2011高考数学二轮复习专题讲座(第10讲)函数图象及图象性质的应用
- 格式:doc
- 大小:729.50 KB
- 文档页数:6
题目 高中数学复习专题讲座函数图象及图象性质的应用高考要求函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质 重难点归纳1 熟记基本函数的大致图象,掌握函数作图的基本方法 (1)描点法 列表、描点、连线;(2)图象变换法 平移变换、对称变换、伸缩变换等2 高考中总是以几类基本初等函数的图象为基础来考查函数图象的题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视典型题例示范讲解例1对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ), (1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和命题意图 本题考查函数概念、图象对称问题以及求根问题 知识依托 把证明图象对称问题转化到点的对称问题错解分析 找不到问题的突破口,对条件不能进行等价转化技巧与方法 数形结合、等价转化(1)证明 设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),∵2)2(00x x a +-=a , ∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,又f (a +x )=f (a -x ),∴f (2a -x 0)=f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0, ∴(2a -x 0,y 0)也在函数的图象上,故y =f (x )的图象关于直线x =a 对称(2)解 由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根, 若x 1是f (x )=0的根,则4-x 1也是f (x )=0的根, ∴x 0+(4-x 0)+ x 1+(4-x 1)=8 即f (x )=0的四根之和为8例2如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2 又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a )(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论命题意图 本题考查函数的解析式、函数图象、识图能力、图形的组合等知识依托 充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口错解分析 图形面积不会拆拼技巧与方法 数形结合、等价转化 解 (1)连结AA ′、BB ′、CC ′,则f (a )=S △AB ′C =S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B =21(A ′A +C ′C )=21(2++a a ),g (a )=S △A ′BC ′=21A ′C ′·B ′B =B ′B1(2)()()2f a g a -=12=--102=-<∴f (a )<g (a )例3已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围解法一 观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过(1,0),∴f (x )=a +b +c ① 又有f (-1)<0,即-a +b -c <0 ② ①+②得b <0,故b 的范围是(-∞,0)解法二 如图f (0)=0有三根0,1,2,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b =-3a ,∵当x>2时,f (x )>0,从而有a >0,∴b <0 学生巩固练习1 当a ≠0时,y =ax +b 和y =b ax的图象只可能是( )2某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y轴表示离学校的距离,x轴表示出发后的时间,则适合题意的图形是()3已知函数f(x)=log2(x+1),将y=f(x)的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y=g(x)的图象,则函数F(x)=f(x)-g(x)的最大值为_________三、解答题4如图,在函数y=lg x的图象上有A、B、C三点,它们的横坐标分别为m,m+2,m+4(m>1)(1)若△ABC面积为S,求S=f(m);(2)判断S=f(m)的增减性5如图,函数y=23|x|在x∈[-1,1]的图象上有两点A、B,AB∥Ox轴,点M(1,m)(m∈R且m>23)是△ABC的BC边的中点(1)写出用B点横坐标t表示△ABC面积S的函数解析式S=f(t);(2)求函数S=f(t)的最大值,并求出相应的C点坐标6已知函数f(x)是y=1102+x-1(x∈R)的反函数,函数g(x)的图象与函数y=-21-x的图象关于y轴对称,设F(x)=f(x)+g(x)(1)求函数F(x)的解析式及定义域;(2)试问在函数F(x)的图象上是否存在两个不同的点A、B,使直线AB 恰好与y轴垂直?