九年级上册数学第五章一次函数小结与思考暑假预习经典例题讲解与同步练习题及答案
- 格式:pdf
- 大小:89.95 KB
- 文档页数:4
2021年九年级数学中考一轮复习知识点中考真题演练:一次函数(附答案)1.设一次函数y=kx+b(k≠0)的图象经过点(1,﹣3),且y的值随x的值增大而增大,则该一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣3.若直线y=kx+b(k≠0)经过点A(2,﹣3),且与y轴的交点在x轴上方,则k的取值范围是()A.k>B.k>﹣C.k<﹣D.k<4.若一次函数y=kx+b(k≠0)的图象经过第一、三、四象限,则k,b满足()A.k>0,b<0B.k>0,b>0C.k<0,b>0D.k<0,b<0 5.直线y=kx+b不经过第四象限,则()A.k>0,b>0B.k<0,b>0C.k≥0,b≥0D.k<0,b≥0 6.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.7.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.C.D.8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4B.y=x+4C.y=x+8D.y=﹣x+89.如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A5A6,…,其面积分别记为S1,S2,S3,…,则S100为()A.()100B.(3)100C.3×4199D.3×239510.已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或﹣2B.2或﹣1C.3D.411.已知点A(,1),B(0,0),C(,0),AE平分∠BAC,交BC于点E,则直线AE对应的函数表达式是()A.y=x﹣B.y=x﹣2C.y=x﹣1D.y=x﹣2 12.如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O 上一动点,点C为弦AB的中点,直线y=x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.13.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,⊙O经过A,B两点,已知AB=2,则的值为.14.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C 在第二象限,若BC=OC=OA,则点C的坐标为.15.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.16.如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为.17.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.18.如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为.19.如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是.20.已知函数y=﹣2x+6与函数y=3x﹣4.(1)在同一平面直角坐标系内,画出这两个函数的图象;(2)求这两个函数图象的交点坐标;(3)根据图象回答,当x在什么范围内取值时,函数y=﹣2x+6的图象在函数y=3x﹣4的图象的上方?21.已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.22.在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.23.已知:直线y=kx(k≠0)经过点(3,﹣4).(1)求k的值;(2)将该直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相离(点O为坐标原点),试求m的取值范围.24.已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.参考答案1.解:因为一次函数y=kx+b的图象经过点(1,﹣3),且y的值随x值的增大而增大,所以k>0,b<0,即函数图象经过第一,三,四象限,故选:B.2.解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.3.解:直线y=kx+b(k≠0)中,令x=0,则y=b,∴直线y=kx+b(k≠0)与y轴交于点(0,b),又∵直线y=kx+b(k≠0)经过点A(2,﹣3),∴﹣3=2k+b,∴b=﹣3﹣2k,又∵直线y=kx+b(k≠0)与y轴的交点在x轴上方,∴b>0,即﹣3﹣2k>0,解得k<,故选:C.4.解:因为k>0时,直线必经过一、三象限,b<0时,直线与y轴负半轴相交,可得:图象经过第一、三、四象限时,k>0,b<0;故选:A.5.解:当k=0,y=b,则b≥0时,直线y=b不过第四象限;当k≠0时,直线y=kx+b不经过第四象限,即直线过第一、二、三象限且与y轴的交点不在x轴的下方,则k>0,b≥0,综合所述,k≥0,b≥0.故选:C.6.解:A、由图可知:直线y1=ax+b,a>0,b>0.∴直线y2=bx+a经过一、二、三象限,故A正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、二、四象限,交点不对,故C错误;D、由图可知:直线y1=ax+b,a<0,b<0,∴直线y2=bx+a经过二、三、四象限,故D错误.故选:A.7.解:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当点B与点B′重合时AB最短,∵点B在直线y=x上运动,∴∠AOB′=45°,∵AB′⊥OB,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐标为(﹣,﹣),即当B与点B′重合时AB最短,点B的坐标为(﹣,﹣),故选:B.8.解:如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,设P点坐标为(x,y),∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为8,∴2(x+y)=8,∴x+y=4,即该直线的函数表达式是y=﹣x+4,故选:A.9.