全等三角形提高练习精选题及答案
- 格式:doc
- 大小:170.50 KB
- 文档页数:12
三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。
答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。
答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。
()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。
()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。
答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。
答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。
证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。
10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。
证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。
中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。
全等三角形提高32题(含答案)(一)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
C D B AB C D EF 21 AD B CAB ACDF2E7. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C8.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .9.如图,OM 平分∠POQ ,MA ⊥OP ,MB⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA10.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP于D .求证:AD +BC =AB .11.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. D C B A F E PED C B AD C B A13.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):14.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE . 15、如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
全等三角形提高练习精选27题及答案1•如图所示,△ ABC ^A ADE , BC 的延长线过点 E,/ ACB= / AED=105 / CAD=10 ° ,Z B=50。
,求/DEF 的度数。
2•如图,△ AOB 中,/ B=30。
,将A AOB 绕点O 顺时针旋转52。
,得到厶A'OB ', 边A 'B '与边OB 交于点C (A '不在OB 上),则/ A 'CO 的度数为多少?3•如图所示,在△ ABC 中,/ A=90 ° ,D 、E 分别是 AC 、 若厶ADB ◎△ EDB ^A EDC ,则/ C 的度数是多少?4•如图所示,把△ ABC 绕点C 顺时针旋转35°,得到△ A'B'C , A '' 交 AC 于点 D ,若/ A 'DC=90 °,^U/A= ____________6•如图,Rt A ABC 中,/ BAC=90 ° ,AB=AC ,分别过点 B C 作过点A 的垂线BC 、CE,垂足分另【J 为 D 、E , 若 BD=3 , CE=2,贝U DE= ____________7•如图,AD 是厶ABC 的角平分线,DE 丄AB , DF 丄AC ,垂足分别是 E 、F ,连接EF, 交AD 于G , AD 与EF 垂直吗?证明你的结论。
AE G5•已知,如图所示, 则AD 是多AB=AC , AD 丄 BC 于 D ,且 AB+AC+BC=50cm,ABA'B'AO14. 如图所示,已知△ ABC 和厶BDE 都是等边三角形,下列结论:① AE=CD ;②BF=BG ; ③BH 平分/ AHD ; ④/ AHC=60 ° ;⑤厶BFG 是等边三角形; ⑥FG// AD , E其中正确的有()A . 3 个 B. 4 个 C. 5 个 D. 6 个C H8•如图所示,在△ ABC 中,AD 为/ BAC 的角平分线,2积是 28cm ,AB=20cm , AC=8cm ,求 DE 的长。
全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?DOE CB ANEBM A D【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.N C D EB M A F ED C BA O ED CB AN M CBA【例5】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.NM C BA C ED B A全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
全等三角形提高练习1. 如图所示,△AB C ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=100°,∠CAD=15°,∠B=50°,求∠DEF 的度数。
