考点集训18三角形与全等三角形
- 格式:doc
- 大小:296.00 KB
- 文档页数:5
清单02 全等三角形(8个考点梳理+题型解读+核心素养提升+中考聚焦)【知识导图】【知识清单】考点一.全等图形(1)全等形的概念能够完全重合的两个图形叫做全等形.(2)全等三角形能够完全重合的两个三角形叫做全等三角形.(3)三角形全等的符号“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.(4)对应顶点、对应边、对应角把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.1.(2022秋•剑阁县期末)下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形2.(2022秋•东莞市期末)下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形考点二.全等三角形的性质(1)性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等说明:①全等三角形的对应边上的高、中线以及对应角的平分线相等②全等三角形的周长相等,面积相等③平移、翻折、旋转前后的图形全等(2)关于全等三角形的性质应注意①全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.②要正确区分对应边与对边,对应角与对角的概念,一般地:对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角.3.(2022秋•庄河市期末)如图,图中的两个三角形全等,则∠α等于()A.50°B.71°C.58°D.59°4.(2022秋•丹阳市校级期末)已知△ABC≌△DEF,AC=9cm,则DF=cm.考点三.全等三角形的判定(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.(2022秋•莘县期末)如图,BC=BD,那么添加下列选项中的一个条件后,仍无法判定△ABC≌△ABD 的是()A.AC=AD B.∠BAC=∠BAD C.∠ABC=∠ABD D.∠C=∠D=90°6.(2022秋•嘉鱼县期末)如图,点A、D在线段BC的两侧,且∠A=∠D=90°.试添加一个条件,使△ABC≌△DBC.并写出证明过程.7.(2023春•渠县校级期末)已知:如图,AC∥DF,点B为线段AC上一点,连接BF交DC于点H,过点A作AE∥BF分别交DC、DF于点G、点E,DG=CH,求证:△DFH≌△CAG.8.(2023春•鄠邑区期末)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.考点四.直角三角形全等的判定1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.9.(2022秋•衡山县期末)下列条件,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一个锐角和斜边对应相等C.两条直角边对应相等D.一条直角边和斜边对应相等10.(2022秋•磁县期末)如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充的条件是()A.AC=AD或BC=BD B.AC=AD且BC=BDC.∠BAC=∠BAD D.以上都不对11.(2022秋•鄞州区校级期末)如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.求证:△ADE≌△BEC.12.(2023春•怀化期末)如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,AE=CF.求证:∠ACB=90°.13.(2022秋•雄县校级期末)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.考点五.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.14.(2022秋•大田县期末)如图,正方形ABCD是一张边长为12cm的皮革.皮雕师傅想在此皮革两相邻的角落分别切下△PDQ与△PCR后得到一个五边形PQABR,其中P,Q,R三点分别在边CD,AD,BC 上,且PD=2DQ,PC=CR.(1)若DQ=x,将△PDQ的面积用含x的代数式表示;(2)五边形PQABR的面积是否存在最大值?若存在,请求出该最大值;若不存在,请说明理由.15.(2022秋•荣昌区期末)如图,AD是△ABC的中线,BE⊥AD,垂足为E,CF⊥AD,交AD的延长线于点F,G是DA延长线上一点,连接BG.(1)求证:BE=CF;(2)若BG=CA,求证:GA=2DE.16.(2022秋•宿城区校级期末)如图,△ABC和△ADE都是等腰三角形,BC、DE分别是这两个等腰三角形的底边,且∠BAC=∠DAE,求证:BD=CE.17.(2022秋•孝南区期末)如图,已知,点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=21,EC=9,求BC的长.考点六.全等三角形的应用(1)全等三角形的性质与判定综合应用用全等寻找下一个全等三角形的条件,全等的性质和判定往往是综合在一起应用的,这需要认真分析题目的已知和求证,分清问题中已知的线段和角与所证明的线段或角之间的联系.(2)作辅助线构造全等三角形常见的辅助线做法:①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.(3)全等三角形在实际问题中的应用一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.18.(2023春•长安区期末)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.19.(2022秋•永城市校级期末)如图,点B,F,C,E在直线l上(点F,C之间不能直接测量),点A,D 在l的异侧,AB∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10cm,BF=3cm,求FC的长.20.(2022秋•新化县期末)【问题背景】在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图1中线段BE、EF、FD之间的数量关系.【初步探索】小亮同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到BE、EF、FD之间的数量关系是.【探索延伸】在四边形ABCD中如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,∠EAF=∠BAD,上述结论是否仍然成立?说明理由.【结论运用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(∠EOF)为70°,试求此时两舰艇之间的距离.