解:∵点A0的坐标是(0,1),∴OA0=1,∵点A1在直线y=x上,∴OA1=2,A0A1=,∴OA2=4,∴OA3=8,∴OA4=16,得出OA n=2n,∴A n A n+1=2n•,∴OA198=2198,A198A199=2198•,∵S1=(4﹣1)•=,∵A2A1∥A200A199,∴△A0A1A2∽△A198A199A200,∴=()2,∴S=2396•=3×2395故选:D.10.解:在y=kx﹣3中,令y=﹣1,解得x=;令y=3,x=;当k<0时,四边形的面积是:[(1﹣)+(1﹣)]×4=12,解得k=﹣2;当k>0时,可得[(﹣1)+(﹣1)]×4=12,解得k=1.即k的值为﹣2或1.故选:A.11.解:根据勾股定理可得:AB=2,∵AE平分∠BAC,∴.设BE=x,则EC=﹣x,AC=1.∴,解得:x=,则E点的坐标是(,0).设直线AE的解析式是y=kx+b,根据题意得:,解得:.则直线AE对应的函数表达式是:y=x﹣2.故选:D.12.解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD=4,OE=3,∴DE===5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴=,∴=,∴MN=,当点C与C′重合时,△C′DE的面积最小,△C′DE的面积最小值=×5×(﹣1)=2,故答案为2.13.解:由图形可知:△OAB是等腰直角三角形,OA=OB∵AB=2,OA2+OB2=AB2∴OA=OB=∴A点坐标是(,0),B点坐标是(0,)∵一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点∴将A,B两点坐标代入y=kx+b,得k=﹣1,b=∴=﹣故答案为:﹣14.解:∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE==,∴点C的坐标为(﹣,2).故答案为:(﹣,2).15.解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣1,令y=0,则x=,∴A(,0),B(0,﹣1),∴OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△F AE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.16.解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接P A,PD,则此时,PD+AP的值最小,∵OC=OA=AB=4,∴C(0,4),A(4,0),∵D为AB的中点,∴AD=AB=2,∴D(4,2),设直线CD的解析式为:y=kx+b,∴,∴,∴直线CD的解析式为:y=﹣x+4,∵直线OB的解析式为y=x,∴,解得:x=y=,∴P(,),设直线AP的解析式为:y=mx+n,∴,解得:,∴直线AP的解析式为y=﹣2x+8,故答案为:y=﹣2x+8.17.解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.18.解:不等式x(kx+b)<0化为或,利用函数图象得为无解,的解集为﹣3<x<0,所以不等式x(kx+b)<0的解集为﹣3<x<0.故答案为﹣3<x<0.19.解:∵由图象可知:函数y=x﹣2和y=﹣2x+1的图象的交点P的坐标是(1,﹣1),又∵由y=x﹣2,移项后得出x﹣y=2,由y=﹣2x+1,移项后得出2x+y=1,∴方程组的解是,故答案为:.20.解:(1)函数y=﹣2x+6与坐标轴的交点为(0,6),(3,0)函数y=3x﹣4与坐标轴的交点为(0,﹣4),(,0)作图为:(2)解:根据题意得方程组解得即交点的坐标是(2,2)∴两个函数图象的交点坐标为(2,2)(3)由图象知,当x<2时,函数y=﹣2x+6的图象在函数y=3x﹣4的图象上方.21.解:(1)当x=0时y=4,当y=0时,x=﹣2,则图象如图所示(2)由上题可知A(﹣2,0)B(0,4),(3)S△AOB=×2×4=4,(4)x<﹣2.22.解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②当k>0时,区域内必含有坐标原点,故不符合题意;当﹣1≤k<0时,W内点的横坐标在﹣1到0之间,故﹣1≤k<0时W内无整点;当﹣2≤k<﹣1时,W内可能存在的整数点横坐标只能为﹣1,此时边界上两点坐标为M (﹣1,﹣k)和N(﹣1,﹣k+1),MN=1;当k不为整数时,其上必有整点,但k=﹣2时,只有两个边界点为整点,故W内无整点;当k≤﹣2时,横坐标为﹣2的边界点为(﹣2,﹣k)和(﹣2,﹣2k+1),线段长度为﹣k+1>3,故必有整点.综上所述:﹣1≤k<0或k=﹣2时,W内没有整数点;23.解:(1)依题意得:﹣4=3k,∴k=.(2)由(1)及题意知,设平移后得到的直线l所对应的函数关系式为y=x+m(m>0).设直线l与x轴、y轴分别交于点A、B,如右图所示当x=0时,y=m;当y=0时,x=m.∴A(m,0),B(0,m),即OA=m,OB=m.在Rt△OAB中,AB=2=.过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴ODו=וm•m,∵m>0,解得OD=m∵直线与半径为6的⊙O相离,∴m>6,解得m>10.即m的取值范围为m>10.24.解:(1)k=﹣2时,y1=﹣2x+2,根据题意得﹣2x+2>x﹣3,解得x<;(2)当x=1时,y=x﹣3=﹣2,把(1,﹣2)代入y1=kx+2得k+2=﹣2,解得k=﹣4,当﹣4≤k<0时,y1>y2;当0<k≤1时,y1>y2.所以k的范围为﹣4≤k≤1且k≠0.。
初中数学一次函数专项训练解析含答案(1)、选择题1.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形 OABC 分割成面积相等的两部分,则直线的表达式d44 A. y x+1B . y -x -55【答案】C 【解析】【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形 中心的坐标,再利用待定系数法求一次函数解析式解答即可. 【详解】•・•点B 的坐标为(6,4), ••・平行四边形的中心坐标为 (3,2), 设直线l 的函数解析式为 y kx b ,3kb 2k 1则,解得,所以直线l 的解析式为y x 1.k b 0b 1故选:C. 【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的 中心的直线把平行四边形分成面积相等的两部分是解题的关键.范围是(C . y x 1 D. y 3x 32.已知过点2, ? 的直线y ax 0不经过第一象限.设s a 2b ,则s 的取值A. 5B. 6 sC. 6 sD. 7 s试题分析::过点2,? 