若存在,求出A、B的坐标;若不存在,说明理由7已知函数f1(x)=21x-,f2(x)=x+2,(1)设y =f (x )=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[ ),(21x x f x x f ,试画出y =f (x )的图象并求y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f 1(x +a )=f 2(x )有两个不等的实根,求实数a 的范围(3)若f 1(x )>f 2(x -b )的解集为[-1,21],求b 的值8 设函数f (x )=x +x1的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x )(1)求g (x )的解析表达式;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点坐标; (3)解不等式log a g (x )<log a 29 (0<a <1)参考答案1 解析 ∵y =b ax =(b a )x ,∴这是以b a 为底的指数函数 仔细观察题目中的直线方程可知 在选择支B 中a >0,b >1,∴b a >1,C 中a <0,b >1,∴0<b a<1,D 中a <0,0<b <1,∴b a >1 故选择支B 、C 、D 均与指数函数y =(b a )x 的图象不符合答案 A2 解析 由题意可知,当x =0时,y 最大,所以排除A 、C 又一开始跑步,所以直线随着x 的增大而急剧下降答案 D3 解析 g (x )=2log 2(x +2)(x >-2)F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2)=log 21441log441log)2(122222+++=+++=++x x x x x x x x)1(21111log2->++++=x x x ∵x +1>0,∴F (x )≤41log211)1(21log 22=++⋅+x x =-2当且仅当x +1=11+x ,即x =0时取等号∴F (x )max =F (0)=-2答案 -24 解 (1)S △ABC =S 梯形AA ′B ′B +S 梯形BB ′C ′C -S 梯形AA ′C ′C(2)S =f (m )为减函数5 解 (1)依题意,设B (t ,23 t ),A (-t ,23t )(t >0),C (x 0,y 0)∵M 是BC 的中点 ∴2x t +=1,2230y t + =m∴x 0=2-t ,y 0=2m -23t在△ABC 中,|AB |=2t ,AB 边上的高h AB =y 0-23t =2m -3t∴S =21|AB |·h AB =21·2t ·(2m -3t ),即f (t )=-3t 2+2mt ,t ∈(0,1)(2)∵S =-3t 2+2mt =-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m ,即23<m ≤3,当t =3m 时,S max =32m ,相应的C 点坐标是(2-3m ,23m ),若3m >1,即m >3 S =f (t ) 在区间(0,1]上是增函数,∴S max =f (1)=2m -3,相应的C 点坐标是(1,2m -3)6 解 (1)y =1102+x-1的反函数为f (x )=lg xx +-11(-1<x <1)由已知得g (x )=21+x ,∴F (x )=lgxx +-11+21+x ,定义域为(-1,1)(2)用定义可证明函数u =xx +-11=-1+12+x 是(-1,1)上的减函数,且y =lg u 是增函数∴f (x )是(-1,1)上的减函数,故不存在符合条件的点A 、B7 解 (1)y =f (x )=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x 的图像如图所示y =f (x )的曲线绕x 轴旋转一周所得几何体是由一个半径为1的半球及底面半径和高均为1的圆锥体组成,其表面积为(2+2)π(2)当f 1(x +a )=f 2(x )有两个不等实根时,a 的取值范围为2-2<a ≤1(3)若f 1(x )>f 2(x -b )的解集为[-1,21],则可解得b8 (1)g (x )=x -(2)b =4时,交点为(5,4);b =0时,交点为(3,0)(3)不等式的解集为{x |4<x <29或x >6}课前后备注。
难点15 三角函数的图象和性质三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来.本节主要帮助考生掌握图象和性质并会灵活运用.●难点磁场(★★★★)已知α、β为锐角,且x (α+β-2π)>0,试证不等式f (x )=)sin cos ()sin cos (αββα+x x <2对一切非零实数都成立.●案例探究[例1]设z 1=m +(2-m 2)i ,z 2=cos θ+(λ+sin θ)i ,其中m ,λ,θ∈R ,已知z 1=2z 2,求λ的取值范围.命题意图:本题主要考查三角函数的性质,考查考生的综合分析问题的能力和等价转化思想的运用,属★★★★★级题目.[例2]如右图,一滑雪运动员自h =50m 高处A 点滑至O 点,由于运动员的技巧(不计阻力),在O 点保持速率v 0不为,并以倾角θ起跳,落至B 点,令OB =L ,试问,α=30°时,L 的最大值为多少?当L 取最大值时,θ为多大?命题意图:本题是一道综合性题目,主要考查考生运用数学知识来解决物理问题的能力.属★★★★★级题目.[例3]如下图,某地一天从6时到14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b .(1)求这段时间的最大温差.(2)写出这段曲线的函数解析式.命题意图:本题以应用题的形式考查备考中的热点题型,要求考生把所学的三角函数知识与实际问题结合起来分析、思考,充分体现了“以能力立意”的命题原则.属★★★★级题目.●锦囊妙计本难点所涉及的问题及解决的方法主要有:1.考查三角函数的图象和性质的基础题目,此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用.2.三角函数与其他知识相结合的综合题目,此类题目要求考生具有较强的分析能力和逻辑思维能力.在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强.3.三角函数与实际问题的综合应用.此类题目要求考生具有较强的知识迁移能力和数学建模能力,要注意数形结合思想在解题中的应用.●歼灭难点训练一、选择题1.(★★★★)函数y =-x ·cos x 的部分图象是( )2.(★★★★)函数f (x )=cos2x +sin(2π+x )是( )A.