考点七.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE21.(2022秋•双流区期末)已知:如图,△ABC中,∠ACB=90°,AD⊥AB,BD平分∠ABC交AD于D 点.(1)求证:∠ADE=∠AED;(2)若AB=6,CE=2,求△ABE的面积.22.(2022秋•巩义市期末)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,过点D 作DE⊥AB,垂足为E,此时点E恰为AB的中点.(1)求∠CAD的大小;(2)若BC=9,求DE的长.考点八.作图—尺规作图的定义(1)尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度.23.(2022秋•长安区校级期末)如图,Rt△ABC中,∠C=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是()A.B.C.D.24.(2022秋•青秀区校级期末)如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是()A.SAS B.ASA C.AAS D.SSS【核心素养提升】逻辑推理——构建全等三角形进行证明1.(2022秋•香坊区期末)如图,等边△ABC中,CH⊥AB于点H,点D、E分别在边AB、BC上,连接DE,点F在CH上,连接EF,若DE=EF,∠DEF=60°,BE=2,CE=8,则DH=.2.(2022秋•江岸区期末)如图所示,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD且AC=5,将BC沿BA方向平移至AE,连接CE、DE,若以AC、BD和DE为边构成的三角形面积是,则DE =.3.(2022秋•葫芦岛期末)在平面直角坐标系xOy中,△ABC为等腰直角三角形,∠ACB=90°,点A(0,5),点C(﹣2,0),点B在第四象限.(1)如图1,求点B的坐标;(2)如图2,若AB交x轴于点D,BC交y轴于点M,N是BC上一点,且BN=CM,连接DN,求证CD+DN=AM;(3)如图3,若点A不动,点C在x轴的负半轴上运动时,分别以AC,OC为直角边在第二、第三象限作等腰直角△ACE与等腰直角△OCF,其中∠ACE=∠OCF=90°,连接EF交x轴于P点,问当点C 在x轴的负半轴上移动时,CP的长度是否变化?若变化,请说明理由,若不变化,请求出其长度.【中考热点聚焦】热点1.三角形全等的判定1.(2023•衢州)已知:如图,在△ABC和△DEF中,B,E,C,F在同一条直线上.下面四个条件:①AB=DE;②AC=DF;③BE=CF;④∠ABC=∠DEF.(1)请选择其中的三个条件,使得△ABC≌△DEF(写出一种情况即可).(2)在(1)的条件下,求证:△ABC≌△DEF.2.(2023•云南)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.热点2.三角形全等的判定和性质的综合应用3.(2023•苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.4.(2023•营口)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AB的两侧,且AE=BF,∠A=∠B,∠ACE=∠BDF.(1)求证:△ACE≌△BDF;(2)若AB=8,AC=2,求CD的长.5.(2023•南通)如图,点D,E分别在AB,AC上,∠ADC=∠AEB=90°,BE,CD相交于点O,OB=OC.求证:∠1=∠2.小虎同学的证明过程如下:证明:∵∠ADC=∠AEB=90°,∴∠DOB+∠B=∠EOC+∠C=90°.∵∠DOB=∠EOC,∴∠B=∠C.……第一步又OA=OA,OB=OC,∴△ABO≌△ACO.……第二步∴∠1=∠2.……第三步(1)小虎同学的证明过程中,第步出现错误;(2)请写出正确的证明过程.6.(2023•陕西)如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB.7.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.8.(2023•聊城)如图,在四边形ABCD中,点E是边BC上一点,且BE=CD,∠B=∠AED=∠C.(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4时,求△AED的面积.热点3.三角形全等的实际应用9.(2022•扬州)如图,小明家仿古家具的一块三角形状的玻璃坏了,需要重新配一块.小明通过给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC 10.(2022•百色)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD,其中AB=CD=2米,AD=BC=3米,∠B=30°.(1)求证:△ABC≌△CDA;(2)求草坪造型的面积.热点4.角的平分线的性质11.(2023•广州)如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,AE=12,DF=5,则点E到直线AD的距离为.12.(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=.。
全等三角形考点归纳与训练命题点1 全等三角形的判定与性质类型一平移型1.(2021•重庆)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD 2.(2022•湖北)如图,已知AB∥DE,AB=DE,请你添加一个条件,使△ABC≌△DEF.3.(2022•乐山)如图,B是线段AC的中点,AD∥BE,BD∥CE.求证:△ABD ≌△BCE.类型二轴对称型4.(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是()A.SSS B.SAS C.AAS D.HL 5.(2020•永州)如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是()A.SAS B.AAS C.SSS D.ASA 6.(2020•甘孜州)如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是()A.AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC 7.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.8.(2022•广州)如图,点D,E在△ABC的边BC上,∠B=∠C,BD=CE,求证:△ABD≌△ACE.9.(2020•柳州)如图,已知OC平分∠MON,点A、B分别在射线OM,ON上,且OA=OB.求证:△AOC≌△BOC.类型三旋转型考向1 共顶点旋转10.