2. 如图所示,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB≌△EDB ≌△EDC ,则∠C 的度数是多少?3.已知,如图所示,AB=AC ,A D ⊥BC 于D ,且AB+AC+BC=60cm,而AB+BD+AD=45cm ,则AD 是多少?3. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=12,CE=5,则求DE 的值。
4. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,连接EF ,交AD 于G ,AD 与EF 垂直吗?证明你的结论。
5. 如图所示,在△ABC 中,AD 为∠BAC 的角平分线,D E ⊥AB 于E ,DF ⊥AC于F ,△ABC 的面积是32cm 2,AB=24cm ,AC=6cm ,求DE 的长。
6. 已知,如图:AB=AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF=∠DAF ,求证:CA BCFCD7. 如图,AD=BD ,A D ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点H ,则BH 与AC 相等吗?为什么?8. 如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC ,FD=CD ,求证:B E ⊥AC9. △DAC 、△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,求证:(1)AE=BD (2)CM=CN (3)△CMN 为等边三角形 (4)MN ∥BC10. 如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG求证:(1)AD=AG(2)AD 与AG 的位置关系如何BBAB12.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE求证:AF=AD-CF13.如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF14.已知如图:AB=DE ,直线AE 、BD 相交于C ,∠B+∠D=180°,AF ∥DE ,交BD 于F ,求证:CF=CD15.如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F是OC 上一点,连接DF 和EF ,求证:DF=EF16.已知:如图,BF ⊥AC 于点F ,CE ⊥AB 于点E ,且BD=CD , 求证:(1)△BDE ≌△CDF (2) 点D 在∠A 的平分线上。
中考数学复习《全等三角形》专题训练-附带有答案一、选择题1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.82.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB= 40°然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2则△PBC的面积为().A.0.4 cm2B.0.5 cm2C.0.6 cm2D.不能确定6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB垂足分别为A,B,下列结论中不一定成立是()A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP7.如图,△ABC中∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数()①BP平分∠ABC ②∠ABC+2∠APC=180°③∠CAB=2∠CPB④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个8.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A.6 B.3 C.2 D.1.5二、填空题9.如图BA=BE,∠1=∠2要使△ABD≌△EBC还需添加一个条件是.(只需写出一种情况)10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.11.如图,在Rt△ABC,∠C=90°,E是AB上一点,且BE=BC,DE⊥AB于点E,若AC=8,则AD+DE的值为.12.如图,在△ABC中AB=AC,BF=CD,BD=CE,∠FDE=70°那么∠A的大小等于度.13.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三、解答题14.如图,AD平分∠BAC,∠B=∠C.(1)求证:BD=CD;(2)若∠B=∠BDC=100°,求∠BAD的度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.16.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.18.如图,在△AOB和△COD中OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°连接AC、BD交于点M,连接OM.求证:(1)∠AMB=36°;(2)MO平分∠AMD.参考答案1.C2.C3.D4.B5.B6.D7.D8.D9.BD =BC 或∠A =∠E 或∠C =∠D (任填一组即可)10.411.812.4013.414.