非奇非偶函数B.仅有最小值的奇函数C.仅有最大值的偶函数D.既有最大值又有最小值的偶函数 二、填空题3.(★★★★)函数f (x )=(31)|cos x |在[-π,π]上的单调减区间为_________. 4.(★★★★★)设ω>0,若函数f (x )=2sin ωx 在[-4,3ππ,]上单调递增,则ω的取值范围是_________.三、解答题5.(★★★★)设二次函数f (x )=x 2+bx +c (b ,c ∈R ),已知不论α、β为何实数恒有f (sin α)≥0和f (2+cos β)≤0.(1)求证:b +c =-1;(2)求证c ≥3;(3)若函数f (sin α)的最大值为8,求b ,c 的值.6.(★★★★★)用一块长为a ,宽为b (a >b )的矩形木板,在二面角为α的墙角处围出一个直三棱柱的谷仓,试问应怎样围才能使谷仓的容积最大?并求出谷仓容积的最大值.7.(★★★★★)有一块半径为R ,中心角为45°的扇形铁皮材料,为了获取面积最大的矩形铁皮,工人师傅常让矩形的一边在扇形的半径上,然后作其最大内接矩形,试问:工人师傅是怎样选择矩形的四点的?并求出最大面积值.8.(★★★★)设-6π≤x ≤4π,求函数y =log 2(1+sin x )+log 2(1-sin x )的最大值和最小值.9.(★★★★★)是否存在实数a ,使得函数y =sin 2x +a ·cos x +85a -23在闭区间[0,2π]上的最大值是1?若存在,求出对应的a 值;若不存在,试说明理由.。
2011 届高考数学考点知识专题总复习函数的性质及应用课时考点1函数的性质及应用高考考纲透析:( 1)认识映照的观点,理解函数的观点。
(2) 认识函数单一性、奇偶性的观点,掌握判断一些简单函数的单一性、奇偶性的方法。
(3) 认识反函数的观点及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
(4) 理解分数指数幂的观点,掌握有理指数幂的运算性质 . 掌握指数函数的观点、图像和性质。
(5) 理解对数的观点,掌握对数的运算性质;掌握对数函数的观点、图像和性质。
(6) 能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
高考风向标:映照与函数的观点、函数单一性、奇偶性、周期性、函数的值域与最值、反函数、函数图象、指数函数、对数函数、二次函数、函数的综合应用。
特别是函数的单一性、奇偶性、周期性、反函数复现率较高。
高考试题选:1.若和 g(x) 都是定义在实数集 R 上的函数,且方程有实数解,则不行能是( A)( B)( c)( D)2. 若函数的定义域和值域都是[0 , 1] ,则 a=()(A)(B)(c)(D)23. 函数上的最大值和最小值之和为a,则 a 的值为()A .B. c. 2D. 44.设分别是定义在 R 上的奇函数和偶函数,当时,且则不等式的解集是()A.B. c. D.5.已知函数的最大值不大于,又当(1)求 a 的值;(2)设6. 是定义在 R 上的以 3 为周期的奇函数,且在区间(0,6)内解的个数的最小值是()A .2B. 3c.4D. 5热门题型1对数函数与二次函数复合而成的复合函数的性质例 1:能否存在实数,使函数在区间上是增函数?假如存在,说明可取哪些值;假如不存在,请说明原因。
解题剖析:解答本题要掌握三点:一是对数的底数对单一性的影响,二是二次函数的张口方向与对称轴对单一性的影响,三是真数在给定区间上要大于 0。
而后利用复合函数的单一性等知识加以解决。
第3讲函数的应用考情解读(1)函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以选择、填空题的形式出现.(2)函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题.1.函数的零点与方程的根(1)函数的零点对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点.(2)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(3)零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.(4)二分法求函数零点的近似值,二分法求方程的近似解.2.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.热点一函数的零点例1(1)函数f(x)=ln(x+1)-2x的零点所在的区间是()A .(12,1)B .(1,e -1)C .(e -1,2)D .(2,e)(2)(2014·辽宁)已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎨⎧cos πx ,x ∈[0,12],2x -1,x ∈(12,+∞),则不等式f (x-1)≤12的解集为( )A .[14,23]∪[43,74]B .[-34,-13]∪[14,23]C .[13,34]∪[43,74]D .[-34,-13]∪[13,34]思维升华 (1)根据二分法原理,逐个判断;(2)画出函数图象,利用数形结合思想解决. 答案 (1)C (2)A解析 (1)因为f (12)=ln 32-4<0,f (1)=ln 2-2<0,f (e -1)=1-2e -1<0,f (2)=ln 3-1>0,故零点在区间(e -1,2)内.(2)先画出y 轴右边的图象,如图所示.∵f (x )是偶函数,∴图象关于y 轴对称,∴可画出y 轴左边的图象,再画直线y =12.设与曲线交于点A ,B ,C ,D ,先分别求出A ,B 两点的横坐标.令cos πx =12,∵x ∈[0,12],∴πx =π3,∴x =13.令2x -1=12,∴x =34,∴x A =13,x B =34.根据对称性可知直线y =12与曲线另外两个交点的横坐标为x C =-34,x D =-13.∵f (x -1)≤12,则在直线y =12上及其下方的图象满足,∴13≤x -1≤34或-34≤x -1≤-13, ∴43≤x ≤74或14≤x ≤23. 