(2021•哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°11.(2021•齐齐哈尔)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是.(只需写出一个条件即可)12.(2022•宁夏)如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是.(只写一个)13.(2022•牡丹江)如图,CA=CD,∠ACD=∠BCE,请添加一个条件,使△ABC≌△DEC.14.(2021•宜宾)如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.考向2 不共顶点旋转1.(2021•台湾)已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AC上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?()A.EF=EC,AE=FC B.EF=EC,AE≠FCC.EF≠EC,AE=FC D.EF≠EC,AE≠FC类型四三垂直型16.(2022•益阳)如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.17.(2022•铜仁市)如图,点C在BD上,AB⊥BD,ED⊥BD,AC⊥CE,AB =CD.求证:△ABC≌△CDE.其他类型18.(2021•陕西)如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.19.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连接AE,当BC=5,AC=12时,求AE的长.命题点2 全等三角形的实际应用20.(2021•盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别截取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB 的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS 21.(2021•柳州)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?请结合解题过程,完成本题的证明.证明:在△DEC和△ABC中,,∴△DEC≌△ABC(SAS),∴.。
中考数学《全等三角形》《相似三角形》《三角形》考点分析及专题训练三角形1、三角形的基本概念(1)三角形的概念由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
(2)三角形的分类①按边之间的关系分:三边都不相等的三角形叫做不等边三角形;有两边相等的三角形叫做等腰三角形;三边都相等的三角形叫做等边三角形。
②按角分类:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。
(3)三角形的三边之间的关系三角形两边的和大于第三边,三角形两边的差小于第三边。
(4)三角形的高、中线、角平分线(5)三角形的稳定性(6)三角形的角①三角形的内角和等于180°。
推论:直角三角形的两个锐角互余。
有两个角互余的三角形是直角三角形。
②三角形的外角定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
内外角的关系:三角形的外角等于与它不相邻的两个内角的和。
三角形的外角和等于360°。
2、特殊三角形(1)等腰三角形①等腰三角形的性质等腰三角形的两个底角相等(等边对等角);等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一)。
②等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
(2)等边三角形①等边三角形的性质等边三角形的三个内角都相等,并且每一个内角都等于60°。
②等边三角形的判定三个角都相等的三角形是等边三角形; 有一个角是60°的等腰三角形是等边三角形。
(3)直角三角形①在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
②勾股定理:如果直角三角形的两条直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2。
③勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。
全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。
全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。
如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。
二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。
2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。
3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。
4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。
5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。
三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。
如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。
四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。
2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。
3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。
4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。
5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。
全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。
全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。
动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。
将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。