(1)证明:∵AD 平分∠BAC∴∠BAD =∠CAD .在△ABD 和△ACD 中{∠BAD =∠CAD ∠B =∠C AD =AD∴△ABD ≌△ACD(AAS)∴BD =CD .(2)解:由(1)得:△ABD ≌△ACD∴∠C =∠B =100°,∠BAD =∠CAD∵∠BAC +∠B +∠BDC +∠C =360°∴∠BAC =60°∴∠BAD =30°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )∴BC =DC ;(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:∵△ABD 、△AEC 都是等边三角形∴AD=AB ,AC=AE ,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°∵∠DAB=∠DAC+∠CAB ,∠CAE=∠BAE+∠CAB∴∠DAC=∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC ≌△BAE∴CD=BE(2)解:∵△DAC ≌△BAE∴∠ADC=∠ABE∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°18.(1)解:证明:∵∠AOB=∠COD=36°∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD 在△AOC和△BOD中{OA=OB ∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴∠OAC=∠OBD∵∠AEB是△AOE和△BME的外角∴∠AEB=∠AMB+∠OBD=∠AOB+∠OAC∴∠AMB=∠AOB=36°;(2)解:如图所示,作OG⊥AC于G,OH⊥BD于H∴OG是△AOC中AC边上的高,OH是△BOD中BD边上的高由(1)知:△AOC≌△BOD∴OG=OH∴点O在∠AMD的平分线上即MO平分∠AMD.。
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A 、两条直角边对应相等。
B 、斜边和一锐角对应相等。
C 、斜边和一条直角边对应相等。
D 、两锐角相等。
C. / CD. / B 或/ C3、下列各条件中,不能作岀唯一三角形的是( )A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ DEF 中,已知AB=DE / A =Z D;再加一个条件,却不能判断△ ABC WA DEF 全等的是(A. BC=EF B . AC=DFC.Z B=Z E D ./ C=Z F5、使两个直角三角形全等 的条件是A . —锐角对应相等 D.两条直角边对应相等6、在△ ABC ^A ABC 中有① ABA ' B ,② BC =B C ,③ AC=A C ,④/ A =Z A ,⑤/ B =Z B ,⑥/ C =Z C ,则下列各组条件中不能保证厶 AB9A ABC 的是 ()2、在△ ABC 中,/ B = Z 0与厶ABC 全等的三角形有一个角是100 °,那么在厶ABC 中与这100 °角对应相等的角是B.两锐角对应相等C . 一条边对应相等A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知/ 仁/2,欲得到△ ABD^A ACD 还须从下列条件中补选一个,错误的选法是8、如图,△ ABC^A ADE 若/ BAE =120°,/ BAt =40°,则/ BAC 的度数为9、如图,AE = AF , AB= AC EC 与 BF 交于点 O, / A = 600,/ B = 25°,则/ EOB 的度数为()10、 如图,已知 AB= DC AD= BC,在 DB 上两点且 BF = DE,若/ AEB= 12°°, / ADB= 3°°,则/ BCF= ( )D. 90应相等,以上条件能判断两个三角形全等的是 ( )A 、/ ADB=/ ADCB 、/ B=/C C 、DB=DCD 、 AB=ACA. 40B. 8 0 D.不能确定A . 60°B . 70° C. 75° D. 85°A. 150 11、①两角及一边对应相等②两边及其夹角对应相等 ③两边及一边所对的角对应相等 ④两角及其夹边对A .①③B •②④C •②③④D •①②④B •两边和一角对应相等C .两角及其一角的对边对应相等D •两角和它们的夹边对应相等13、如图,已知…二八二,二归七=4■.二厂,下列条件中不能判定/ 「上工幻/ f 「的是( )15、如图,△ ABC 中,AD 丄BC 于D, BE 丄AC 于E ,AD 与BE 相交于点F ,若BF = AC,则/ ABC 的度数是 _____________________16、在厶 ABC 和△」-'-•中,/ A=44°,Z B=67°,/ -=69 °,/丄=44 °,且 AC='则这两个三角形 ___________________ 全等(填“一定”或“不一定”)17、如图,止,L',丄-在同一直线上,-匚|',若要使一-,则还需要补充个条件: _________________ 或 ______________A .三条边对应相等 (C)--V(B)二二i =-—(D )匚If II -14、如图,AB 与 CD 交于点 O, 0¥OC OD= OB, / A=50°,Z B= 30° ,则/D 的度数为( ).r第上题A . 50B . 30°C . 