Majorana Spin-Flip Transition of Atom in Varying Magnetic Field(1932)
- 格式:pdf
- 大小:299.54 KB
- 文档页数:12
清华考博辅导:清华大学计算机科学与技术考博难度解析及经验分享根据教育部学位与研究生教育发展中心最新公布的第四轮学科评估结果可知,全国共有168所开设计算机科学与技术专业的大学参与了2017-2018计算机科学与技术专业大学排名,其中排名第一的是北京大学,排名第二的是清华大学,排名第三的是浙江大学。
作为清华大学实施国家“211工程”和“985工程”的重点学科,计算机科学与技术一级学科在历次全国学科评估中均名列第二。
下面是启道考博整理的关于清华大学计算机科学与技术考博相关内容。
一、专业介绍计算机科学与技术是研究计算机的设计与制造,并利用计算机进行有关的信息表示、收发、存储、处理、控制等的理论方法和技术的学科。
计算机专业涵盖计算机科学与技术、计算机软件工程、计算机信息工程等专业,主要培养具有良好的科学素养,系统地、较好地掌握计算机科学与技术,包括计算机硬件和软件组成原理、计算机操作系统、计算机网络基础、算法与数据结构等,计算机的基本知识和基本技能与方法,能在科研部门、教育、企业、事业、行政管理部门等单位从事计算机教学、科学研究和计算机科学与技术学科的应用。
清华大学计算机科学与技术专业在博士招生方面,划分为3个研究方向:081200计算机科学与技术研究方向:01信息安全;02机器智能;03金融科技;04网络科学;05计算生物学;06能源信息科学;07机器人;08理论计算机科学;09量子信息此专业实行申请考核制。
二、考试内容清华大学计算机科学与技术专业博士研究生招生为资格审查加综合考核形式,由笔试+面试构成。
其中,综合考核内容为:综合考核形式为面试:每位考生约30 分钟,满分100 分。
面试重点考查申请人在本学科攻读博士学位的基本素养、学术能力、学术志趣等。
三、时间安排1.博士生申请在每年的8-9月和11月。
2.直博生(包括夏令营拟录取的直博生)、硕博连读生及部分9月份招收普博生的院系8-9月申请,9月中下旬考试录取,见当年招生简章及目录、招生说明、直博直硕招生要求。
一维磁性原子链系统中的Majorana费米子态杨双波【摘要】对处于螺旋形磁场及横向均匀磁场的一维磁性原子链模型,在平均场近似下通过自洽地求解Bogoliubov-de-Genes方程我们计算了系统的能谱.我们发现在一定参数值的范围内能谱随螺旋形磁场振幅值演化呈现能量为零的Majorana 费米子态.我们计算了局域态密度发现对Majorana费米子其态密度的峰值出现在链的两端(或中点)位置.我们计算了波函数其空间分布,发现它与局域态密度的结果一致.%For a model of one dimensional magnetic atomic chain in both a helical magnetic field and a transverse uniform magnetic field,we calculate its energy spectrum by solving Bogoliubov-de-Genes equation selfconsistently in the mean field approximation. We find that for a certain parameter setting,energy spectrum evolving with amplitude of helical magnetic field,appears Majorana fermion eigenstates. We calculate local density of states,and find that the local density of states for Majorana fermion shows peaks at the both ends(or at middle)of the magnetic atomic chain. We calculate wave function,and its spatial distribution agrees with local density of states.【期刊名称】《南京师大学报(自然科学版)》【年(卷),期】2017(040)003【总页数】8页(P110-117)【关键词】Majorana费米子;磁性原子链;BdG方程;局域态密度【作者】杨双波【作者单位】南京师范大学物理科学与技术学院,江苏省大规模复杂系统数值模拟重点实验室,江苏南京210023【正文语种】中文【中图分类】O413.1Majorana fermion[1] which is a particle of the same as its own antiparticle,has been attracting great attention. Firstly,because of Majorana fermion being connected with topological phase concept,secondly because of its topological character,it provides a platform of potential application in topological quantum computing and quantum storing[2-4]. So experimentally and theoretically search for physical system of Majorana fermion has been a very hot research topic. The purpose of all these researches is to generate a topological superconductor,so that the Majorana fermion appears as a single excitation at the boundary. Recently,Majorana fermion has been studied for a model of an atomic chain in a helical magnetic field in close proximity to a s-wave superconductor[5-7],and the result shows that at a certain parameter setting,the Majorana fermion is localized at the both end of the magnetic atomic chain. This is a spatially uniform system,after a gauge transformation,the Hamiltonian of the system will become an invariant form for space displacement. In this paper we modified this system by adding a new Zeeman term in the original Hamiltonian,which correspondsto a uniform magnetic field h perpendicular to the atomic chain being applied to the original system. Because of the new Zeeman term,the system