初一数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差<第三边<两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度。
证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等三、多边形及其内角和1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。
3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角和:n边形内角和等于(n-2)*1808、多边形的外角和:360度注:有些题,利用外角和,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n-3条对角线,n边形共有对角线23)-n(n条。
三角形基础全等三角形讲义一、三角形的定义与基本元素三角形是由不在同一条直线上的三条线段首尾顺次相接所组成的图形。
这三条线段就是三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形有三条边、三个内角和三个顶点。
边可以用小写字母 a、b、c 表示,角可以用大写字母 A、B、C 表示。
例如,边 a 所对的角就是角 A。
三角形按照边的关系可以分为等边三角形(三条边都相等)、等腰三角形(至少有两条边相等)和不等边三角形(三条边都不相等);按照角的大小可以分为锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)和钝角三角形(有一个角是钝角)。
二、三角形的内角和三角形的内角和是 180°。
这是三角形的一个重要性质,可以通过多种方法来证明。
比如,我们可以将三角形的三个角剪下来,拼在一起,会发现正好组成一个平角,也就是 180°。
又或者,我们作三角形一条边的平行线,利用平行线的性质,也能证明三角形的内角和是 180°。
这个性质在解决很多与三角形内角有关的问题中非常有用。
三、三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的每个顶点处都有两个外角,它们是对顶角,所以三角形共有六个外角。
三角形的一个外角等于与它不相邻的两个内角的和。
例如,在三角形 ABC 中,外角∠ACD 等于∠A +∠B。
三角形的一个外角大于任何一个与它不相邻的内角。
四、三角形的三边关系三角形的任意两边之和大于第三边,任意两边之差小于第三边。
这个关系可以通过实际操作来理解。
比如,我们用三根长度分别为3cm、4cm、5cm 的小棒来摆三角形,能摆成一个三角形;但是如果用1cm、2cm、4cm 的小棒,就无法摆成三角形。
在判断三条线段能否组成三角形时,只需要判断两条较短的线段之和是否大于最长的线段即可。
五、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
三角形与全等三角形-中考复习三角形与全等三角形——中考复习同学们,咱们今天要来好好聊聊三角形和全等三角形这个中考的重点啦!先来说说三角形。
三角形啊,就像是我们生活中的一个个小团体。
比如说,咱班的学习小组,每个小组就像一个三角形,有三个“角”,也就是三个成员,大家相互支持,共同进步。
三角形有很多特性,像内角和是 180 度,这可是个铁打的规律!我记得有一次,我在路上看到一个工人师傅用三角架支撑重物,那三角架稳稳当当的,就是因为三角形具有稳定性。
这稳定性在生活中用处可大了,像自行车的车架、屋顶的钢梁,都是利用了三角形的这个特点。
再说说三角形的三边关系,两边之和大于第三边,两边之差小于第三边。
这就好比三个人赛跑,跑得最快的两个人加起来的速度肯定比跑得最慢的那个人快,不然怎么能超过他呢?接下来就是全等三角形啦!全等三角形就像是双胞胎,长得一模一样。
全等三角形的判定条件,那可得牢记在心。
SSS(边边边)、SAS (边角边)、ASA(角边角)、AAS(角角边)、HL(斜边、直角边),这几个判定条件就像是打开全等三角形大门的钥匙。
给大家讲个事儿,有一次我去买蛋糕,那个蛋糕是个三角形的。
我就想,如果能再做一个和它全等的三角形蛋糕,那是不是能分给更多的人吃呢?哈哈,这虽然有点贪吃的想法,但也说明了全等三角形在生活中的影子无处不在。
在做中考复习的时候,大家一定要多做练习题。
比如说,给你两个三角形的一些边和角的条件,让你判断它们是不是全等,这时候就要灵活运用我们学过的判定条件啦。
还有证明题,一步一步写清楚推理过程,可别马虎。
总之,三角形和全等三角形虽然看着简单,但里面的学问可不少。
大家要认真复习,把每个知识点都掌握好,这样在中考的时候才能信心满满,取得好成绩!加油吧,同学们!。
初二全等三角形所有知识点总结和常考题知识点:1. 基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形•⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2. 基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3. 全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4. 角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上5. 证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.常考题:.选择题(共14小题)1 •使两个直角三角形全等的条件是()A. —个锐角对应相等B.两个锐角对应相等C•一条边对应相等D.两条边对应相等2 .如图,已知AE=CF / AFD=Z CEB那么添加下列一个条件后,仍无法判定△D. AD// BC3•如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA4•到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点5. 如图,△ ACB^A A CBV BCB =30°则/ACA的度数为()A. 20°B. 30°C. 35°D. 40°6 .如图,直线11、12、13表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A. 1处B. 2处C. 3处D. 4处7 .如图,AD是厶ABC中/BAC的角平分线,DE± AB于点E, S SBC=7, DE=2AB=4,贝U AC 长是()8 .如图,在△ ABC和厶DEC中,已知AB=DE还需添加两个条件才能使△ ABC ◎△DEC不能添加的一组条件是()A. BC=EC Z B=Z EB. BC=EC AC=DCC. BC=DC / A=Z DD.Z B=Z E,10. 