80°D .10018、(只需填写一个你认为适合的条件)如图,已知/ CABN DBA 要使△ AB3A BAD,需增加的一个条件F21、如图,△ ABD △ ACE都是正三角形,BE和CD交于0点,则/ BOC= ________________ :22、已知:如图,/ ABC=Z DEF,,AB= DE 要说明△ ABC^A DEF,(1)若以“ SAS'为依据,还须添加的一个条件为 _____________________(2)若以“ ASA'为依据,还须添加的一个条件为 _____________________(3)若以“ AAS'为依据,还须添加的一个条件为 _____________________23、如图4,如果AB= AC, ______________________ ,即可判定△ ABD^A AC吕A24、如图2, Z仁/2,由AAS判定△ ABD^A ACD,则需添加的条件是__________________25、如图,已知 / ACBM BDA 只要再添加一个条件: ________________ ,就能使△ ACB^A BDA (填一个即可)26、已知,如图 2:Z ABCK DEF, AB=DE 要说明△ ABC^A DEF⑴ 若以“ SAS'为依据,还要添加的条件为 ___________________(2) 若以“ ASA ”为依据,还要添加的条件为 __________________27、如图9所示,BC=EC /仁/ 2,要使△ ABC^A DEC 则应添加的一个条件为 ________________________________ [答案不唯一,只需填一个]。
全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。
4. SAS全等条件指的是_________。
三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。
()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。
()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。
8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。
若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。
五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。
10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。
答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。
8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。
全等三角形提高练习精选27题及答案1.如图所示,△AB C ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°, ∠CAD=10°,∠B=50°,求∠DEF 的度数。
2.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A ′OB ′,边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO 的度数为多少?3.如图所示,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点, 若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是多少?4.如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′B ′ 交AC 于点D ,若∠A ′DC=90°,则∠A=5.已知,如图所示,AB=AC ,A D ⊥BC 于D ,且AB+AC+BC=50cm,而AB+BD+AD=40cm ,则AD 是多少?6.如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=3,CE=2,则DE=7.如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,连接EF ,交AD 于G ,AD 与EF 垂直吗?证明你的结论。
AB'CAB8.如图所示,在△ABC 中,AD 为∠BAC 的角平分线,D E ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。
9.已知,如图:AB=AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF=∠DAF ,求证:AF ⊥CD10.如图,AD=BD ,A D ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点H ,则BH 与AC 相等吗? 为什么?11.如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD且有BF=AC ,FD=CD ,求证:B E ⊥AC12.△DAC 、△EBC 均是等边三角形,AF 、BD 分别与CD 、CE 交于点M 、N , 求证:(1)AE=BD (2)CM=CN(3)△CMN 为等边三角形 (4)MN13.已知:如图1,点C 为线段AB 上一点,△ACM 、△CBN 都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F(1) 求证:AN=BM (2)求证:△CEF 为等边三角形14.