思维升华 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解.(1)已知函数f (x )=(14)x -cos x ,则f (x )在[0,2π]上的零点个数是( )A .1B .2C .3D .4(2)已知a 是函数f (x )=2x -log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定 答案 (1)C (2)C解析 (1)f (x )在[0,2π]上的零点个数就是函数y =(14)x 和y =cos x 的图象在[0,2π]上的交点个数,而函数y =(14)x 和y =cos x 的图象在[0,2π]上的交点有3个,故选C.(2)∵f (x )=2x -log 21x 在(0,+∞)上是增函数,又a 是函数f (x )=2x -log 21x 的零点,即f (a )=0,∴当0<x 0<a 时,f (x 0)<0.热点二 函数的零点与参数的范围例2 对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数y =f (x )+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是( ) A .(-2,1) B .[0,1] C .[-2,0) D .[-2,1)思维启迪 先确定函数f (x )的解析式,再利用数形结合思想求k 的范围. 答案 D解析 解不等式:x 2-1-(4+x )≥1,得:x ≤-2或x ≥3,所以,f (x )=⎩⎪⎨⎪⎧x +4,x ∈(-∞,-2]∪[3,+∞),x 2-1,x ∈(-2,3). 函数y =f (x )+k 的图象与x 轴恰有三个不同交点转化为函数y =f (x )的图象和直线y =-k 恰有三个不同交点.如图,所以-1<-k ≤2,故-2≤k <1.思维升华 已知函数的零点个数求解参数范围,可以利用数形结合思想转为函数图象交点个数;也可以利用函数方程思想,构造关于参数的方程或不等式进行求解.已知函数f (x )=⎩⎪⎨⎪⎧kx +2, x ≤0ln x , x >0(k ∈R ),若函数y =|f (x )|+k 有三个零点,则实数k 的取值范围是( ) A .k ≤2 B .-1<k <0 C .-2≤k <-1 D .k ≤-2 答案 D解析 由y =|f (x )|+k =0,得|f (x )|=-k ≥0,所以k ≤0,作出函数y =|f (x )|的图象,要使y =-k 与函数y =|f (x )|有三个交点, 则有-k ≥2,即k ≤-2,选D. 热点三 函数的实际应用问题例3 省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=|x x 2+1-a |+2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈[0,12],若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M (a ).(1)令t =xx 2+1,x ∈[0,24],求t 的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?思维启迪 (1)分x =0和x ≠0两种情况,当x ≠0时变形使用基本不等式求解.(2)利用换元法把函数f (x )转化成g (t )=|t -a |+2a +23,再把函数g (t )写成分段函数后求M (a ).解 (1)当x =0时,t =0;当0<x ≤24时,x +1x≥2(当x =1时取等号),∴t =x x 2+1=1x +1x∈(0,12],即t 的取值范围是[0,12].(2)当a ∈[0,12]时,记g (t )=|t -a |+2a +23,则g (t )=⎩⎨⎧-t +3a +23,0≤t ≤a ,t +a +23,a <t ≤12.∵g (t )在[0,a ]上单调递减,在(a ,12]上单调递增,且g (0)=3a +23,g (12)=a +76,g (0)-g (12)=2(a -14).故M (a )=⎩⎨⎧ g (12),0≤a ≤14,g (0),14<a ≤12.即M (a )=⎩⎨⎧a +76,0≤a ≤14,3a +23,14<a ≤12.当0≤a ≤14时,M (a )=a +76<2显然成立;由⎩⎨⎧3a +23≤2,14<a ≤12,得14<a ≤49,∴当且仅当0≤a ≤49时,M (a )≤2.故当0≤a ≤49时不超标,当49<a ≤12时超标.思维升华 (1)关于解决函数的实际应用问题,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去. (2)对函数模型求最值的常用方法:单调性法、基本不等式法.某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解 (1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得:当0<x <80时,L (x )=(0.05×1 000x )-13x 2-10x -250=-13x 2+40x -250.当x ≥80时,L (x )=(0.05×1 000x )-51x -10 000x +1 450-250=1 200-(x +10 000x).所以L (x )=⎩⎨⎧-13x 2+40x -250(0<x <80),1 200-(x +10 000x )(x ≥80).(2)当0<x <80时,L (x )=-13(x -60)2+950.此时,当x =60时,L (x )取得最大值L (60)=950万元.当x ≥80时,L (x )=1 200-(x +10 000x )≤1 200-2x ·10 000x=1 200-200=1 000,此时,当x =10 000x 即x =100时,L (x )取得最大值1 000万元.因为950<1 000,所以,当年产量为100千件时,该厂在这一商品的生产中所获利润最大,最大利润为1 000万元.1.