3的直线 ax b a 0不经过第一象限,A. 2 9B.亚C. V5D. 33【答案】D 【解析】 【分析】 【详解】解:连结OM 、OP,彳OH± AB 于H,如图,先利用坐标轴上点的坐标特征: 当 x=0 时,y= - x+2 亚=2 亚,贝U A (0, 2 近), 当 y=0 时,—x+2 72 =0,解得 x=2 J2 ,则 B (2 J 2 , 0),1所以AOAB 为等腰直角二角形,则 AB= J2 OA=4, OH=- AB=2, 根据切线的性质由 PM 为切线,得到 OMLPM,利用勾股定理得到 PM =J OP 2 OM 2 = J OP 21,当OP 的长最小时,PM 的长最小,而 OP=OH=2时,OP 的长最小,所以 PM 的最小值为{b 0 ..•. b 2a3.2ab 3 s a 2b, s a由b 2a 3 0得a 由a 0得3a 0,s 的取值范围是 64a 6 3a 6.3 9 9 - 3a 3a 6 2 223a 6 0 66,即 s 6.3Os 2故选B.考点:1.一次函数图象与系数的关系; 2.直线上点的坐标与方程的关系; 3.不等式的性质3.如图,已知一次函数 y x 2J2的图象与坐标轴分别交于 A 、B 两点,O O 的半径为1, P 是线段AB 上的一个点,过点 P 作。
九年级中考数学一次函数专题训练一、选择题1. 对于正比例函数y=-2x ,当自变量x 的值增加1时,函数y 的值增加( )A .-2B .2C .-D .13132. 若点P 在一次函数y=-x+4的图象上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限3. 如果函数y=kx+b (k ,b 是常数)的图象不经过第二象限,那么k ,b 应满足的条件是( )A .k ≥0且b ≤0B .k>0且b ≤0C .k ≥0且b<0D .k>0且b<04. 若一次函数y=kx+b (k ,b 为常数,且k ≠0)的图象过点A (0,-1),B (1,1),则不等式kx+b>1的解集为( )A .x<0B .x>0C .x<1D .x>15. 如图,A 、B的坐标分别为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为( )A. 2 B. 3 C. 4 D. 56. (2019•荆门)如果函数(,是常数)的图象不经过第二象限,那么y kx b =+k b k,应满足的条件是b A .且B .且0k ≥0b ≤0k >0b ≤C .且D .且0k ≥0b <0k >0b <7. 在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( )A. (,9)B. (,9)C. (,9)D. (,9)1747185819791109108. 如图,在正方形ABCD 中,点P 从点A 出发,沿着正方形的边顺时针方向运动一周,则△APC 的面积y 与点P 运动的路程x 之间形成的函数关系图象大致是( )二、填空题9. 若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第________象限.10. 如图,已知直线y=kx+b 过A (-1,2),B (-2,0)两点,则0≤kx+b ≤-2x 的解集为 .11. 已知关于x 的方程mx +3=4的解为x =1,则直线y =(m -2)x -3一定不经过第________象限.12.将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________.13.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x ,y 的方程组的解是__________.1122y k x b y k x b -=⎧⎨-=⎩14. 如图,直线经过点,当时,的取值范围()0y kx b k =+<()3,1A 13kx b x +<x 为__________.15. 已知二元一次方程组的解为,则在同一平面直角坐标{x -y =-5x +2y =-2){x =-4y =1)系中,直线l 1:y =x +5与直线l 2:y =-x -1的交点坐标为________.1216.若点M (k -1,k +1)关于y 轴的对称点在第四象限内,则一次函数y =(k -1)x +k 的图象不经过第________象限.三、解答题17. 春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.18. 如图,直线y =x +与两坐标轴分别交于A 、B 两点.33(1)求∠ABO 的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB =AC ,求直线l 的函数解析式.19. 某药品研究所开发一种抗菌新药.经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?20. 如图,直线y 1=-x +4,y 2=x +b 都与双曲线y =交于点A (1,m ).这两34kx条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式x +b >的解集;34kx(3)若点P 在x 轴上,连接AP ,且AP 把△ABC 的面积分成1∶3两部分,求此时点P的坐标.21. 如图1,在平面直角坐标系中,已知直线的解析式为xOyAC y x =,直线交轴于点,交轴于点.AC x C y A (1)若一个等腰直角三角板的顶点与点重合,求直角顶点的坐标;OBD D C B (2)若(1)中的等腰直角三角板绕着点顺时针旋转,旋转角度为O ,当点落在直线上的点处时,求的值;()0180αα︒<<︒B AC 'B α(3)在(2)的条件下,判断点是否在过点的抛物线上,并说'B B 23y mx x =+明理由.图222. 已知某种水果的批发单价与批发量的函数关系如图①所示.(1)请说明图中①、②两段函数图象的实际意义.图①(2)写出批发该种水果的资金金额w(元)与批发量n(kg)之间的函数关系式;在上图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图②所示.该经销商拟每日售出60 kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.图②答案一、选择题1. 【答案】A2. 【答案】C [解析]∵-1<0,4>0,∴一次函数y=-x+4的图象经过第一、二、四象限,即不经过第三象限.∵点P在一次函数y=-x+4的图象上,∴点P一定不在第三象限.故选C.3. 【答案】A [解析]y=kx+b(k,b是常数)的图象不经过第二象限,当k=0,b≤0时成立;当k>0,b≤0时成立.