如图所示,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE=CD ; ②BF=BG ; ③BH 平分∠AHD ; ④∠AHC=60°; ⑤△BFG 是等边三角形; ⑥FG ∥AD , 其中正确的有( )A .3个 B. 4个 C. 5个 D. 6个C B B A A全等三角形提高练习精选27题及答案15.已知:BD 、CE 是△ABC 的高,点F 在BD 上,BF=AC ,点G 在CE延长线上,CG=AB ,求证:A G ⊥AF16.如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 求证:(1)AD=AG (2)AD 与AG 的位置关系如何17.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE 求证:AF=AD-CF18.如图所示,已知△ABC 中,AB=AC ,D 是CB 延长线上一点, ∠ADB=60°,E 是AD 上一点,且DE=DB ,求证:AC=BE+BC19.如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC , 求证:BE=CF20.已知如图:AB=DE ,直线AE 、BD 相交于C ,∠B+∠D=180°,AF ∥DE ,交BD 于F ,求证:CF=CD21.如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E , F 是OC 上一点,连接DF 和EF ,求证:DF=EFB B D B22.已知:如图,BF ⊥AC 于点F ,CE ⊥AB 于点E ,且BD=CD , 求证:(1)△BDE ≌△CDF (2) 点D 在∠A 的平分线上23.如图,已知AB ∥CD ,O 是∠ACD 与∠BAC 的平分线的交点,OE ⊥AC 于E , 且OE=2,则AB 与CD 之间的距离是多少? 24.如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于?25.正方形ABCD 中,AC 、BD 交于O ,∠EOF=90°,已知AE=3,CF=4, 则S △BEF 为多少?26.如图,在Rt △ABC 中,∠ACB=45°,∠BAC=90°,AB=AC ,点D 是AB 的中点,AF ⊥CD 于H ,交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE27.在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E (1)当直线MN 绕点C 旋转到图①的位置时,求证:DE=AD+BE (2)当直线MN 绕点C 旋转到图②的位置时,求证:DE=AD-BE(3)当直线MN 绕点C 旋转到图③的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系。
CBM 图1AA全等三角形提高练习答案1 解:∵△ABC≌△AED∴∠D=∠B=50°∵∠ACB=105°∴∠ACE=75°∵∠CAD=10°∠ACE=75°∴∠EFA=∠CAD+∠ACE=85°(三角形的一个外角等于和它不相邻的两个内角的和)同理可得∠DEF=∠EFA-∠D=85°-50°=35°2 根据旋转变换的性质可得∠B′=∠B,因为△AOB绕点O顺时针旋转52°,所以∠BOB′=52°,而∠A'CO是△B′OC的外角,所以∠A′CO=∠B′+∠BOB′,然后代入数据进行计算即可得解.解答:解:∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.3 全等三角形的性质;对顶角、邻补角;三角形内角和定理.分析:根据全等三角形的性质得出∠A=∠DEB=∠DEC,∠ADB=∠BDE=∠EDC,根据邻补角定义求出∠DEC、∠EDC的度数,根据三角形的内角和定理求出即可.解答:解:∵△ADB≌△EDB≌△EDC,∴∠A=∠DEB=∠DEC,∠ADB=∠BDE=∠EDC,∵∠DEB+∠DEC=180°,∠ADB+∠BDE+EDC=180°,∴∠DEC=90°,∠EDC=60°,∴∠C=180°-∠DEC-∠EDC,=180°-90°-60°=30°.4分析:根据旋转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,即可求出∠A的度数.解答:解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.点评:此题考查了旋转地性质;图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解题的关键是正确确定对应角.5因为AB=AC 三角形ABC是等腰三角形所以AB+AC+BC=2AB+BC=50BC=50-2AB=2(25-AB)又因为AD垂直于BC于D,所以BC=2BDBD=25-ABAB+BD+AD=AB+25-AB+AD=AD+25=40AD=40-25=15cm6 解:∵BD⊥DE,CE⊥DE∴∠D=∠E∵∠BAD+∠BAC+∠CAE=180°又∵∠BAC=90°,∴∠BAD+∠CAE=90°∵在Rt△ABD中,∠ABD+∠BAD=90°∴∠ABD=∠CAE∵在△ABD与△CAE中{∠ABD=∠CAE∠D=∠EAB=AC∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE∵DE=AD+AE∴DE=BD+CE∵BD=3,CE=2∴DE=57证明:∵AD是∠BAC的平分线∴∠EAD=∠FAD又∵DE⊥AB,DF⊥AC∴∠AED=∠AFD=90°边AD公共∴Rt△AED≌Rt△AFD(AAS)∴AE=AF即△AEF为等腰三角形而AD是等腰三角形AEF顶角的平分线∴AD⊥底边EF(等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)8 AD平分∠BAC,则∠EAD=∠FAD,∠EDA=∠DFA=90度,AD=AD所以△AED≌△AFDDE=DFS△ABC=S△AED+S△AFD28=1/2(AB*DE+AC*DF)=1/2(20*DE+8*DE)DE=29AB=AE,∠B=∠E,∠BAC=∠EAD则△ABC≌△AEDAC=AD△ACD是等腰三角形∠CAF=∠DAFAF平分∠CAD则AF⊥CD10 解:∵AD⊥BC∴∠ADB=∠ADC=90∴∠CAD+∠C=90∵BE⊥AC∴∠BEC=∠ADB=90∴∠CBE+∠C=90∴∠CAD=∠CBE∵AD=BD∴△BDH≌△ADC (ASA)∴BH=AC11 解:(1)证明:∵AD⊥BC(已知),∴∠BDA=∠ADC=90°(垂直定义),∴∠1+∠2=90°(直角三角形两锐角互余).