函数与方程(1)函数f (x )有零点⇔方程f (x )=0有根⇔函数f (x )的图象与x 轴有交点. (2)函数f (x )的零点存在性定理如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且有f (a )·f (b )<0,那么,函数f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使f (c )=0.①如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且函数f (x )在区间[a ,b ]上是一个单调函数,那么当f (a )·f (b )<0时,函数f (x )在区间(a ,b )内有唯一的零点,即存在唯一的c ∈(a ,b ),使f (c )=0.②如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且有f (a )·f (b )>0,那么,函数f (x )在区间(a ,b )内不一定没有零点.2.函数综合题的求解往往应用多种知识和技能.因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件.要认真分析,处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决. 3.应用函数模型解决实际问题的一般程序 读题(文字语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答)与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.真题感悟1.(2014·重庆)已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3, x ∈(-1,0],x , x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 答案 A解析 作出函数f (x )的图象如图所示,其中A (1,1),B (0,-2).因为直线y =mx +m =m (x +1)恒过定点C (-1,0),故当直线y =m (x +1)在AC 位置时,m =12,可知当直线y =m (x +1)在x 轴和AC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与AC 重合但不能与x 轴重合),此时0<m ≤12,g (x )有两个不同的零点.当直线y =m (x +1)过点B 时,m =-2;当直线y =m (x +1)与曲线f (x )相切时,联立⎩⎪⎨⎪⎧y =1x +1-3,y =m (x +1),得mx 2+(2m +3)x +m +2=0,由Δ=(2m +3)2-4m (m +2)=0,解得m =-94,可知当y =m (x +1)在切线和BC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与BC 重合但不能与切线重合),此时-94<m ≤-2,g (x )有两个不同的零点.综上,m 的取值范围为(-94,-2]∪(0,12],故选A.2.(2014·北京)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟 答案 B解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.0.所以p =-0.2t 2+1.5t -2.0=-15(t 2-152t +22516)+4516-2=-15(t -154)2+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟. 押题精练1.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )+1]的零点有________个.答案 4解析 当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1,即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点.2.已知函数f (x )=⎩⎪⎨⎪⎧-x , x ∈[-1,0)1f (x -1)-1, x ∈[0,1),若方程f (x )-kx +k =0有两个实数根,则k 的取值范围是( ) A .(0,+∞) B .[-12,0)C .[-12,0]D .(-∞,-12]答案 B解析 要使方程f (x )-kx +k =0有两个实数根,则函数y =f (x )和y =k (x -1)的图象有两个交点,而f (x )=⎩⎪⎨⎪⎧ -x ,x ∈[-1,0)1f (x -1)-1,x ∈[0,1)=⎩⎪⎨⎪⎧-x ,x ∈[-1,0)11-x-1,x ∈[0,1),画出图象,由于y =k (x -1)过定点(1,0),要使函数y =f (x )和y =k (x -1)的图象有两个交点,由下图可知k AB =-12≤k <0,选B.3.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转________年时,年平均利润最大,最大值是________万元. 答案 5 8解析 由题意知每台机器运转x 年的年平均利润为y x =18-(x +25x ),而x >0,故yx ≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元.(推荐时间:60分钟)一、选择题1.函数f (x )=log 2x -1x的零点所在的区间为( )A .(0,12)B .(12,1)C .(1,2)D .(2,3) 答案 C解析 函数f (x )的定义域为(0,+∞),且函数f (x )在(0,+∞)上为增函数. f (12)=log 212-112=-1-2=-3<0, f (1)=log 21-11=0-1<0,f (2)=log 22-12=1-12=12>0,f (3)=log 23-13>1-13=23>0,即f (1)·f (2)<0,∴函数f (x )=log 2x -1x 的零点在区间(1,2)内.2.