2某的值是6,则3某2+6某﹣5的值是.16.若ab和7ab是同类项,则m值为.17.下列说法:(1)两点之间的所有连线中,线段最短;(2)相等的角是对顶角;(3)过一点有且仅有一条直线与已知直线平行;(4)长方体是四棱柱.其中正确的有(填正确说法的序号).18.大家知道|5|=|5﹣0|,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|6﹣3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子|a+5|在数轴上的意义是.2m32319.若某=2是方程的解,则的值是.20.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止.那么2007,2022,2022,2022这四个数中可能是剪出的纸片数.三.解答题(本大题共3题,满分18分)21.计算:8﹣23÷(﹣4)某(﹣7+5)822.先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.23.老师在黑板上出了一道解方程的题,小明马上举起了手,要求到黑板上去做,他是这样做的:4(2某﹣1)=1﹣3(某+2)①8某﹣4=1﹣3某﹣6②8某+3某=1﹣6+4③11某=﹣1④⑤解方程:.四、解答题(本大题共2题,满分16分)24.计算:(1)(﹣10)÷25.如图,O是直线AB上任意一点,OC平分∠AOB.按下列要求画图并回答问题:(1)分别在射线OA、OC上截取线段OD、OE,且OE=2OD;(2)连接DE;(3)以O为顶点,画DOFEDO,射线OF交DE于点F;(4)写出图中与EOF相加等于90度的所有角:.C(2)..ABO26.已知如图,AO⊥BC,DO⊥OE.(1)不添加其它条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);(2)如果∠COE=35°,求∠AOD的度数.9五、解答题(本大题共3题,满分26分)27.某校在教学楼前铺设小广场地面,其图案设计如图所示.若长方形地面的长为50米,宽为32米,中心建一直径为10米的圆形喷泉,四周各角留一个长20米,宽5米的小长方形花坛,图中阴影处铺设广场地砖.(1)求阴影部分的面积S(π取3);(2)甲乙两人承包铺了地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.请你根据所给的条件提出一个问题,并列方程解答.问题:甲还需多长时间才能完成?.28.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB 的长度.(2)请你设计一个方案,使租金最少,并说明理由.2022-2022学年北师大七年级(上)期末数学试卷14一、选择题(本大题共8个小题,每小题3分,共24分.)1.-2的相反数是()A.2B.11C.22D.-22.当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔-23米C.海拔175米D.海拔129米3.下列各式中,不相等的是()3A.(-3)2和-32B.(-3)2和32C.(-2)3和-23D.2和-2 34.长城总长约为6700000米,用科学计数法表示为()A.6.710米B.6.710米C.6.710米D.6.710米1056785.方程2某+a-4=0的解是某=-2,则a等于()A.-8B.0C.2D.86.下列各组整式中不是同类项的是()A.3m2n与3nm2B.12122某y与某yC.-5ab与-5某103abD.35与-12337.如图,点C是线段AB上的点,点D是线段BC的中点,AB=10,AC=6,则线段CD的长是()ACDB第7题图A.4B.3C.2D.18.下列基本几何体中,从正面、上面、左面观察都是相同图形的是()圆柱三棱柱球长方体ABCD二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上)9.如图,∠α=120,∠β=90.则∠γ的度数是oo.10.125÷4=___________’.αγβ第10题图11.数a、b在数轴上的位置如图所示,化简bab=____________.AC123第13题图bOaB546第11题图12.如果a-b=3,ab=-1,则代数式3ab-a+b-2的值是_________.13.有一个正方体,A,B,C的对面分别是某,y,z三个字母,如图所示,将这个正方体从现有位置依此翻到第1,2,3,4,5,6格,当正方体翻到第3格时正方体向上一面的字母是.14.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三■架天平也平衡,那么“?”处应放“”个.第14题图三、探究题(本题4分,每空1分,把答案填在题中横线上)15.有若干个数,第1个数记为a1,第二个数记为a2,第三个数记为a3,第n个记为an,若a11,211从第二个数起,每个数都等于“1与它前面的那个数的差的倒数。