在Rt△BDF和Rt△ADC中,∴Rt△BDF≌Rt△ADC(H.L).∴∠2=∠C(全等三角形的对应角相等).∵∠1+∠2=90°(已证),所以∠1+∠C=90°.∵∠1+∠C+∠BEC=180°(三角形内角和等于180°),∴∠BEC=90°.∴BE⊥AC(垂直定义);12 证明:(1)∵△DAC、△EBC均是等边三角形,∴AC=DC,EC=BC,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,AC=DC ∠ACE=∠DCB EC=BC∴△ACE≌△DCB(SAS).∴AE=BD(2)由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CDN.∵△DAC、△EBC均是等边三角形,∴AC=DC,∠ACM=∠BCE=60°.又点A、C、B在同一条直线上,∴∠DCE=180°-∠ACD-∠BCE=180°-60°-60°=60°,即∠DCN=60°.∴∠ACM=∠DCN.在△ACM和△DCN中,∠CAM=∠CDN AC=DC ∠ACM=∠DCN∴△ACM≌△DCN(ASA).∴CM=CN.(3)由(2)可知CM=CN,∠DCN=60°∴△CMN为等边三角形(4)由(3)知∠CMN=∠CNM=∠DCN=60°∴∠CMN+∠MCB=180°∴MN//BC13分析:(1)由等边三角形可得其对应线段相等,对应角相等,进而可由SAS得到△CAN≌△MCB,结论得证;(2)由(1)中的全等可得∠CAN=∠CMB,进而得出∠MCF=∠ACE,由ASA得出△CAE≌△CMF,即CE=CF,又ECF=60°,所以△CEF为等边三角形.解答:证明:(1)∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,在△CAN和△MCB中,AC=MC,∠ACN=∠MCB,NC=BC,∴△CAN≌△MCB(SAS),∴AN=BM.(2)∵△CAN≌△CMB,∴∠CAN=∠CMB,又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,∴∠MCF=∠ACE,在△CAE和△CMF中,∠CAE=∠CMF,CA=CM,∠ACE=∠MCF,∴△CAE≌△CMF(ASA),∴CE=CF,∴△CEF为等腰三角形,又∵∠ECF=60°,∴△CEF为等边三角形.点评:本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,能够掌握并熟练运用.14考点:等边三角形的性质;全等三角形的判定与性质;旋转的性质.分析:由题中条件可得△ABE≌△CBD,得出对应边、对应角相等,进而得出△BGD≌△BFE,△ABF≌△CGB,再由边角关系即可求解题中结论是否正确,进而可得出结论.解答:解:∵△ABC与△BDE为等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABE=∠CBD,即AB=BC,BD=BE,∠ABE=∠CBD∴△ABE≌△CBD,∴AE=CD,∠BDC=∠AEB,又∵∠DBG=∠FBE=60°,∴△BGD≌△BFE,∴BG=BF,∠BFG=∠BGF=60°,∴△BFG是等边三角形,∴FG∥AD,∵BF=BG,AB=BC,∠ABF=∠CBG=60°,∴△ABF≌△CGB,∴∠BAF=∠BCG,∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,∴∠AHC=60°,∵∠FHG+∠FBG=120°+60°=180°,∴B、G、H、F四点共圆,∵FB=GB,∴∠FHB=∠GHB,∴BH平分∠GHF,∴题中①②③④⑤⑥都正确.故选D.点评:本题主要考查了等边三角形的性质及全等三角形的判定及性质问题,能够熟练掌握.15考点:全等三角形的判定与性质.分析:仔细分析题意,若能证明△ABF≌△GCA,则可得AG=AF.在△ABF和△GCA中,有BF=AC、CG=AB这两组边相等,这两组边的夹角是∠ABD 和∠ACG,从已知条件中可推出∠ABD=∠ACG.在Rt△AGE中,∠G+∠GAE=90°,而∠G=∠BAF,则可得出∠GAF=90°,即AG⊥AF.解答:解:AG=AF,AG⊥AF.∵BD、CE分别是△ABC的边AC,AB上的高.∴∠ADB=∠AEC=90°∴∠ABD=90°-∠BAD,∠ACG=90°-∠DAB,∴∠ABD=∠ACG在△ABF和△GCA中BF=AC ∠ABD=∠ACG AB=CG .∴△ABF≌△GCA(SAS)∴AG=AF∠G=∠BAF又∠G+∠GAE=90度.∴∠BAF+∠GAE=90度.∴∠GAF=90°∴AG⊥AF.