函数f (x )=2x +ln 1x -1,下列区间中,可能存在零点的是( )A .(1,2)B .(2,3)C .(3,4)D .(1,2)与(2,3) 答案 B解析 f (x )=2x +ln 1x -1=2x-ln(x -1),函数f (x )的定义域为(1,+∞),且为递减函数,当1<x <2时,ln(x -1)<0,2x>0,所以f (x )>0,故函数在(1,2)上没有零点;f (2)=22-ln 1=1>0,f (3)=23-ln 2=2-3ln 23=2-ln 83,因为8=22≈2.828,所以8>e ,故ln e<ln 8, 即1<12ln 8,所以2<ln 8,即f (3)<0,f (4)=24-ln 3=12-ln 3<0.故f (x )在(2,3)存在零点.3. f (x )=2sin πx -x +1的零点个数为( ) A .4 B .5 C .6 D .7 答案 B解析 ∵2sin πx -x +1=0,∴2sin πx =x -1,图象如图所示,由图象看出y =2sin πx 与y =x -1有5个交点,∴f (x )=2sin πx -x +1的零点个数为5.4.设函数f (x )=⎩⎪⎨⎪⎧x ,x ≤0,x 2-x ,x >0,若方程f (x )=m 有三个不同的实根,则实数m 的取值范围为( )A .[-12,1]B .[-12,1]C .(-14,0)D .(-14,0]答案 C解析 作出函数y =f (x )的图象,如图所示.当x >0时,f (x )=x 2-x =(x -12)2-14≥-14,所以要使函数f (x )=m 有三个不同的零点,则-14<m <0,即m 的取值范围为(-14,0).5.(2013·江西)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F 、G 两点,与三角形ABC 两边相交于E 、D 两点.设弧FG 的长为x (0<x <π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f (x )的图象大致是( )答案 D解析 如图所示,连接OF ,OG ,过点O 作OM ⊥FG ,过点A 作AH ⊥BC ,交DE 于点N .因为弧FG 的长度为x ,所以∠FOG =x ,则AN =OM =cos x 2,所以AN AH =AE AB =cos x2,则AE =233cos x 2,∴EB =233-233cos x2.∴y =EB +BC +CD =433-433cos x 2+233=-433cos x 2+23(0<x <π).6.已知定义在R 上的函数f (x )满足:f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +2)=f (x ),g (x )=2x +5x +2,则方程f (x )=g (x )在区间[-5,1]上的所有实根之和为( ) A .-5 B .-6 C .-7 D .-8 答案 C解析 由题意知g (x )=2x +5x +2=2(x +2)+1x +2=2+1x +2,函数f (x )的周期为2,则函数f (x ),g (x )在区间[-5,1]上的图象如图所示:由图形可知函数f (x ),g (x )在区间[-5,1]上的交点为A ,B ,C ,易知点B 的横坐标为-3,若设C 的横坐标为t (0<t <1),则点A 的横坐标为-4-t ,所以方程f (x )=g (x )在区间[-5,1]上的所有实根之和为-3+(-4-t )+t =-7. 二、填空题7.若函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.答案 (0,1]解析 当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1.8.(2014·课标全国Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1, x <1,31x , x ≥1,则使得f (x )≤2成立的x 的取值范围是________. 答案 (-∞,8]解析 当x <1时,x -1<0,e x -1<e 0=1≤2,∴当x <1时满足f (x )≤2.当x ≥1时,x 13≤2,x ≤23=8,1≤x ≤8. 综上可知x ∈(-∞,8].9.已知函数f(x)=1x+2-m|x|有三个零点,则实数m的取值范围为________.答案m>1解析函数f(x)有三个零点等价于方程1x+2=m|x|有且仅有三个实根.∵1x+2=m|x|⇔1m=|x|(x+2),作函数y=|x|(x+2)的图象,如图所示,由图象可知m应满足:0<1m<1,故m>1.10.我们把形如y=b|x|-a(a>0,b>0)的函数因其图象类似于汉字中的“囧”字,故生动地称为“囧函数”,若当a=1,b=1时的“囧函数”与函数y=lg|x|的交点个数为n,则n=________.答案 4解析由题意知,当a=1,b=1时,y=1|x|-1=⎩⎨⎧1x-1(x≥0且x≠1),-1x+1(x<0且x≠-1).在同一坐标系中画出“囧函数”与函数y=lg|x|的图象如图所示,易知它们有4个交点.三、解答题11.设函数f(x)=ax2+bx+b-1(a≠0).(1)当a=1,b=-2时,求函数f(x)的零点;(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.解(1)当a=1,b=-2时,f(x)=x2-2x-3,令f(x)=0,得x=3或x=-1.∴函数f(x)的零点为3和-1.(2)依题意,f(x)=ax2+bx+b-1=0有两个不同实根.∴b2-4a(b-1)>0恒成立,即对于任意b∈R,b2-4ab+4a>0恒成立,所以有(-4a)2-4(4a)<0⇒a2-a<0,所以0<a<1.因此实数a 的取值范围是(0,1).12.