综上所述,k≥0,b≤0.故选A.4. 【答案】D [解析]如图所示:不等式kx+b>1的解集为x>1.故选D.5. 【答案】A 【解析】由题图知:线段AB向右平移一个单位,再向上平移一个单位,即a=1,b=1,∴a+b=1+1=2.6. 【答案】A【解析】∵(,是常数)的图象不经过第二象限,y kx b =+k b 当时成立;00k b =<,当时成立;00k b >≤,综上所述,且,0k ≥0b ≤故选A .7. 【答案】C 【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,,解得,∴该一次函{0=5k +b -10=10k +b ){k =-2b =10)数的解析式为y =-2x +10.A.y =-2×+10=9≠9,该点不在直线上;B.y =175747-2×+10=9≠9,该点不在直线上;C.y =-2×+10=9,该点在直线上;1834581979D.y =-2×+10=9≠9,该点不在直线上.110459108. 【答案】C 【解析】先求出分段函数,再根据函数性质确定函数图象便可.设正方形的边长为a ,由题意可得,函数的关系式为:y =,由一次函数的图象与性质可知,图{12ax (0≤x ≤a )12(2a -x )·a =-12ax +a 2(a <x ≤2a )12(x -2a )·a =12ax -a 2(2a <x ≤3a )12(4a -x )·a =-12ax +2a 2(3a <x ≤4a ))象大致如解图所示.故选C.二、填空题9. 【答案】二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则{|m|=1m -1≠0),∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.10. 【答案】-2≤x ≤-1 [解析]如图,直线OA 的解析式为y=-2x ,当-2≤x ≤-1时,0≤kx +b ≤-2x.11. 【答案】一 【解析】由题意知m +3=4,即m =1,将m =1代入一次函数有y =(1-2)x -3=-x -3,故函数图象不过第一象限.12. 【答案】y =2x -2 【解析】根据直线的平移规律:上加下减,可得到平移后的解析式为y =2x +1-3=2x -2.13. 【答案】21x y =⎧⎨=⎩【解析】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.1122y k x b y k x b -=⎧⎨-=⎩21x y =⎧⎨=⎩故答案为:.21x y =⎧⎨=⎩14. 【答案】3x >【解析】∵正比例函数也经过点,13y x =A∴的解集为,13kx b x +<3x >故答案为:.3x >15. 【答案】(-4,1) 【解析】二元一次方程x -y =-5对应一次函数y =x +5,即直线l 1;二元一次方程x +2y =-2对应一次函数y =-x -1,即直线l 2.12∴原方程组的解即是直线l 1与l 2的交点坐标,∴交点坐标为(-4,1).16. 【答案】一 【解析】依据题意,M 关于y 轴对称点在第四象限,则M 点在第三象限,即k -1<0,k +1<0, 解得k<-1.∴一次函数y =(k -1)x +k 的图象过第二、三、四象限,故不经过第一象限.三、解答题17. 【答案】解:(1)设甲种商品每件进价为x 元,乙种商品每件进价为y 元.根据题意得,(1分){2x +3y =2703x +2y =230)解得,(2分){x =30y =70)答:甲种商品每件进价为30元,乙种商品每件进价为70元.(3分)(2)设商场购进甲种商品a 件,则购进乙种商品为(100-a)件,利润为w 元.根据题意得a≥4(100-a),解得a≥80,由题意得w =(40-30)a +(90-70)(100-a)=-10a +2000,(4分)∵k =-10<0,∴w 随a 的增大而减小,∴当a 取最小值80时,w 最大=-10×80+2000=1200(元),(5分)∴100-a =100-80=20(件).答:当商场购进甲种商品80件,乙种商品20件时,获利最大,最大利润为1200元.(6分)18. 【答案】解:(1)对于y =x +,令x =0,则y =.333∴A 的坐标为(0,),3∴OA =,(1分)3令y =0,则x =-1,∴OB =1.(2分)在Rt △AOB 中,tan ∠ABO ==,OA OB3∴∠ABO =60°.(4分)(2)在△ABC 中,AB =AC ,又∵AO ⊥BC ,∴BO =CO ,(6分)∴C 的坐标为(1,0),设直线l 的函数解析式为y =kx +b(k 、b 为常数且k≠0),代入点A(0,),点C(1,0),3有,(8分){3=b 0=k +b )解得.{k =-3b =3)∴直线l 的函数解析式为y =-x +.(10分)3319. 【答案】解:(1)当0≤x≤4时,设直线解析式为y =kx ,将(4,8)代入得8=4k ,解得k =2,∴直线解析式为y =2x ,(2分)当4≤x≤10时,设反比例函数解析式为y =,a x 将(4,8)代入得8=,a 4解得a =32,∴反比例函数解析式为y =,(4分)32x∴血液中药物浓度上升阶段的函数关系式为y =2x(0≤x≤4),下降阶段的函数关系式为y =(4≤x≤10).(5分)32x(2)当y =4,则4=2x ,解得x =2,当y =4,则4=,解得x =8,32x∵8-2=6(小时),(7分)∴血液中药物浓液不低于4微克/毫升的持续时间为6小时.(8分)20. 【答案】(1)∵直线y 1=-x +4,y 2=x +b 都与双曲线y =交于点A (1,m ),34k x∴将A (1,m )分别代入三个解析式,得, 解得,{m =-1+4m =34+b m =k 1){m =3b =94k =3)∴y 2=x +,y =;34943x (2)当x >0时,不等式x +b >的解集为x >1;34k x(3)将y =0代入y 1=-x +4,得x =4,∴点B 的坐标为(4,0),将y =0代入y 2=x +,得x =-3,3494∴点C 的坐标为(-3,0),∴BC =7,又∵点P 在x 轴上,AP 把△ABC 的面积分成1∶3两部分,且△ACP 和△ABP 等高,∴当PC =BC 时,=,14S △ACP S △ABP 13此时点P 的坐标为(-3+,0),74即P (-,0);54当BP =BC 时,=,14ACP ABP S S △△13此时点P 的坐标为(4-,0),即P (,0),7494综上所述,满足条件的点P 的坐标为(-,0)或(,0). 549421. 【答案】(1)在图1中,∵直线交轴于点,AC x C ∴点,即.过点作轴于点.