点评:本题考查了全等三角形的判定和性质;要求学生利用全等三角形的判定条件及等量关系灵活解题,考查学生对几何知识的理解和掌握,运用所学知识,培养学生逻辑推理能力,范围16 1、证明:∵BE⊥AC∴∠AEB=90∴∠ABE+∠BAC=90∵CF⊥AB∴∠AFC=∠AFG=90∴∠ACF+∠BAC=90,∠G+∠BAG=90∴∠ABE=∠ACF∵BD=AC,CG=AB∴△ABD≌△GCA (SAS)∴AG=AD2、AG⊥AD证明∵△ABD≌△GCA∴∠BAD=∠G∴∠GAD=∠BAD+∠BAG=∠G+∠BAG=90∴AG⊥AD17过E做EG⊥AF于G,连接EF∵ABCD是正方形∴∠D=∠C=90°AD=DC∵∠DAE=∠FAE,ED⊥AD,EG⊥AF∴DE=EGAD=AG∵E是DC的中点∴DE=EC=EG∵EF=EF∴Rt△EFG≌Rt△ECF∴GF=CF∴AF=AG+GF=AD+CF18因为:角EDB=60°DE=DB所以:△EDB是等边三角形,DE=DB=EB过A作BC的垂线交BC于F因为:△ABC是等腰三角形所以:BF=CF,2BF=BC又:角DAF=30°所以:AD=2DF又:DF=DB+BF所以:AD=2(DB+BF)=2DB+2BF=【2DB+BC】(AE+ED)=2DB+BC,其中ED=DB所以:AE=DB+BC,AE=BE+BC19补充:B是FD延长线上一点;ED=DF(角平分线到两边上的距离相等);BD=CD;角EDB=FDC(对顶角);则三角形EDB全等CDF;则BE=CF;或者补充:B在AE边上;ED=DF(角平分线到两边上的距离相等);则两直角三角形EDB全等CDF(HL)即BE=CF20解:∵AF//DE∴∠D=∠AFC∵∠B+∠D=180°,,∠AFC+∠AFB=180°∴∠B=∠AFB∴AB=AF=DE△AFC和△EDC中:∠B=∠AFB,∠ACF=∠ECD(对顶角),AF=DE∴△AFC≌△EDC∴CF=CD21 证明:∵点P在∠AOB的角平分线OC上,PE⊥OB,PD⊥AO,∴PD=PE,∠DOP=∠EOP,∠PDO=∠PEO=90°,∴∠DPF=∠EPF,在△DPF和△EPF中PD=PE∠DPF=∠EPFPF=PF (SAS),∴△DPF≌△EPF∴DF=EF.22 考点:全等三角形的判定与性质.专题:证明题.分析:(1)根据全等三角形的判定定理ASA证得△BED≌△CFD;(2)连接AD.利用(1)中的△BED≌△CFD,推知全等三角形的对应边ED=FD.因为角平分线上的点到角的两边的距离相等,所以点D在∠A的平分线上.解答:证明:(1)∵BF⊥AC,CE⊥AB,∠BDE=∠CDF(对顶角相等),∴∠B=∠C(等角的余角相等);在Rt△BED和Rt△CFD中,∠B=∠CBD=CD(已知)∠BDE=∠CDF,∴△BED≌△CFD(ASA);(2)连接AD.由(1)知,△BED≌△CFD,∴ED=FD(全等三角形的对应边相等),∴AD是∠EAF的角平分线,即点D在∠A的平分线上.点评:本题考查了全等三角形的判定与性质.常用的判定方法有:ASA,AAS,SAS,SSS,HL等,做题时需灵活运用.23考点:角平分线的性质.分析:要求二者的距离,首先要作出二者的距离,过点O作FG⊥AB,可以得到FG⊥CD,根据角平分线的性质可得,OE=OF=OG,即可求得AB与CD之间的距离.解答:解:过点O作FG⊥AB,∵AB∥CD,∴∠BFG+∠FGD=180°,∵∠BFG=90°,∴∠FGD=90°,∴FG⊥CD,∴FG就是AB与CD之间的距离.∵O为∠BAC,∠ACD平分线的交点,OE⊥AC交AC于E,∴OE=OF=OG(角平分线上的点,到角两边距离相等),∴AB与CD之间的距离等于2•OE=4.故答案为:4.点评:本题主要考查角平分线上的点到角两边的距离相等的性质,作出AB与CD之间的距离是正确解决本题的关键.24 如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5考点:角平分线的性质.专题:数形结合.分析:利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.解答:解:利用同高不同底的三角形的面积之比就是底之比可知选C.故选C.点评:本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.25解:正方形ABCD∵AB=BC,AO=BO=CO,∠ABC=∠AOB=∠COB=90,∠ABO=∠BCO=45∴∠BOF+∠COF=90∵∠EOF=90∴∠BOF+∠BOE=90∴∠COF=∠BOE∴△BOE≌△COF (ASA)∴BE=CF∵CF=4∴BE=4∵AE=3∴AB=AE+BE=3+4=7∴BF=BC-CF=7-4=3∴S△BEF=BE×BF/2=4×3/2=626考点:线段垂直平分线的性质;全等三角形的判定与性质.专题:证明题.分析:证明出△DBP≌△EBP,即可证明BC垂直且平分DE.解答:证明:在△ADC中,∠DAH+∠ADH=90°,∠ACH+∠ADH=90°,∴∠DAH=∠DCA,∵∠BAC=90°,BE∥AC,∴∠CAD=∠ABE=90°.又∵AB=CA,∴在△ABE与△CAD中,∠DAH=∠DCA∠CAD=∠ABEAB=AC∴△ABE≌△CAD(ASA),∴AD=BE,又∵AD=BD,∴BD=BE,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,故∠ABC=45°.∵BE∥AC,∴∠EBD=90°,∠EBF=90°-45°=45°,∴△DBP≌△EBP(SAS),∴DP=EP,即可得出BC垂直且平分DE.点评:此题关键在于转化为证明出△DBP≌△EBP.通过利用图中所给信息,证明出两三角形相似,而证明相似可以通过证明角相等和线段相等来实现.27 1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB,∴Rt△ADC≌Rt△CEB(AAS),∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE;(3)DE=BE-AD.证明的方法与(2)相同。