西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。
A .B .3.下面几何体中,左视图是圆的是(....上有天堂,下有苏杭,凭借独特的自然风光,杭州一直都是旅游热门目的地.尤其是年亚运会的到来,让这座城市更加热门.相关数据显示,“十一”黄金周期间杭州市接待游客1300万人次.将13000000用科学记数法表示为(AOB ∠AOC ∠....A .B .月的日历表,用形如的框架框住日历表中的某五个数,对于框架A .. . . 9.我国古代数学著作《增删算法统宗》记载了绳索量竿”问题一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.其大意为:现有一根竿和一条绳索,用绳AD CD AB BC=+-AC --A .①④⑤B .①②④15.如图,,16.如图,用剪刀沿直线将一个正方形剪掉一部分,发现正方形剩余部分(阴影部分)的周长比原正方形的周长要小,能正确解释这一现象的数学依据是17.已知,那么90AOC BOD ∠=∠=︒∠21a b -=(1)画射线,直线(2)在射线上取一点(3)过点作的垂线段度最短,最短距离为 BA CB BA D A BC cm故选:C .4.A【分析】本题考查科学记数法表示较大的数.将一个数表示成的形式,其中,为整数,这种记数方法叫做科学记数法,据此即可求得答案.【详解】解:将13000000用科学记数法表示为,故选:A .5.B【分析】根据角的表示方法和图形逐个进行判断即可.【详解】A 选项:不能用∠1、∠AOB 、∠O 三种方法表示同一个角,故错误;B 选项:能用∠1、∠AOB 、∠O 三种方法表示同一个角,故正确;C 选项:不能用∠1、∠AOB 、∠O 三种方法表示同一个角,故错误;D 选项:不能用∠1、∠AOB 、∠O 三种方法表示同一个角,故错误;故选:B .【点睛】考查了角的表示方法,解题关键是理解角的表示方法.6.B【分析】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化是解题的关键.根据线段之间的和差关系依次进行判断即可得出正确答案.【详解】解:A .∵ ,,∴,故A 选项不符合题意;B .∵ ,,∴,故B 符合题意;C .∵ ,,∴,故C 选项不符合题意;D .∵,,∴ , 故D 选项不符合题意.故选:B .7.D【分析】本题考查的是列代数式,代数式的值,设阴影十字框中间的数为x ,得到其余个数的代数式,把这个数相加,可得和为,再逐一分析各选项中的数即可.【详解】设阴影十字框中间的数为x ,x 为正整数,则十字框中的五个数的和:10n a ⨯1||10a ≤<n 71.310⨯AD CD AC -=AB BC AC +=AD CD AB BC -=+AC BC AB -=AC BD AB BC BD +=++AC BC AC BD ≠+-AC BC AB -=AD BD AB -=AC BC AD BD -=-AD AC CD -=BD BC CD -=AD AC BD BC -=-455x线段最短,经测量可得:24.见解析.【分析】根据已知条件和角平分线的性质据此逐项填空即可.【详解】解:因为OD 是∠AOC 的平分线,所以∠COD=∠AOC .(角平分线定义)AE AE 12(2)解:①如图1所示,,,10AB = 15BC AB ==是的角平分线,(2)解:①当在②当在内部时,BOC AOC AOB ∴∠=∠+∠=OD BOC ∠1502BOD BOC ∴∠=∠=︒OC ∠OC AOB ∠BOC ∠综上所述,或24.28.(1)(2)C 对应的数为:或或或(3),8α=2C 719-17-53∴,当时,3CB CA =3CB CA =。