is nonuniform spatially,we will study the structure of the Majorana fermion for the system of h≠0.In this paper,we get the system eigenenergies and eigenvectors by numerically solving BdG equation,and then we study the birth and the localization in space of the Majorana fermion by calculating the spatially resolved local density of states and wave function. The structure of the paper is as the following,the Model and theory is in section 1,the result of numerical calculation and discussion is in section 2,the summary of the paper is in section 3.Consider a N-atom atomic chain in a helical magnetic filed or magnetic structure. The magnetic filed at site n is =B0(cosnθ+sinnθ),where θ is the angle made by the magnetic fields at the adjacent sites of the atomic chain,the whole atomic chain is in proximity to the surface of a s-wave superconductor,and in the transverse direction of the atomic chain a uniform magnetic field h is applied. The Hamiltonian of this magnetic atomic chain in mean field approximation is given byH=tx(cn+1α+h.c.)-μcnα+(cnβ+Δ(n)(+h.c.)+h(σz)ααcnα,where tx is the jumping amplitude for electron between two adjacent sites,μ is chemical potential,Δ(n)is the superconductor pairing potential or order parameter at sit n,h is the weak uniform magnetic field for tuning system energy spectrum. or cnα is the operator to creat or annihilate an electron of spin α respectively at site n, is pauli matrix vec tor,and h.c. standfor complex conjugate. By introducing Nambu spinor representationψi=(ci↑,ci↓,,-)T,then Hamiltonian(1)can be written as BdG form,i.e.H=Hijψj,where Hij is the BdG Hamiltonian at site i,which can be written as where Kij=tx(δi+1,j+δi-1,j)-μδij,γij=(h-B0cosiθ)δij. This is a 4N×4N matrix,whose energy eigenvalue εn and eigenfunctionψn(i)=(un(↑,i),un(↓,i),vn(↓,i),vn(↑,i))T, for i=1,2,…,N,is determined by eigenvalue equationand boundary condition. In mean field approximation the order parameter at site i takes the form[8]and the mean number of electron at site i iswhere fn=1/(1+eεn/kBT) is the Fermi distribution,T is temperature in Kelvin. The total number of electron isincluding spin up and spin down electrons. To determine eigenenergy,eigenfunction,order parameter,we need to selfconsistently solve eigenvalue equation(3)with(4)-(6). In this paper,we deal with the case of temperature T=0,then the order parameter and the mean number of electron in site i are given bySpecial case:h=0 and Δ(i)=Δ0,a constant. The Hamiltonian in(1)can be transformed into spatially unform form by a gauge transformation. The topologically nontrivial region of the parameter set is given bywhere Majorana fermion corresponds to εn=0. As |h|≠0,Hamiltonian in(1)is nonuniform in space,and the nontrivial region of parameter set can not be obtained analytically.In this paper we deal with open boundary condition with and without themiddle magnetic domain wall,and at the magnetic domain wall we replace θ by -θ. We have also studied under the periodic boundary condition,and found the result has no significant changes.We first study the character of the Majorana fermion as the order parameter Δ and chemical potential μ are constants,then we study the influence of nonuniform Δ(i)on the result of Majorana fermion by doing selfconsistent calculation. In calculation,we choose the number of site