要测量河两岸相对的两点 A ,B 的距离,先在AB 的垂线BF 上取两点C ,D , 使CD=BC 再定出BF 的垂线DE,使A ,C, E 在一条直线上(如图所示),可以 说明△ EDC^A ABC,得ED=AB 因此测得 ED 的长就是 AB 的长,判定△ EDC^ △ ABC 最恰当的理由是()A .边角边B .角边角 C.边边边 D .边边角 11. 如图,△ ABC 的三边AB, BC, CA 长分别是20, 30, 40,其三条角平分线将 12. 尺规作图作/ AOB 的平分线方法如下:以 O 为圆心,任意长为半径画弧交 OA , OB 于C,D ,再分别以点C, D 为圆心,以大于丄CD 长为半径画弧,两弧交 于点P ,作射线OP 由作法得厶OCF ^A ODP 的根据是( )9. 如图,已知在△ ABC 中,CD 是AB 边上的高线, BC=5 DE=2则厶BCE 的面积等于( )BE 平分/ 4 D. 3: 4: 55D . 4S A BCO : S A CAO 等△ ABC 分为三个三角形,则S A ABO : A . 1: 1: 1 B. 1: 2: 3 C. 2: 3:B.有两边对应相等,且有一角为30°勺两个等腰三角形全等C•有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等14.如图,已知/ 仁/2, AC=AD,增加下列条件:① AB=AE②BC=ED③/ C= / D;④/ B=Z E.其中能使厶ABC^A AED的条件有()2个D. 1个二.填空题(共11小题)15.如图,在△ ABC中,/ C=90°, AD平分/ CAB BC=8cm, BD=5cm,那么点D 到线段AB的距离是_________ cm.AD平分/ BAQ AB=5, CD=2,则厶ABD的面积17. 如图为6个边长等的正方形的组合图形,则/ 1+Z 2+Z 3= _____18. 如图,△ ABC^A DEF请根据图中提供的信息,写出19. _________________________________________ 如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带__________________________________________ 去玻璃店.20. ____________________________________________________________ 如图,已知AB// CF, E为DF的中点,若AB=9cm, CF=5cm J则BD= _______ cm.21 •在数学活动课上,小明提出这样一个问题:/ B=Z C=90°, E是BC的中点, DE平分/ ADC, / CED=35,如图,则/ EAB是多少度?大家一起热烈地讨论交流,/ B=100o,/ BAC=30,那么/ AED= 度.小英第一个得出正确答案,是___________ 度.23.如图所示,将两根钢条AA,BB'的中点O连在一起,使A A', BB可以绕着点O 自由转动,就做成了一个测量工具,则A的长等于内槽宽AB,那么判定△ OAB^A OA的理由是______________________ .24.如图,在四边形ABCD中, / A=90°, AD=4,连接BD, BD丄CD, / ADB=Z C.若P是BC边上一动点,则DP长的最小值为____ .三•解答题(共15小题)26.已知:如图,C 为BE 上一点,点A , D 分别在BE 两侧,AB// ED, AB=CEC=90°, CA=CB 点 M 在线段 AB 上,/ GMB 二 / A , BGcm .若 MH=8cm ,贝U BG=第11页(共36页)29. 如图,C是AB 的中点,AD=BE CD=CE 求证:/ A=Z B.30. 已知:如图,在梯形ABCD中,AD// BC, BC=DC CF平分/ BCD DF// AB, BF的延长线交DC于点E.求证:(BFC^A DFQ(2) AD=DE31. 如图,已知,EC=AC Z BCE W DCA / A=Z E 求证:BC=DC32. 如图,把一个直角三角形ACB(/ACB=90)绕着顶点B顺时针旋转60°使得点C 旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE 上的点,BF=BG延长CF与DG交于点H.(1)求证:CF=DG(2)求出/ FHG的度数.33. 已知,如图,△ ABC和厶ECD都是等腰直角三角形,/ ACB=Z DCE=90,D 为AB边上一点.求证:BD=AE第13页(共36页)ABCDE的边BC CD上的点,且BM=CN, AM交BN于点P.(1) 求证:△ ABM^A BCN;(2) 求/ APN的度数.ABCD中,E 点在AD 上,其中/ BAE=/ BCE W ACD=90,且BC=CE求证:△ ABC与厶DEC全等.36. 如图,△ ABC和厶ADE都是等腰三角形,且/ BAC=90, / DAE=90, B, C, D 在同一条直线上.求证:BD=CE37. 我们把两组邻边相等的四边形叫做筝形”如图,四边形ABCD是一个筝形, 其中AB=CB AD=CD对角线AC, BD相交于点O, 0E丄AB, 0F丄CB,垂足分别是E, F.求证OE=OF第14页(共36页)D38. 如图,在△ ABC 中,/ ACB=90, CE L AB于点E, AD=AG AF 平分/ CAB 交CE于点F, DF的延长线交AC于点G.求证:(1) DF// BC; (2) FG=FE39. 如图:在厶ABC中,BE CF分别是AC AB两边上的高,在BE上截取BD=AC 在CF的延长线上截取CG=AB连接AD、AG.(1)求证:AD=AG(2)AD与AG的位置关系如何,请说明理由.40. 如图,已知△ ABC中,AB=AC=10cm BC=8cm 点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△ BPD与厶CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△ BPD与厶CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ ABC三边运动,求经过多长时间点P与点Q第一次在厶ABC 的哪条边上相遇?初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一•选择题(共14小题)1. (2013?西宁)使两个直角三角形全等的条件是()A、—个锐角对应相等B.两个锐角对应相等C•一条边对应相等D.两条边对应相等【分析】利用全等三角形的判定来确定. 做题时,要结合已知条件与三角形全等的判定方法逐个验证.【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确.故选:D.【点评】本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA SAS AAS SSS HL,可以发现至少得有一组对应边相等,才有可能全等.2. (2013?安顺)如图,已知AE=CF / AFD=Z CEB那么添加下列一个条件后,仍无法判定△ ADF^A CBE的是()A __________ ?A. Z A=Z CB. AD=CBC. BE=DFD. AD// BC【分析】求出AF=CE再根据全等三角形的判定定理判断即可.