2023-2024学年度第一学期七年级期末调研考试数 学 试 卷亲爱的同学,在答题前,请认真阅读下面的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,三大题,24小题,全卷共6页,考试时间120分钟,满分120分.2. 试卷选择题及非选择题答案均写在答题卡上,写在试卷上无效.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效.1.数轴上表示的点在原点的左侧,距离原点( )个单位长度.(A )0(B )1(C )2(D )32.下列立体图形,其中圆柱体是( ).(A ) (B ) (C ) (D )3.下列计算正确的是( ).(A ) (B ) (C )(D )4.如图,学校A 在小红家B 南偏西25°的方向上,点C 表示超市所在的位置,∠ABC =90°,则超市C 在小红家B 的( ).(A )南偏东65°的方向上 (B )南偏东55°的方向上(C )北偏东65°的方向上 (D )北偏东55°的方向上5.若是关于x 的一元一次方程,则k 的值不可能是( ).(A )(B )0 (C )2 (D )6.如图,OB 平分∠AOC ,下列结论错误的是( ).3-532a a -=-32a a a -+=232a a a -=235a b ab+=()210k x -+=1-2-D东(A )∠AOB =∠BOC (B )∠COD +∠AOC =∠BOD (C )∠AOD -∠BOC =∠BOD (D )∠BOC +∠AOD =2∠BOD 7.下列变形正确的是( ).(A )若,则 (B )若,则(C )若,则(D )若,则8.我国古代数学著作《增删算法统宗》中记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿子的长为尺,依题意可列方程为( ).(A ) (B ) (C )(D )9.如图,点C ,D 在线段上AB ,O 为AB 上方一点,∠OAB =90°,连接OC ,OD ,OB ,下列结论:①图中互余的角有3对;②图中共有线段10条;③图中共有8个锐角;④若AC =CD =5,BD =3,P 为线段AB 上一点,则点P 到点A,C ,D ,B 的距离之和最小为18.其中正确的说法有( ).(A )①②④(B )③④ (C )①②③ (D )①③④10.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.(A )12(B )14(C )15(D )1612a b =11a b -=+12a b +-=3a b =+a b =22a c b c -=-a b =11a b c c =--x ()15252x x +=-()1552x x +=-1552x x +=-()1552x x -=+(第9题)OD C BA第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.冬季某一天的温差是3℃,这天最低气温是-2℃,最高气温是℃.12.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是.13.已知m ,n 为正整数,若多项式合并同类项后只有两项,则的值为.14.数轴上点A 表示的数为,点B ,C 表示的数分别为,,若点B 为线段AC的中点,则的值为.15.如图,P的边BC 上一点,将∠ABP ,∠DCP 分别沿AP ,DP 向上折叠,点B 落在点处,点C 恰好落在AD 边上的处,.下列说法:①∠BPD=135°;②;③若平分,则;④若,则.其中一定正确的结论有(填序号即可).16.从如图1(边长为a )的正方形纸片上剪去两个相同的小长方形,得到如图2的图案(横向、纵向的宽度均为b ),再将剪下的两个小长方形拼成一个新长方形(如图3),若,则图3中新长方形的周长为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)计算:(1); (2).232123m n a b a b a b --+m n +1-35m -1m +m B 'C 'B PD α'∠=22.52APC α'∠=︒+PC 'APB '∠15α=︒108APD B PC ''∠+∠=︒9α=︒23a b -=902832'︒-︒()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭(第15题)P C /B /DBCA18.(本题8分)解方程:(1);(2).19.(本题8分)先化简,再求值.已知,其中,,.20.(本题8分)根据图中的信息解答下面的问题(单位:cm ).