()20C ,()20D ,B BE x ⊥E∵是等腰直角三角形,直角顶点为,OBD ∆B ∴,45OB BD BDE =∠=︒,∴112OE ED BE OC ====∴.()11B,图2(2)∵直线交轴于点,AC y A ∴.0A ⎛ ⎝在图2中,过点作于点.O OF AC ⊥F 在中,,Rt AOC∆tan AO ACO OC ∠==∴,30ACO ∠=︒∴,.60FOC ∠=︒1OF =在中,利用勾股定理,得,Rt 'B OD∆'OB =在中,Rt 'OB F ∆cos ''OF B OF OB ∠==∴.'45B OD ∠=︒∵,'45B OD ∠=︒∴,90DOF ∠=︒∴.30COD α∠==︒(3)∵抛物线过点,23y mx x =+()11B ,∴,2m =-∴抛物线的解析式为.223y x x =-+设点,则.()'B a b ,2222a b +==又点在直线上,()'B a b ,AC∴,b =+∴,222a ⎛+= ⎝∴,a =b ∴=.将中,a =223y x x =-+∵223b -⨯+==∴点在过点的抛物线上.'B B 223y x x =-+22. 【答案】本题考查了分段函数的意义及构建二次函数求解利润最大思路分析:思路分析:问题.解题关键是确定水果资金额w 与批发量n 之间的函数关系式,以及构建销售利润y 与批发量n 之间的函数关系式.利用二次函数求最大利润问题时,需注意①分类讨论.(涨价与降价)②分清每件的利润与每周的销售量,理清价格与它们之间的关系.解图③自变量的取值范围的确定.保证实际问题有意义.④一般是利用二次函数的顶点坐标求最大值,但有时顶点坐标不在取值范围内,注意画图分析.注意所学的思想方法是建立函数关系,用函数的观点、思想去分析实际问题.解:(1)图①表示批发量不少于20 kg且不多于60 kg的该种水果,可按5元/kg 批发;图②表示批发量高于60 kg的该种水果,可按4元/kg批发.(2)由题意得w={5n (20≤n≤60),4n (n>60).)图象如图所示.由图可知,资金金额满足240<w≤300时,以同样的资金可批发到较多数量的该种水果.(3)解法一:设当日零售价为x元,由图可得日最高销量n=320-40x,当n>60时,x<6.5.由题意,销售利润为y=(x-4)(320-40x)=40(x-4)(8-x)=40[-(x-6)2+4].从而x=6时,y最大值=160,此时n=80.即经销商应批发80 kg该种水果,日零售价定为6元/kg,当日可得最大利润160元.解法二:设日最高销量为x kg (x >60).则由题图②日零售价p 满足x =320-40p .于是p =,销售利润y =x (320-x 40-4)=x (160-x )=-(x -80)2+160.320-x 40140140从而x =80时,y 最大值=160.此时,p =6,即经销商应批发80 kg 该种水果,日零售价定为6元/kg ,当日可得最大利润160元.。
初三数学一次函数试题答案及解析1. 如图,在△AOB 中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象限内的图象分别交OA ,AB 于点C 和点D ,且△BOD 的面积S △BOD =4. (1)求反比例函数解析式;(2)求点C 的坐标.【答案】(1)反比例函数解析式为y=;(2)C 点坐标为(2,4)【解析】(1)由S △BOD =4可得BD 的长,从而可得D 的坐标,然后代入反比例函数解析式可求得K ,从而得解析式为y=;(2)由已知可确定A 点坐标,再由待定系数法求出直线AB 的解析式为y=2x ,然后解方程组即可得到C 点坐标.试题解析:(1)∵∠ABO=90°,OB=4,S △BOD =4, ∴OB×BD=4,解得BD=2, ∴D (4,2)将D (4,2)代入y= 得2= ∴k=8∴反比例函数解析式为y=;(2)∵∠ABO=90°,OB=4,AB=8, ∴A 点坐标为(4,8),设直线OA 的解析式为y=kx ,把A (4,8)代入得4k=8,解得k=2, ∴直线AB 的解析式为y=2x , 解方程组得或,∴C 点坐标为(2,4)【考点】1、反比例函数;2、一次函数3、待定系数法2. 已知,如图双曲线(x>0)与直线EF 交于点A ,点B ,且AE=AB=BF ,连结AO ,BO ,它们分别与双曲线(x>0)交于点C ,点D ,则:(1)AB 与CD 的位置关系是__________;(2)四边形ABDC 的面积为__________.【答案】(1)AB ∥CD ;(2).【解析】(1)首先过点A 作AM ⊥x 轴于点M ,过点D 作DH ⊥x 轴于点H ,过点B 作BN ⊥x 轴于点N ,由双曲线y=(x >0)与直线EF 交于点A 、点B ,且AE=AB=BF ,可设点A 的坐标为(m ,),得到点B 的坐标为:(2m ,),则可由S △OAB =S △OAM +S 梯形AMNB ﹣S △OBN ,求得△AOB 的面积=3,根据DH ∥BN 易得△ODH ∽△OBN ,可得()2==,继而可得,所以AB ∥CD ;(2)由,∠COD=∠AOB 则可证得△COD ∽△AOB ,然后由相似三角形面积比等于相似比的平方,求得S 四边形ABDC =. 故答案是(1)AB ∥CD ;(2).【考点】反比例函数与一次函数的交点问题.3. 在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y (cm )与燃烧时间x (h )之间为一次函数关系.根据图象提供的信息,解答下列问题: (1)求出蜡烛燃烧时y 与x 之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间.【答案】(1)函数表达式是y=﹣6x+24; (2)蜡烛从点燃到燃尽所用的时间是4小时.【解析】(1)根据图象该函数是一次函数,且过点(0,24),(2,12).用待定系数法进行解答即可;(2)由(1)中的函数解析式,令y=0,求得x 的值即可.试题解析:(1)根据题意设y 与x 之间的函数关系式为y=kx+b (k≠0). 由图像知,该函数图象经过点(0,24),(2,12),则, 解得.故函数表达式是y=﹣6x+24; (2)当y=0时,﹣6x+24=0 解得x=4,答:蜡烛从点燃到燃尽所用的时间是4小时. 【考点】一次函数的应用.4. 如图,一次函数y 1=k 1x+b (k 1≠0)的图象与反比例函数y 2=k 2x+b (k 2≠0)的图象交于A ,B 两点,观察图象,当y1>y2时,x的取值范围是.【答案】﹣1<x<0或x>2.【解析】当y1>y2时,直线在双曲线的上方,一次函数图象在上方的部分是不等式的解,即:﹣1<x<0或x>2.故答案是﹣1<x<0或x>2.【考点】反比例函数与一次函数的交点问题.5.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?