N for the atomic chain according to the angle θ,so that the magnetic field at the both ends of the atomic chain points to the same direction.2.1 Energy Spectrum and Wave FunctionsFor a one-dimensional magnetic atomic chain with magnetic domain wall in the middle,the parameter set is chosen asΔ0=1.0,tx=1.0,μ=2.5,h=0.1,θ=π/2,and length of the chain is chosen asN=81 sites. For every value of B0 in the interval[1.0,4.0],we diagonalize the 4N×4N BdG Hamiltonian matrix(2),we get 4N energy eigenvalues and 4N eigenvectors. In open boundary condition,the energy spectrum is shown in Fig.1. For B0 in the interval[1.486 6,3.996 8],we can see that thereexists eigenstates whose eigenenergy εn=0,and these eigenstates are Majorana fermions. The interval for the existense of Majorana fermion in the case of h=0.1 is very close to the interval[1.476,4.039]calculatedfrom(9)for the h=0 case. For Majorana fer mion at B0=2.1,εn=0,shown in red dot in Fig.1,we calculate its wave functionun(↑,i),un(↓,i),vn(↑,i),vn(↓,i),the result is shown in Fig.2(a-d). We can see that the amplitude of the wave function concentrates on the both ends and themiddle of the atomic chain. In Fig.3,we show wave function for the same magnetic atomic chain without magnetic domain wall in the middle,the amplitude of the wave function concentrates on both ends of the magnetic atomic chain. This is similar to the previous result for the 1-dimensional magnetic atomic chain without uniform magnetic field,h=0.2.2 Local Density of States and Total Density of StatesIn this subsection,we study the space distribution of density ofstates(DOS),which is called local density of states(LDOS)and is defined as ρ(ε,i)is a function of energy and space position,and the total density of states(TDOS)can be written as,i.e.,the arithmetic mean of local density of states,a function of energy only. In numerical calculation,we replace δ by a Lorentz function. Fo r parameter setting h=0.1,tx=1.0,Δ=1.0,μ=2.5,θ=π/2,N=81,and B0=2.1,the local density of states for a Majorana fermion and the mean number of electrons on each site are shown in Fig.4(a-d)for the magnetic atomic chain with magnetic domain wall in the middle. Fig.4(a)shows the local density of states ρ(ε,i)in a 3D-plot;Fig.4(b)shows the local density of states ρ(ε,i)in a 2D contour plot;Fig.4(c)shows the local density of states for Majorana fermion ρ(ε=0,i);Fig.4(d)shows the mean number of electron on each si te of atomic chain<n(i)>. We can see from the Fig.4 that the Majorana fermion is localized at two ends and middle for the magnetic atomic chain with magnetic domain wall in the middle. The mean number of electrons on each site of the atomic chain is around 1.5. In Fig.5(a-d)we show theresult for the same magnetic atomic chain without magnetic domain wall in the middle,then we see density of states for Majorana fermion is peaked only at both ends of the magnetic atomic chain.2.3 The Self-consistent ResultAs the order parameter Δ(i)is space position i dependent,we calculate the energy spectrum and local density of states by selfconsistently solving the eigenvalue equation(3)with equations(7)and(8). For parameter seth=0.1,tx=1.0,μ=2.5,U0=4.0,θ=π/2,N=81,the selfconsistently calculated energy spectrum is shown in Fig.6,the Majorana fermion region can be seen,is still there,but the interval is