(1)放入一个大球水面升高_____cm ,放入一个小球水面升高_____cm ;(2)若放入大球、小球共8个后水面高度为27 cm ,大球、小球各放入多少个?21.(本题8分)对于有理数a ,b 满足,我们称使等式成立的一对有理数a ,b为“相伴有理数对”,记为(a ,b ).如(,2)满足:;(2,)满足:;所以数对(,2),(2,)都是“相伴有理数对”.(1)数对(,1),(1,0)中,是“相伴有理数对”是________;(2)若(,3)是“相伴有理数对”,求x 的值;(3)若(,)是“相伴有理数对”,则的值为 .的312x x -=+121132x x +--=()()22222322a b ab a b ab a b ab ⎡⎤-+---⎣⎦1a =2b =-1a b ab -=+3-32321--=-⨯+131122133-=⨯+3-131-21x -m n ()1372n mn mn m n ⎡⎤-+-+⎣⎦的3放入体积相同的22.(本题10分)某校组织趣味数学知识竞赛,共设20道选择题,各题分值相同.下表记录了4位参赛者的答题及得分情况.参赛者答题总数答对题数答错题数总得分A 20200100B 2019193C 1714364D1311251(1)从上表可以看出:答对1题得 分,答错1题得 分,未作答1题得 分;(2)参赛者E 完成18道答题得69分,他答对了多少道题?(3)参赛者F 得了67分,请直接写出他答对题;答错题;未作答题.23.(本题10分)如图,已知∠COD =∠AOB=,射线OM 平分∠COD ,ON 平分∠AOD .(1)如图1,若OC 与OB 重合,,请补全图形并直接写出∠MON 的度数为 °;(2)如图2,若∠MON=55°,求∠AOC 的度数;(3)若,将∠COD 从图1的位置以每秒5°的速度绕点O 逆时针方向旋转一周,经过秒能使∠MON=45°(直接写出结果).12α20α=︒25α=︒图1ODB (C )A图2NBM AODC备用图ABO24.(本题12分)数轴上A ,B 三个点表示的数分别是a ,b ,且满足,动点P 从点A 出发,以每秒3个单位长度的速度向右移动秒.(1)直接写出a = ,b = ;(2)如图1,若M 为PA 的中点,N 为PB 的中点,试判断在P 点运动的过程中,线段MN的长度是否发生变化,请说明理由;(3)对于数轴上的点P ,Q ,给出如下定义:记点P 到点A 的距离为m ,点Q 到P的距离为n ,如果,那么称点Q 是点P 的“关联点”.①若m =1,直接写出点P 的“关联点”Q 在数轴上对应的数为 ;②若,试求的值.数学参考答案一、选择题:题号12345678910答案DCBACDCBAD二、填空题:11.1; 12.; 13.6或4; 14.2;15.①②③④;16.12.(说明:13题对一空2分,15题1~2个正确都给1分,3个正确2分)第10题提示:①若所有作业展示成一排,则:……1,最多11张作业;()2620a b ++-=t 2n m -==2BQ BP t 3-()252211-÷=图1备用图②若所有作业展示成两排,则:……1,最多张作业;③若所有作业展示成三排,则:……1,最多张作业;④若所有作业展示成四排,则:……1,最多张作业; ⑤若所有作业展示成五排,则:……1,最多张作业…… 故最多可展示16张作业.第15题提示:依题意,∠BPC=45°,即∠BPD=135°;②因为,,所以;③依题意,,则;④由,又∠BPC=45°,,即∠BPC++45°=108°,所以.第16题提示:新长方形长为:,宽为:,因为,所以新长方形长为:.三、解答题:17.(1)原式=, ……3分= ;……4分(2)原式, ……6分……7分. ……8分18.(1),……3分解得; ……4分(2)去分母,得 ……6分()25337-÷=7214⨯=()25445-÷=5315⨯=()25554-÷=4416⨯=()25663-÷=3515⨯=B PD α'∠=()113567.522APB B PD α'∠=︒-∠=︒-22.52APC α'∠=︒+22.5452APC B PC αα'''∠=∠=︒+=︒-15α=︒108APD B PC ''∠+∠=︒67.5APB α∠=︒-67.52APB α∠=︒-9α=︒a b -3a b -23a b -=()()23424312a b a b a b -+-=-=⨯=89602832''︒-︒6128'︒()111723=--⨯⨯-716=-+16=23x =32x =22636x x +-+=……7分解得 . ……8分19.化简得,……3分=, ……5分=……6分……8分20.