【答案】(1)一次函数的解析式为y=﹣2x﹣3,反比例函数的解析式为y=﹣;(2)当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.【解析】(1)将A、P的坐标分别代入y=kx+b即可得,将A的坐标代入y=中即可得(2)求出交点B的坐标,由A的坐标,然后根据一次函数图象位于反比例函数图象的下方,可得答案.试题解析:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.【考点】1、一次函数;2、反比例函数;3、函数与不等式6.反比例函数在第二象限的图象如图所示.(1)直接写出m的取值范围;(2)若一次函数的图象与上述反比例函数图象交于点A,与x轴交于点B,△AOB的面积为,求m的值.【答案】(1)m<-1;(2).【解析】(1)根据反比例函数的图象和性质得出m+1<0,求出即可.(2)求出B的坐标,求出OB边上的高,得出A的纵坐标,代入一次函数的解析式,求出A的横坐标,把A的坐标代入反比例函数解析式求出即可.试题解析:(1)∵反比例函数的图象在第二象限,∴m+1<0,∴m<-1.(2)令,则,解得到,∴ .∴OB=2.∵,∴,解得.∵点A在直线上,∴,解得. ∴.∴,解得.【考点】反比例函数与一次函数的交点问题.7.无论k取任何实数,对于直线都会经过一个固定的点,我们就称直线恒过定点.(1)无论取任何实数,抛物线恒过定点,直接写出定点A的坐标;(2)已知△ABC的一个顶点是(1)中的定点,且∠B,∠C的角平分线分别是y轴和直线,求边BC所在直线的表达式;(3)求△ABC内切圆的半径.【答案】(1)(0,2)或(3,);(2);(3).【解析】(1)将变形为,只要的系数为0,即有无论取任何实数,抛物线恒过定点.(2)根据角平分线的轴对称性质,求出点A关于y轴的对称点和关于直线的对称点的坐标,由该两点在直线BC上,应用待定系数法求解即可.(3)根据角平分线的性质,y轴和直线的交点O即为△ABC内切圆的圆心,从而应用面积公式即可求解.试题解析:(1)∵可变形为,∴当,即或时,无论取任何实数,抛物线恒过定点.当时,;当时,;∴A(0,2)或(3,).(2)∵△ABC的一个顶点是(1)中的定点,∴A(3,).∵∠B,∠C的角平分线分别是y轴和直线,∴点B、点C在点A关于y轴、直线的对称点所确定的直线上.如图,作点A关于y轴的对称点,作点A关于直线的对称点.直线DE与y轴的交点即为点B,与直线的交点即为点C. 连接AB,AC.设直线BC的表达式为.则有,解之,得.所以,.(3)∵∠B,∠C的角平分线分别是y轴和直线,∴y轴和直线的交点O即为△ABC内切圆的圆心.过点O作OF于F,则OF即为△ABC内切圆的半径.设BC与x轴交点为点G,易知 ,.∴.∵,∴,即△ABC内切圆的半径为.【考点】1.函数和平面几何综合题;2.角平分线的性质;3.待定系数法的应用;4.曲线上点的坐标与方程的关系;5.三角形的内切圆;6.勾股定理;7.三角形面积公式.8.如图,一次函数的图象与反比例函数的图象交于点,与轴交于点. (1)求一次函数的解析式和点的坐标;(2)点C在x轴上,连接AC交反比例函数的图象于点P,且点P恰为线段AC的中点.请直接写出点P和点C的坐标.【答案】(1);(-1,0);(2)点P的坐标为(2,2);点C的坐标为(3,0).【解析】(1)求出A点的坐标代入一次函数即可求出一次函数的解析式;令,即可求得点的坐标.(2)由点P恰为线段AC的中点和点P在反比例函数的图象上,求出点P的坐标,从而求出点C的坐标.试题解析:(1)A在的图象上,∴.∴A点的坐标为.∵A点在一次函数的图象上,∴一次函数的解析式为.令即,解得.∴点的坐标为(-1,0).(2)∵A点的坐标为,点P恰为线段AC的中点,∴点P的纵坐标为2.∵点P在反比例函数的图象上,∴点P的坐标为(2,2).∵点P恰为线段AC的中点,∴点C的坐标为(3,0).【考点】反比例函数和一次函数交点问题.9.在直角坐标系中,设x轴为直线l,函数的图像分别是,半径为1的与直线中的两条相切,例如是其中一个的圆心坐标.(1)写出其余满足条件的的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.【答案】(1);(2).【解析】(1)根据的圆心所在的直线和轴对称性求解.(2)依次连接各圆心,所得几何图形的边长相等,从而求得所得几何图形的周长.试题解析:(1)分两类,利用对称求解:①的圆心在相邻直线对称轴和y轴上时,②的圆心在不相邻直线对称轴和x轴上时,(2)如图,依次连接各圆心,所得几何图形的边长相等,为,∴所得几何图形的周长为.【考点】1.一次函数的图象;2.直线与圆的位置关系;3.直线上点的坐标与方程的关系;4.轴对称的性质.10.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC 上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()【答案】B【解析】本题需分两段讨论,即点P在AB段和BC段,按照面积公式分别列出面积y与x的函数关系.当点P在边AB上运动时,即0≤x≤3时,y=4,其图象为一线段;当点P在边BC上运动时,即3<x≤5时,连接AC、DP,根据得到:,即,其图象为一段双曲线.故选B.【考点】动点问题的函数图象.11.函数y=ax-a与y=(a≠0)在同一直角坐标系中的图像可能是()【答案】D【解析】A、由一次函数y=a(x-1)的图象y轴的正半轴相交可知-a>0,即a<0,与y=(x≠0)的图象a>0相矛盾,故A选项错误;B、由一次函数y=a(x-1)的图象y轴的正半轴相交可知-a>0,即a<0,与y=(x≠0)的图象a>0相矛盾,故B选项错误;C、由一次函数y=a(x-1)的图象与y轴的负半轴相交可知-a<0,即a>0,与y=(x≠0)的图象a<0相矛盾,故C选项错误;D、由一次函数y=a(x-1)的图象可知a<0,与y=(x≠0)的图象a<0一致,故D选项正确.故选D.【考点】1.反比例函数的图象;2.一次函数的图象.12.若一次函数,当的值减小1,的值就减小2,则当的值增加2时,的值()A.增加4B.减小4C.增加2D.减小2【答案】A.【解析】∵当x的值减小1,x变成x–1,y的值就减小2,则y变为y–2,∴,而,∴.解得k=2.∴一次函数为.当x的值增加2时,即x变为x+2,故,∴y增加了4.故选A.【考点】一次函数的性质.13.已知函数y=2x-b的图象经过点(1,b),则b的值为 .【答案】1.【解析】把点(1,b)代入函数解析式中,即可求出b的值.试题解析:∵函数y=2x-b的图象经过点(1,b),∴b=2-b∴b=1.【考点】函数的图象.14.某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.