shorten. The local density of states and mean numbers of electron on each site for Majorana fermion at B0=1.57 are shown in Fig.7(a-d)and Fig.9(a-d). By comparison with Fig.4(a-d),we find the main characters are same,but peak position for selfconsistent result moved inside a little bit. We calculate the selfconsistent wave function for Majorana fermion,and the results are shown in Fig.8(a-d)and Fig.10(a-d). The amplitude is significiently large at both ends for magnetic atomic chain without magnetic domain wall,and significiently large at both ends and middle for a magnetic chain with magnetic domain wall in the middle. This agrees with the result of local density of states.In mean field approximation,and by numerically solving Bogoliubov-de-Genes(BdG)equation,this paper studies the birth,and the localization in space of the Majorana fermion in a one dimensional atomic chain in helical magnetic field,and a uniform magnetic field h which is perpendicular to the atomic chain. Studies find that at a certain parameter setting,theevolution of the energy spectrum with helical magnetic field amplitude B0 appears the zero energy eigenstates,which corresponding to the Majorana fermion. We calculate the local density of states,and find that the local density of states for the Majorana fermion has two peaks on the both end of the magnetic atomic chain. When a magnetic domain wall is applied at the middle of the maqgnetic atomic chain,the Majorana fermion shows peaks at both ends and the middle of the magnetic chain. As the order parameter is a function of space coordinate,we do selfconsistent calculation,and find that by comparing with the result of nonselfconsistent calculation,the energy spectrum and the shape of the local density of states are changed a little bit,but the main character does not change. [1] MAJORANA E. Symmetric theory of electron and positrons[J]. Nuovo Cimento,1937,14(1):171-181.[2] WILCZEK F. Majorana returns[J]. Nat Phys,2009,5(9):614-618.[3] NAYAK C,SIMON S H,STERN A,et al. Non-Abelian anyons and topological quantum computation[J]. Rev Mod Phys,2008,80(3):1 083-1 159.[4] ALICEA J. New directions in the persuit of Majorana fermions in solid state system[J]. Rep Prog Phys,2012,75(7):076501-1-36.[5] NADJ-PERGE S,DROZDOV I K,BERNEVIG B A,et al. Proposal for realizing Majorana fermions in chain of magnetic atoms on a superconductor [J]. Phys Rev B,2013,88(2):020407-1-5(R).[6] PÖYHÖNEN K,WESTSTRÖM A,RÖNTYNEN J,et al. Majorana state in helical shiba chain and ladders[J]. Phys Rev B,2014,89(11):115109-1-7.[7] VAZIFEH M M,FRANZ M. Self-organized topological state with Majorana fermions[J]. Phys Rev Lett,2013,111(20):206802-1-5.[8] SACRAMENTO P D,DUGAEV V K,VIEIRA V R. Magnetic impurities in a superconductors:effect of domainwall and interference[J]. Phys RevB,2007,76(1):014512-1-21.[9] EBISU H,YADA K,KASAI H,et al. Odd frequency pairing in topological superconductivity in a one dimensional magnetic chain[J]. Phys RevB,2015,91(5):054518-1-15.【相关文献】Received data:2016-11-17.Corresponding author:Yang Shuangbo,professor,majored in nonlinear physics and low dimensionalsystem.E-mail:*********************.cndoi:10.3969/j.issn.1001-4616.2017.03.016CLC number:O413.1 Document codeA Article ID1001-4616(2017)03-0110-08。
冷原子系统中的量子相变摘要:随着实验技术的飞速发展,超冷原子物理已成为当前科学研究的一个热点,冷原子系统的实现技术和冷原子系统中各种的量子相变受到了广泛的关注。