(1)2.5,1.5; ……4分(2)设放入大球个,依题意列方程,, ……6分解得;8-5=5. 答:放入大球3个,小球5个.……8分21.(1)(1,0);……3分(2)依题意列方程得,……5分解得; ……6分(3). ……8分22.(1)5,,0;……3分(2)依题意,设参赛者E 答对了道题,依题意列方程得:,……5分解得,,……6分答:设参赛者E 答对了15道题;……7分(3)15,4,1. ……10分23.(1)20°;(正确画图1分)……4分(2)∵OM 平分∠COD ,ON 平分∠AOD ,∠COD =∠AOB=,41x -=14x =-222223222a b ab a b ab a b ab ⎡⎤-+--+⎣⎦2222a b ab a b ⎡⎤-+⎣⎦22ab -()22128-⨯⨯-=-x ()2.5 1.582712x x +-=-3x =()2133211x x --=-+12x =-12-2-x ()521869x x ⨯--=15x =12α∴∠COM =∠DOM =,∠AON =∠DON , ……5分又∠MON=55°,∴∠CON =∠MON -∠COM =, ……6分∴∠AON =∠DON =,……7分∴∠AOC =∠AON+∠CON=+=;……8分(3)8或44……10分依题意∠AON =∠DON ,∠COM =∠DOM =,又∠MON=45°,①如图1,∠CON =∠MON -∠COM =32.5°,∴∠AON =∠DON =45°+12.5°=57.5°,∴∠BON =57.5°-50°=7.5°,∴旋转过的角度∠BOC =∠BON+∠CON =32.5°+7.5°=40°,(秒);②如图2,∴∠AON =∠DON=∠MON -∠DOM =45°-12.5°=32.5°,∴∠BOC =∠COD+∠DON +∠AON+∠AOB =140°,∴旋转过的角度为:360°-140°=220°,(秒).24.(1),2;……2分(2)依题意,AB=8,AP=3t ,,∵M 为PA 的中点,N 为PB 的中点,2α552α︒-552α︒+552α︒+552α︒-110︒12.5︒4058÷=220544÷=6-()23683BP t t =--=-DOM CNBA图1COA BNMD图2,,①如图1,当点P 在AB 之间时,,; ……4分②如图2,当点P 在AB 延长线上时,,;综上所述,线段MN 的长度保持不变. ……6分(说明:学生用绝对值方程分类讨论相应给分)(3)①或;……8分②依题意,,点P 表示的数为,又,即点Q 到P 的距离为,Ⅰ当点Q 在P 的左侧时,点Q 表示的数为; ……9分,,由得,,解得或; ……10分Ⅱ当点Q 在P 的右侧时,点Q 表示的数为;……11分,,由得,, 解得;1322t MP AM AP ===118322PN BN BP t ===-83BP t =-()3183422t MN MP BN t =+=+-=38BP t =-()3138422t MN MP NP t =-=--=2-8-3m t =36t -2n m -=232n m t =+=+()36328t t --+=-10BQ =()23683BP t t =--=-=2BQ BP 28310t -=1t =133t =()363264t t t -++=-()26466BQ t t =--=-()23683BP t t =--=-=2BQ BP 66283t t -=-116t =图1图2七年级数学试卷第11页 (共6页)综上所述,、或. ……12分1t =133t =116t =。
七年级第一学期试卷
2008学年第一学期徐汇区初一年级数学学科
期终学习能力诊断卷
2009.1
一、填空题(本大题共16题,每题2分,满分32分) 1.计算:=32)(b a . 2.计算:y x 22·()
z y 23-= . 3.计算:3
256n m n m ÷= .
4.计算:(
)53663ax x a -÷()
33ax -= .
5.“5·12汶川大地震”发生后,中央电视台于2008年5月18日举办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是 元. 6.分解因式:=-+652
a a . 7.分解因式:y xy y x ++22
= . 8.已知10n
=3,10m
=4,则m
n +10
的值为 .
9.从整式π、2、3+a 、3-a 中,任选两个构造一个..分式 . 10.如果分式()()1
21---x x x 的值为零,那么
x 的值为 .