(1)完成下表(2)安排生产A、B两种产品的件数有几种方案?试说明理由;(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.【答案】(1)见解析(2)共有三种方案:方案一:A产品23件,B产品17件,方案二:A产品24件,B产品16件,方案三:A产品25件,B产品15件;(3)y=-200x+44000 39400元【解析】(1)根据总件数=单件需要的原料×件数列式即可;(2)根据两种产品所需要的甲、乙两种原料列出不等式组,然后求解即可;(3)根据总利润等于两种产品的利润之和列式整理,然后根据一次函数的增减性求出最大利润即可.解:(1)表格分别填入:A甲种原料8x,B乙种原料9(40-x);(2)根据题意得,由①得,x≤25,由②得,x≥22.5,∴不等式组的解集是22.5≤x≤25,∵x是正整数,∴x=23、24、25,共有三种方案:方案一:A产品23件,B产品17件,方案二:A产品24件,B产品16件,方案三:A产品25件,B产品15件;(3)y=900x+1100(40-x)=-200x+44000,∵-200<0,∴y随x的增大而减小,∴x=23时,y有最大值,y最大=-200×23+44000=39400元.15.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了 小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?【答案】(1)1.9 (2)270千米 (3)符合约定;理由见解析【解析】(1)由于线段AB 与x 轴平行,故自3时到4.9时这段时间内甲组停留在途中,所以停留的时间为1.9时;(2)观察图象可知点B 的纵坐标就是甲组的汽车在排除故障时距出发点的路程的千米数,所以求得点B 的坐标是解答(2)题的关键,这就需要求得直线EF 和直线BD 的解析式,而EF 过点(1.25,0),(7.25,480),利用这两点的坐标即可求出该直线的解析式,然后令x=6,即可求出点C 的纵坐标,又因点D (7,480),这样就可求出直线CD 即直线BD 的解析式,从而求出B 点的坐标;(3)由图象可知:甲、乙两组第一次相遇后在B 和D 相距最远,在点B 处时,x=4.9,求出此时的y 乙-y 甲,在点D 有x=7,也求出此时的y 甲-y 乙,分别同25比较即可. 解:(1)1.9;(2)设直线EF 的解析式为y 乙=kx+b∵点E (1.25,0)、点F (7.25,480)均在直线EF 上解得∴直线EF 的解析式是y 乙=80x-100;∵点C 在直线EF 上,且点C 的横坐标为6, ∴点C 的纵坐标为80×6-100=380; ∴点C 的坐标是(6,380); 设直线BD 的解析式为y 甲=mx+n ;∵点C (6,380)、点D (7,480)在直线BD 上, ∴ 解得∴BD 的解析式是y 甲=100x-220;∵B 点在直线BD 上且点B 的横坐标为4.9,代入y 甲得B (4.9,270), ∴甲组在排除故障时,距出发点的路程是270千米. (3)符合约定;由图象可知:甲、乙两组第一次相遇后在B 和D 相距最远.在点B 处有y 乙-y 甲=80×4.9-100-(100×4.9-220)=22千米<25千米 在点D 有y 甲-y 乙=100×7-220-(80×7-100)=20千米<25千米 ∴按图象所表示的走法符合约定.16.如图,正比例函数y=kx与反比例函数y=的图象相交于A、B两点,若点A的坐标为(2,11),则点B的坐标是 ()A.(1,2) B.(-2,1)C.(-1,-2) D.(-2,-1)【答案】D【解析】反比例函数与正比例函数图象的两个交点关于原点对称,故选D.17.如图,直线y=-2x+8交x轴于A,交y轴于B i点p在线段AB上,过点P分别向x轴、y轴引垂线,垂足为C、D,设点P的横坐标为m,矩形PCOD的面积为S.(1)求S与m的函数关系式; (2)当m取何值时矩形PCOD的面积最大,最大值是多少.【答案】(1)S与m的函数关系式为S=﹣2m2+8m;(2)当m=2时,矩形PCOD的面积最大,最大面积为8.【解析】(1)先求得P的纵坐标,再利用矩形的面积公式即可求得;(2)根据二次函数的性质,即可确定.试题解析:(1)由题意可知P(m,﹣2m+8),∴OC=m,PC=﹣2m+8S=m(﹣2m+8)=﹣2m2+8m∴S与m的函数关系式为S=﹣2m2+8m;(2)∵a=﹣2<0,∴S有最大值.当m=时,==8;S最大∴当m=2时,矩形PCOD的面积最大,最大面积为8.【考点】一次函数综合题.18.一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是( )【答案】C.【解析】公共汽车经历:加速-匀速-减速到站-加速-匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.故选C.考点: 函数的图象.19.若函数的图象与x轴只有一个公共点,则常数m的值是_______【答案】0或1.【解析】需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x轴只有一个交点,得到根的判别式的值等于0,且m不为0,即可求出m的值.试题解析:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:△=4-4m=0,解得:m=1.故答案为:0或1.考点: 1.抛物线与x轴的交点;2.一次函数的性质.20.图中给出的直线和反比例函数的图像,判断下列结论正确的个数有()①;②直线与坐标轴围成的△ABO的面积是4;③方程组的解为,;④当-6<x<2时,有> .A.1个B.2个C.3个D.4个【答案】C.【解析】:①∵反比例函数的图象经过点(2,3),∴k2="2×3=6." ∴反比例函数为.∵直线经过点(2,3)和点(-6,-1),∴.∴. 正确.②∵直线为,∴当y=0,x=-4.∴点A的坐标是(-4,0);当x=0时,y=2.∴点B的坐标是(0,2).∴△ABO的面积是×4×2=4,正确.③观察图象,发现直线和反比例函数的图象交于点(-6,-1),(2,3),则方程组的解为,正确.④观察图象,可知当-6<x<0或x>2时,有>,错误.故选C.【考点】反比例函数与一次函数的交点问题.21.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2,那么点A3的纵坐标是,点A2013的纵坐标是.【答案】,.【解析】利用待定系数法求一次函数解析式求出直线的解析式,再求出直线与x轴、y轴的交点坐标,求出直线与x轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到各点的纵坐标的规律:∵A1(1,1),A2在直线y=kx+b上,∴,解得.∴直线解析式为.如图,设直线与x轴、y轴的交点坐标分别为A、D.当x=0时,y=,当y=0时,,解得x=-4.∴点A、D的坐标分别为A(-4,0 ),D(0,).∴.作A1C1⊥x轴与点C1,A2C2⊥x轴与点C2,A3C3⊥x轴与点C3,∵A1(1,1),A2,∴OB2=OB1+B1B2=2×1+2×=2+3=5,.∵△B2A3B3是等腰直角三角形,∴A3C3=B2C3。