随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a 人(140<2a <420,且a 为偶数),每人每年可创利b 万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b 万元,但公司需付下岗职员每人每年0.4b 万元的生活费,并且该公司正常运转所需人数不得小于现有职员的34,为获得最大的经济效益,该公司应裁员多少人?解 设裁员x 人,可获得的经济效益为y 万元,则y =(2a -x )(b +0.01bx )-0.4bx =-b100[x 2-2(a -70)x ]+2ab .依题意得2a -x ≥34·2a ,所以0<x ≤a2.又140<2a <420,即70<a <210. (1)当0<a -70≤a2,即70<a ≤140时,x =a -70,y 取到最大值;(2)当a -70>a 2,即140<a <210时,x =a2,y 取到最大值.故当70<a ≤140时,公司应裁员(a -70)人,经济效益取到最大,当140<a <210时,公司应裁员a2人,经济效益取到最大.13.对于函数f (x ),若在定义域内存在实数x ,满足f (-x )=-f (x ),则称f (x )为“局部奇函数”. (1)已知二次函数f (x )=ax 2+2x -4a (a ∈R ),试判断f (x )是否为“局部奇函数”?并说明理由; (2)若f (x )=2x +m 是定义在区间[-1,1]上的“局部奇函数”,求实数m 的取值范围. 解 f (x )为“局部奇函数”等价于关于x 的方程f (x )+f (-x )=0有解. (1)当f (x )=ax 2+2x -4a (a ∈R )时,方程f (x )+f (-x )=0即2a (x 2-4)=0有解x =±2, 所以f (x )为“局部奇函数”.(2)当f (x )=2x +m 时,f (x )+f (-x )=0可化为2x +2-x +2m =0,因为f (x )的定义域为[-1,1],所以方程2x +2-x +2m =0在[-1,1]上有解.令t =2x ∈[12,2],则-2m =t +1t .设g (t )=t +1t ,t ∈[12,2].根据:“对勾函数”的单调性知 g (t )=t +1t 在[12,1]上为减函数,在[1,2]上为增函数,所以函数g (t )=t +1t ,t ∈[12,2]的值域为[2,52],由2≤-2m ≤52,得-54≤m ≤-1,故实数m 的取值范围是[-54,-1].。
题目 高中数学复习专题讲座函数图象及图象性质的应用高考要求函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质 重难点归纳1 熟记基本函数的大致图象,掌握函数作图的基本方法 (1)描点法 列表、描点、连线;(2)图象变换法 平移变换、对称变换、伸缩变换等2 高考中总是以几类基本初等函数的图象为基础来考查函数图象的题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视典型题例示范讲解例1对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ), (1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和命题意图 本题考查函数概念、图象对称问题以及求根问题 知识依托 把证明图象对称问题转化到点的对称问题错解分析 找不到问题的突破口,对条件不能进行等价转化技巧与方法 数形结合、等价转化(1)证明 设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),∵2)2(00x x a +-=a , ∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,又f (a +x )=f (a -x ),∴f (2a -x 0)=f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0, ∴(2a -x 0,y 0)也在函数的图象上,故y =f (x )的图象关于直线x =a 对称(2)解 由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根, 若x 1是f (x )=0的根,则4-x 1也是f (x )=0的根, ∴x 0+(4-x 0)+ x 1+(4-x 1)=8 即f (x )=0的四根之和为8例2如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2 又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a )(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论命题意图 本题考查函数的解析式、函数图象、识图能力、图形的组合等知识依托 充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口错解分析 图形面积不会拆拼技巧与方法 数形结合、等价转化 解 (1)连结AA ′、BB ′、CC ′,则f (a )=S △AB ′C =S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B =21(A ′A +C ′C )=21(2++a a ),g (a )=S △A ′BC ′=21A ′C ′·B ′B =B ′B1(2)()()2f a g a -=12=--102=-<∴f (a )<g (a )例3已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围解法一 观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过(1,0),∴f (x )=a +b +c ① 又有f (-1)<0,即-a +b -c <0 ② ①+②得b <0,故b 的范围是(-∞,0)解法二 如图f (0)=0有三根0,1,2,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b =-3a ,∵当x>2时,f (x )>0,从而有a >0,∴b <0 学生巩固练习1 当a ≠0时,y =ax +b 和y =b ax的图象只可能是( )2某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y轴表示离学校的距离,x轴表示出发后的时间,则适合题意的图形是()3已知函数f(x)=log2(x+1),将y=f(x)的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y=g(x)的图象,则函数F(x)=f(x)-g(x)的最大值为_________三、解答题4如图,在函数y=lg x的图象上有A、B、C三点,它们的横坐标分别为m,m+2,m+4(m>1)(1)若△ABC面积为S,求S=f(m);(2)判断S=f(m)的增减性5如图,函数y=23|x|在x∈[-1,1]的图象上有两点A、B,AB∥Ox轴,点M(1,m)(m∈R且m>23)是△ABC的BC边的中点(1)写出用B点横坐标t表示△ABC面积S的函数解析式S=f(t);(2)求函数S=f(t)的最大值,并求出相应的C点坐标6已知函数f(x)是y=1102+x-1(x∈R)的反函数,函数g(x)的图象与函数y=-21-x的图象关于y轴对称,设F(x)=f(x)+g(x)(1)求函数F(x)的解析式及定义域;(2)试问在函数F(x)的图象上是否存在两个不同的点A、B,使直线AB 恰好与y轴垂直?若存在,求出A、B的坐标;若不存在,说明理由7已知函数f1(x)=21x-,f2(x)=x+2,(1)设y =f (x )=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[ ),(21x x f x x f ,试画出y =f (x )的图象并求y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f 1(x +a )=f 2(x )有两个不等的实根,求实数a 的范围(3)若f 1(x )>f 2(x -b )的解集为[-1,21],求b 的值8 设函数f (x )=x +x1的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x )(1)求g (x )的解析表达式;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点坐标; (3)解不等式log a g (x )<log a 29 (0<a <1)参考答案1 解析 ∵y =b ax =(b a )x ,∴这是以b a 为底的指数函数 仔细观察题目中的直线方程可知 在选择支B 中a >0,b >1,∴b a >1,C 中a <0,b >1,∴0<b a<1,D 中a <0,0<b <1,∴b a >1 故选择支B 、C 、D 均与指数函数y =(b a )x 的图象不符合答案 A2 解析 由题意可知,当x =0时,y 最大,所以排除A 、C 又一开始跑步,所以直线随着x 的增大而急剧下降答案 D3 解析 g (x )=2log 2(x +2)(x >-2)F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2)=log 21441log441log)2(122222+++=+++=++x x x x x x x x)1(21111log2->++++=x x x ∵x +1>0,∴F (x )≤41log211)1(21log 22=++⋅+x x =-2当且仅当x +1=11+x ,即x =0时取等号∴F (x )max =F (0)=-2答案 -24 解 (1)S △ABC =S 梯形AA ′B ′B +S 梯形BB ′C ′C -S 梯形AA ′C ′C(2)S =f (m )为减函数5 解 (1)依题意,设B (t ,23 t ),A (-t ,23t )(t >0),C (x 0,y 0)∵M 是BC 的中点 ∴2x t +=1,2230y t + =m∴x 0=2-t ,y 0=2m -23t在△ABC 中,|AB |=2t ,AB 边上的高h AB =y 0-23t =2m -3t∴S =21|AB |·h AB =21·2t ·(2m -3t ),即f (t )=-3t 2+2mt ,t ∈(0,1)(2)∵S =-3t 2+2mt =-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m ,即23<m ≤3,当t =3m 时,S max =32m ,相应的C 点坐标是(2-3m ,23m ),若3m >1,即m >3 S =f (t ) 在区间(0,1]上是增函数,∴S max =f (1)=2m -3,相应的C 点坐标是(1,2m -3)6 解 (1)y =1102+x-1的反函数为f (x )=lg xx +-11(-1<x <1)由已知得g (x )=21+x ,∴F (x )=lgxx +-11+21+x ,定义域为(-1,1)(2)用定义可证明函数u =xx +-11=-1+12+x 是(-1,1)上的减函数,且y =lg u 是增函数∴f (x )是(-1,1)上的减函数,故不存在符合条件的点A 、B7 解 (1)y =f (x )=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x 的图像如图所示y =f (x )的曲线绕x 轴旋转一周所得几何体是由一个半径为1的半球及底面半径和高均为1的圆锥体组成,其表面积为(2+2)π(2)当f 1(x +a )=f 2(x )有两个不等实根时,a 的取值范围为2-2<a ≤1(3)若f 1(x )>f 2(x -b )的解集为[-1,21],则可解得b8 (1)g (x )=x -(2)b =4时,交点为(5,4);b =0时,交点为(3,0)(3)不等式的解集为{x |4<x <29或x >6}课前后备注。