【解答】解::AE=CF••• AE+EF=C+EF,••• AF=CEA、t在厶ADF和厶CBE中|fZA=ZCIZAFD=ZCEB•••△ADF^A CBE(ASA,正确,故本选项错误;B、根据AD=CB AF=CE / AFD=Z CEB不能推出厶ADF^A CBE错误,故本选项正确;C、・.•在△ ADF和厶CBE中AF=CE[DF=BE•••△ ADF^A CBE( SAS ,正确,故本选项错误;D、t AD// BC,•••/ A=Z C,•••在△ ADF和厶CBE中|fZA=ZC{ACEHZAFD=ZCEB•••△ ADF^A CBE(ASA ,正确,故本选项错误;故选B.【点评】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ASA AAS SSS3. (2014秋?江津区期末)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.4. (2007?中山)至9三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:•••角的平分线上的点到角的两边的距离相等,•••到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为c.5. (2011?呼伦贝尔)如图,△ACB^A A C, BCB =30则/ACA的度数为()【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:•••△ ACB^A A CB•••/ ACB=/ A CB即/ ACA+Z A CB=B' CHB/ A CB•••/ ACA = B ' C,BD. 40又Z B' CB=30 •••Z ACA =30°故选:B.【点评】本题考查了全等三角形的判定及全等三角形性质的应用,利用全等三角形的性质求解.6. (2000?安徽)如图,直线11、12、13表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A. 1处B. 2处C. 3处D. 4处【分析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点. 把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处. 故选:D .【点评】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.7. (2014?遂宁)如图,AD是厶ABC中/ BAC的角平分线,DE± AB于点E, S A ABC=7, DE=2 AB=4,贝U AC长是()A. 3B. 4C. 6D. 5【分析】过点D作DF丄AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF再根据S A ABC=S ABC+&ACD列出方程求解即可.【解答】解:如图,过点D作DF丄AC于F,••• AD是厶ABC中/ BAC的角平分线,DE丄AB,••• DE=DF由图可知,S ABC=S ABD+S ACD,.•.J-X 4X 2「X ACX 2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.8. (2013?铁岭)如图,在△ ABC和厶DEC中,已知AB=DE还需添加两个条件才能使△ ABC^A DEC不能添加的一组条件是()A、BC=EC Z B=Z EB. BC=EC AC=DC C. BC=DC / A=Z D D.Z B=Z E, / A=Z D 【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:A、已知AB=DE再加上条件BC=EC / B=Z E可利用SAS证明△ABC^A DEC故此选项不合题意;B、已知AB=DE再加上条件BC=EC AC=DC可利用SSS证明厶ABC^A DEC 故此选项不合题意;C、已知AB=DE再加上条件BC=DC / A=Z D不能证明厶ABC^A DEC故此选项符合题意;D、已知AB=DE再加上条件/ B=Z E , / A=Z D可利用ASA证明△ ABC^A DEC 故此选项不合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL注意:AAA SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9. (2015?湖州)如图,已知在厶ABC中,CD是AB边上的高线,BE平分/ ABC 交CD于点E, BC=5 DE=2则厶BCE的面积等于()B CA. 10B. 7C. 5D. 4【分析】作EF丄BC于F,根据角平分线的性质求得EF=DE=2然后根据三角形面积公式求得即可.【解答】解:作EF丄BC于F,••• BE平分/ ABC ED丄AB,EF丄BC••• EF=DE=2S^BCE^^BC?EF= X 5 X 2=5,故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.10. (1998?南京)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C, D,使CD=BC再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△ EDC^A ABC,得ED=AB因此测得ED的长就是AB的长,判定△ EDC^AABC最恰当的理由是(A.边角边B.角边角C.边边边D.边边角【分析】由已知可以得到/ ABCN BDE又CD=BC / ACB W DCE由此根据角边角即可判定△ EDC^A ABC.【解答】解::BF丄AB, DE± BD•••/ ABC2 BDE又••• CD=BC Z ACBN DCE•••△ EDC^A ABC (ASA)故选B.【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.11. (2017?石家庄模拟)如图,△ ABC的三边AB, BC, CA长分别是20, 30, 40,其三条角平分线将△ ABC分为三个三角形,则& ABO:S BCO:S CAO等于【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20, 30, 40,所以面积之比就是2: 3: 4.【解答】解:禾I」用同高不同底的三角形的面积之比就是底之比可知选C.故选C.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面3 C. 2: 3:4 D. 3: 4: 5积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.12. (2009?鸡西)尺规作图作/ AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA, OB于C, D,再分别以点C, D为圆心,以大于二CD长为半径画弧,两弧交于点P,作射线OP由作法得厶OCF^A ODP的根据是()【分析】认真阅读作法,从角平分线的作法得出厶0。