本文详细介绍了冷原子系统的发展,冷原子系统常见的三种冷却方式(激光冷却,磁囚禁和蒸发冷却),并分别以Ising模型和Bose-Hubbard模型为例说明了自旋系统和玻色系统中常见的量子相变。
关键词:超冷原子量子相变Ising模型Bose-Hubbard模型引言:超冷系统由于有许多优良的特性和丰富的物理现象而受到物理学家的特别关注。
自此以后,超冷原子的相关研究迅速发展,观察到一系列新的现象,如Ising模型和Bose-Hubbard模型中的各种量子相变。
量子相变是物质的量子相在绝对零度的一种相变,是一种与热相变截然不同的,热相变是由于热扰动所造成的,而量子相变是由量子扰动造成的。
相比于经典相变,量子相变可以仅通过在绝对零度条件下改变一些物理参数来实现。
量子相变的发生代表着基态的性质随外部参数改变发生骤变。
而相变的行为具有普遍性,与相互作用的细节无关。
虽然绝对零度是不可能达到的,但是在实验上可以得到低温或极低温的相变,这样的实验给绝对零度的实验现象提供了可靠地参考。
1、超冷原子的冷却常温下的原子气体,运动速度非常快,随着温度的降低,原子速度随即降低。
在原子冷却技术发展以前,所有关于原子的研究都是基于高速原子的体系。
对于高速原子,所有的测量都很困难,同时也限制观测时间。
为了提高测量精度,降低原子的速度带来的不利影响,冷却原子成为了迫切的需要。
1.1 原子的激光冷却激光技术的发展为冷却和控制原子提供了新的途径,为实验的进行打下了坚实的基础。
图1 原子与激光相互作用的原理示意图一束激光和一束原子分别沿反方向运动时,如激光的频率可以与原子的跃迁频率相同而发生共振时,该原子将吸收光子,根据动量守恒原理,一个原子吸收一个光子后,其速度将减小/k m (k 是光子的动量, m 是原子的质量);吸收光子后的原子会发生自发辐射而放出新的光子,将辐射出的光子的动量记为si k ,假如原子不断的吸收和放出光子。
薛其坤清华大学物理系拓扑绝缘体:一种新的量子材料MBE Growth and STM/ARPES StudyOUTLINE 1.拓扑绝缘体简介Info highway for chips in the futureConductor Insulator材料的分类: 能带理论(固体物理的能带论)g=1g=2g=3g=0Valence BandConduction BandValence BandConduction BandSpin upSpin downK2“band twisting”Strong spin ‐orbitcouplingConductorInsulatorTopological InsulatorInsulating (bulk)conducting (surface)Spin-Orbital Coupling材料的分类(新): 拓扑能带理论g=1g=2g=3g=0E∝KpcE =Massless Dirac FermionsEffective speed of light v F ~ c /300.k xk yE gParadoxwithout mass ,,•psudo ‐spin•Klein Paradox •Linear n~E ,Linear σ~E ,Linear m~E •Localization ?•Universal σ?Spin=1/2+−狭义相对论预期了“自旋轨道耦合”Helical Spin StructureFermionsFour seasons in a dayOne night in a yearkEMomentum SpaceInfoin the future Spintronics?前沿科学研究量子反常霍尔效应/自旋霍尔效应磁单极Majorana 费米子分数量子统计(Anyon)拓扑磁性绝缘体Axion 研究……Dark matter on your desktop?Wilczek, Nature 458, 129 (2009)物质≠反物质(CP 不对称)暗物质(轴子)标准模型磁单极(磁荷)±e iθ(anyon)电荷+磁荷=任意子(anyon)Majorana费米子量子计算:满足非阿贝尔统计的拓扑准粒子进行位置交换操作拓扑绝缘体Zhang et al., Nat. Phys. 5, 438 (2009)Strong 3D Topological InsulatorsXia et al., Nat. Phys. 5, 398 (2009)Sb 2Te 3Bi 2Te 3Bi 2Se 3Bi 2Se 3Δ=0.36eVBi2Te3Fisher (Stanford)DiracConeNat. Phys. 2009Bulk Insulating Material difficult Thin Films by MBE and MOCVD?Si, GaAs, Sapphire…OUTLINE2.拓扑绝缘体薄膜的分子束外延生长(MBE)及电子结构(BiTe3/Bi2Se3/Sb2Te3)2扫描隧道显微镜:由瑞士科学家Binnig和Rohrer博士于1981年发明人类首次:9“看到”单个原子、分子9“操纵”单个原子、分子1986年诺贝尔物理学奖FetipsampleAGaAs4Se4MBESTMcryostat20ML Pb Thin Films•STM/STS: 4K •ARPES: 1meV •RHEED •5x10‐11TorrMBE ‐STM ‐角分辨光电子能谱SystemSTMMBEARPESPhoton energy: 21.2eV(HeI) Energy resolution: 10 meV Angular resolution: 0.2°T=77 KExperimental parametersSi waferReal ‐Time Electron Diffraction强度振荡T Bi >>T Si >T Se(Te)Se (Te )‐rich(Se 2/Bi>20)反射式高能电子衍射EE F0.00.10.2Bi Te “intrinsic”Conduction BandValence BandE F23 200 nm x 200 nmBi2Se3on graphene on SiC‐120mV 50 QLOUTLINE3.扫描隧道显微镜(STM) 研究拓扑绝缘体的基本性质TI Vaccum Normal insulatorBoundaryBand CuttingTopological insulatorp c H mc p c H GG G G •=+•=σβα2(m=0)•Massless 2D Dirac Equation•Boundary /Surface •Time Reversal SymmetryMoore, Nature 2010ConductorInsulatorTopological InsulatorInsulating (bulk)conducting (surface)Spin-Orbital Coupling材料的分类(新): 拓扑能带理论n-doped Geometry of Ag defectsV=400mV V=150mV V=100mV V=50mVV=200mVV=300mV Surface nature of topological states!电子受到Ag 杂质散射导致的表面驻波FFTV=400mVV=150mVV=100mVV=50mVV=200mVV=300mVdI/dV mappingsMKSBZГ400 mV100 mV 50 mV150 mV 300 mV 200 mVMKK ‐spaceOnly Γ‐ΜdirectionΓ入射电子反射电子Zhang et al., PRL 103, 266803 (2009)Info highway for chips in the future。