11.将代数式
1
2372--c b a 表示成只含有正整数指数幂的形式为________.
12.分式方程3-x x +1=3
3
-x 解的情况是 .
13.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5
个,则第n 幅图中共有 个.
14
.如图 ,用四个长、宽分别为
a 、
b 的相同长方形纸片拼成一个“带孔”正方形,利用
…
…
图(1) 图(2) 图(3) 图(n )
学校_______________________ 班级__________ 学号_________ 姓名______________
……………………密○………………………………………封○………………………………………○线………………………………………………
C '
A '
面积的不同表示方法,写出一个代数恒等式____ _____.
15.如图,将直角三角尺ABC (其中∠ABC=60°)绕点B 顺时针旋转一个角度到A 1BC 1 的位置,使得点A 、B 、C 1在同一条直线上,那么这个转动的角度等于 .
16. 为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→ 明文(解密).已知加密规则为:明文a ,b ,c 对应的密文1-a ,12+b ,23-c .如果对方收到的密文为2,9,13,那么解密后得到的明文为 .
二、单项选择题(本大题共4题,每题3分,满分12分)
17.小马虎在下面的计算中只做对..
了一道题,他做对的题目是( ) (A ) 3
2-·()0
2-=0
(B ) ()3
3
22y x -=6x 6y 9
(C ) ()n m +3·()m n 3+-=9m 2
-n 2
(D ) 32
()()a a a
-÷-=-
18.下列图形中,中心对称图形是( )
19.如果将分式y
x y x ++22中的x 和y 都扩大到.
原来的3倍,那么分式的值( ) (A )扩大到原来的3倍; (B )扩大到原来的9倍; (C )缩小到原来的
3
1
; (D )不变. 20. 在俄罗斯方块游戏中,所有出现的方格体自由下落,如果一行中九个方格齐全,那么这一行会自动消失。
已拼好的图案如图所示,现又出现一小方格体,必须进行以下哪项操作,才能拼成一个完整图案,使其自动消失( )
第15题图
第14题图
(A ) (B ) (C ) (D )
(A )顺时针旋转90°,向下平移;
(B )逆时针旋转90°,向下平移; (C )顺时针旋转90°,向右平移; (D )逆时针旋转90°,向右平移.
三、计算题(本大题共4题,每题5分,满分20分) 21.())2(1)2
1(2
-+-+x x x
22. x y x y x 2)31(3)(222÷⎥⎦
⎤
⎢⎣⎡-
+-
23.(
)()1
1
1
1
----+÷-y
x
y
x
24. 2111224
x x x -⎛
⎫+÷
⎪--⎝⎭
四、在有理数范围内分解因式(本大题共2题,每题6分,满分12分) 25.36132
4
-+-a a 26.xy y x 84412
2+--
五、画图题(本题满分6分)
27.如图是某设计师设计的图案的一部分,请你帮他完成余下的工作: (1)画出四边形OACB 关于直线l 的轴对称图形OA 1C 1B 1;
(2)将四边形OACB 绕点O 顺.时针..
旋转
120,画出旋转后的图形OA 2C 2B 2。
六、(本大题共2题,每题6
28.2008价格是1月份猪肉价格的的猪肉少0.4斤,求2008年
29.如图,已知等腰直角∆ACB 的边AC=BC=a ,等腰直角∆BED 的边BE=DE=b , 且b a <,点C 、B 、E 在一条直线上,联结AD . (1)求ABD ∆的面积;
(2)如果点P 是线段CE 的中点,联结AP 、DP 得到APD ∆,求APD ∆的面积.
(以上结果先用含a 、b 代数式表示,后化简)
七、(本题共2题,第⑴小题4分,第⑵小题2分,满分6分)
30.正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分。
(1)请把图①、图②补成既是..轴对称图形,又是..中心对称图形,并画出..
一条对称轴; B
a b
b
(2)把图③补成只是..中心对称图形,并把中心标上..字母P .
图
①
图③。