中考考点突破之三角形与全等三角形考点精讲1.理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性。
2.探索并证明三角形的内角和定理。
掌握它的推论:三角形的外角等于与它不相邻的两个内角的和。
证明三角形的任意两边之和大于第三边。
3.了解三角形重心的概念考点解读考点1:与三角形有关的边①三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.②角平分线:(1)角平线上的点到角两边的距离相等(2)三角形的三条角平分线的相交于一点(内心)③中线:(1)将三角形的面积等分(2)直角三角形斜边上的中线等于斜边的一半④高:锐角三角形的三条高相交于三角形内部;直角三角形的三条高相交于直角顶点;钝角三角形的三条高相交于三角形的外部考点2:与三角形有关的角(1)内角和定理:①三角形的内角和等180°;②推论:直角三角形的两锐角互余.(2)外角的性质:①三角形的一个外角等于与它不相邻的两个内角和.②三角形的任意一个外角大于任何和它不相邻的内角.考点3:全等三角形①全等三角形的性质:(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等.(3)全等三角形的周长等、面积等.②三角形全等的判定角角全(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用SAS ,ASA 和AAS .考点突破1.(2021春•宛城区期末)下列关于三角形的分类,正确的是( )A .B .C .D .2.(2021秋•濮阳期末)如图,在△BCD 中,CD 边上的高是( )A .BDB .ADC .AFD .CD3.(2021秋•河口区期末)如图所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,S △ABC =4平方厘米,则S △BEF 的值为( )A.2平方厘米B.1平方厘米C.平方厘米D.平方厘米4.(2021秋•天津期末)人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性5.(2020秋•永嘉县校级期末)三角形的重心是三角形三条()的交点.A.中线B.高C.角平分线D.垂直平分线6.(2021秋•铜官区期末)已知a,b,c是三角形的三边,那么代数式a2﹣2ab+b2﹣c2的值()A.大于零B.等于零C.小于零D.不能确定7.(2021秋•长垣市期末)如图,在△ABC中,∠BAC=80°,∠ABC=60°.若BF是△ABC 的高,与角平分线AE相交于点O,则∠EOF的度数为()A.130°B.70°C.110°D.100°8.(2021秋•滑县期末)将一副三角板按如图所示放置,则∠BFD的度数为()A.105°B.95°C.85°D.75°9.(2021•河南模拟)在3×3的正方形方格中,∠1和∠2的位置和大小分别如图所示,则∠1+∠2=()A.30°B.45°C.60°D.75°10.(2021秋•武陟县月考)图中以AB为边的三角形共有个.11.(2021秋•涧西区校级期中)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多2,AB+AC=8,则AC的长为.12.(2021•吉林四模)如图,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG,若S△ABC=12,则S△ABG为.13.(2021秋•公安县期末)空调外机安装在墙壁上时,一般都会像如图所示的方法固定在墙壁上,这种方法是利用了三角形的.14.(2020秋•新安县期末)如图,在△ABC中,∠C=90°,G是△ABC的重心,AB=8,则GC的长是.15.(2021春•卧龙区期末)如图,AD,AE,AF分别是△ABC的高线,角平分线和中线,(1)下列结论:①BF=AF,②∠BAE=∠CAE,③S△ABF=S△ABC,④∠C与∠CAD互余,其中错误的是(只填序号).(2)若∠C=62°,∠B=30°,求∠DAE的度数.16.(2021春•新蔡县期末)如图,△ABC正好可以放在长方形内,要测出△ABC的面积,现有一把刻度尺,你能做到吗?说出你是怎样做的.17.(2021秋•内乡县期末)教材呈现:华师版九年级上册数学教材第78页的部分内容.例2:如图,在△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于点G,求证:.证明:连结ED.结论应用:如图②,在正方形ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F,过点F作FG⊥BC,垂足为点G,则BG:BC=.。
考点集训18三角形与全等三角形
一、选择题
1.(2014·毕节)下列叙述正确的是( C )
A.方差越大,说明数据就越稳定
B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变
C.不在同一直线上的三点确定一个圆
D.两边及其一边的对角对应相等的两个三角形全等
2.(2014·云南)如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( A )
A.85°B.80°C.75°D.70°
,第2题图),第3题图)
3.(2014·益阳)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( A )
A.AE=CF B.BE=FD
C.BF=DE D.∠1=∠2
4.(2012·嘉兴)已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( A ) A.40°B.60°C.80°D.90°
5.(2014·遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( A )
A.3 B.4 C.6 D.5
6.(2014·泰州)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( D ) A.1,2,3 B.1,1, 2
C.1,1, 3 D.1,2, 3
二、填空题
7.(2014·绥化)如图,AC,BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是__AB=CD__.(填出一个即可)
,第7题图),第9题图)
8.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中为真命题的是__①②④__.(填写所有真命题的序号)
9.如图,三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为__60°__.
10.如图,△ABC 中,AB =AC =13 cm ,AB 的垂直平分线交AB 于D ,交AC 于E ,若△EBC 的周长为21 cm ,则BC =__8__cm.
,第10题图) ,第12题图)
11.在△ABC 中,若AB =BC ≠AC ,则与△ABC 只有一条公共边,且与△ABC 全等的三角形一共有__7__个.
12.(2014·绵阳)如图,在正方形ABCD 中,E ,F 分别是边BC ,CD 上的点,∠EAF =45°,△ECF 的周长为4,则正方形ABCD 的边长为__2__.
三、解答题 13.(2014·云南)如图,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD =BC ,∠DAB =∠CBA ,求证:AC =BD.
在△ADB 和△BCA 中,⎩⎨⎧
AD =BC ,
∠DAB =∠CBA ,AB =BA ,
∴△ADB ≌△BCA (SAS ),∴AC =BD
14.(2014·台湾)如图,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°,且BC =CE.请说明为何△ABC 与△DEC 全等的理由.
∵∠BCE =∠ACD =90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD 中,∠ACD =90°,∴∠2+∠D =90°,∵∠BAE =∠1+∠2=90°,∴∠1=∠D ,在△ABC 和△DEC
中,⎩⎨⎧∠1=∠D ,
∠3=∠5,BC =CE ,
∴△ABC ≌△DEC (AAS )
15.(2014·内江)如图,点M ,N 分别是正五边形ABCDE 的边BC ,CD 上的点,且BM =CN ,AM 交BN 于点P.
(1)求证:△ABM ≌△BCN ; (2)求∠APN 的度数.
(1)∵正五边形ABCDE ,∴AB =BC ,∠ABM =∠C.∵在△ABM 和△BCN 中,
⎩⎨⎧
AB =BC ,
∠ABM =∠C ,BM =CN ,
∴△ABM ≌△BCN (SAS ) (2)∵△ABM ≌△BCN ,∴∠BAM =∠CBN ,
∴∠APN =∠BAM +∠ABP =∠CBN +∠ABP =∠ABC =(5-2)×180°
5=108°
16.(2014·德州)问题背景:
如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E ,F 分别是BC ,CD 上的点,且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系.
小王同学探究此问题的方法是延长FD 到点G ,使DG =BE.连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是__EF =BE +DF __;
探索延伸:
如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =1
2
∠BAD ,上述结论是否仍然成立?并说明理由;
实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度
前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
问题背景:EF =BE +DF ;探索延伸:EF =BE +DF 仍然成立.证明如下:延长FD 到G ,使DG =BE ,连结AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =
∠ADG ,在△ABE 和△ADG 中,⎩⎨⎧
DG =BE ,
∠B =∠ADG ,AB =AD ,
∴△ABE ≌△ADG (SAS ),∴AE =AG ,
∠BAE =∠DAG ,∵∠EAF =1
2
∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =
∠BAD -∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△AGF 中,⎩⎨⎧
AE =AG ,
∠EAF =∠GAF ,
AF =AF ,
∴△AEF ≌△AGF (SAS ),∴EF =FG ,
∵FG =DG +DF ,∴EF =BE +DF ;实际应用:如图,连结EF ,延长AE ,BF 相交于点C ,∵∠AOB =30°+90°+(90°-70°)=140°,∠EOF =70°,∴∠EAF =1
2∠AOB ,
又∵OA =OB ,∠OAC +∠OBC =(90°-30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF =AE +BF 成立,即EF =1.5×(60+80)=210,即此时两舰艇之间的距离是210海里。