一次函数【回顾与思考】一次函数0,0,y y x k y x ⎧≠⎧⎪⎨≠⎩⎪⎪>⎧⎪⎨⎨<⎩⎪⎪⎪⎪⎩一般式y=kx+b(k 0)概念正比例函数y=kx(k 0)随的增大而增大性质随的增大而减小b图象:经过(0,b),(-,0)的直线k【例题经典】理解一次函数的概念和性质例1 若一次函数y=2x 222m m --+m-2的图象经过第一、第二、三象限,求m 的值.【分析】这是一道一次函数概念和性质的综合题.一次函数的一般式为y=kx+b (k ≠0).首先要考虑m 2-2m-2=1.函数图象经过第一、二、三象限的条件是k>0,b>0,而k=2,只需考虑m-2>0.由222120m m m ⎧--=⎨->⎩便可求出m 的值.用待定系数法确定一次函数表达式及其应用例2 鞋子的“鞋码”和鞋长(cm )存在一种换算关系,•下表是几组“鞋码”与鞋长的对应数值:(1)分析上表, (2)设鞋长为x ,“鞋码”为y ,求y 与x 之间的函数关系式; (3)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?【评析】本题是以生活实际为背景的考题.题目提供了一个与现实生活密切联系的问题情境,以考查学生对有关知识的理解和应用所学知识解决问题的能力,同时为学生构思留下了空间.建立函数模型解决实际问题例3某块试验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出x ≤40和x ≥40时y 与x 之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉?【评析】本题提供了一个与生产实践密切联系的问题情境,要求学生能够从已知条件和函数图象中获取有价值的信息,判断函数类型.建立函数关系.为学生解决实际问题留下了思维空间.【考点精练】 基础训练1.下列各点中,在函数y=2x-7的图象上的是( ) A .(2,3) B .(3,1) C .(0,-7) D .(-1,9)2.如图,一次函数y=kx+b 的图象经过A 、B 两点,则kx+b>0的解集是( )A .x>0B .x>2C .x>-3D .-3<x<2(第2题) (第4题) (第7题) 3.已知两个一次函数y 1=-2b x-4和y 2=-1a x+1a的图象重合,则一次函数y=ax+b 的图象所经过的象限为( )A .第一、二、三象限B .第二、三、四象限C .第一、三、四象限D .第一、二、四象限 4.如图,直线y=kx+b 与x 轴交于点(-4,0),则y>0时,x 的取值范围是( ) A .x>-4 B .x>0 C .x<-4 D .x<05.已知一次函数y=kx-k ,若y 随x 的增大而减小,则该函数的图像经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 6.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y=-4x+3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 27.如图,一次函数y=x+5的图象经过点P (a ,b )和点Q (c ,d ),•则a (c-d )-b (c-d )的值为________.8.函数y 1=x+1与y 2=ax+b 的图象如图所示,•这两个函数的交点在y 轴上,那么y 1、y 2的值都大于零的x 的取值范围是_______.9.如图,已知函数y=ax+b 和y=kx 的图象交于点P , 则根据图象可得,关于y ax by kx=+⎧⎨=⎩的二元一次方程组的解是________.(第8题) (第9题)10.一次函数的图象过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数的解析式:___________.能力提升11.经过点(2,0)且与坐标轴围成的三角形面积为2•的直线解析式是_________.12.地表以下岩层的温度t(℃)随着所处的深度h(千米)•的变化而变化.t与h之间在一定范围内近似地成一次函数关系.(1)根据下表,求t(℃)与h(千米)之间的函数关系式;(2温度t(℃)…90 160 300 …深度h(km)… 2 4 8 …13.甲、乙两车从A地出发,沿同一条高速公路行驶至距A•地400千米的B地.L1、L2分别表示甲、乙两车行驶路程y(千米)与时间x(时)之间的关系(•如图所示),根据图象提供的信息,解答下列问题:(1)求L2的函数表达式(不要求写出x的取值范围);(2)甲、乙两车哪一辆先到达B地?该车比另一辆车早多长时间到达B地?14.某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程;加工过程中,当油箱中油量为10升时,•机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185分钟才能将这批工件加工完.下图是油箱中油量y(升)与机器运行时间x(分)之间的函数图象.根据图象回答下列问题:(1)求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)之间的函数关系式(不必写出自变量x的取值范围);(2)机器运行多少分钟时,第一个加工过程停止?(3)加工完这批工件,机器耗油多少升?15.小明受《乌鸦喝水》故事的启发,•利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)•之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?应用与探究16.宁波市土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列,1996~2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿元.宁波市区年GDP为y(亿元)•与建设用地总量x(万亩)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式.(2)据调查2005年市区建设用地比2004年增加4万亩,•如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?(3)按以上函数关系式,我市年GDP每增加1亿元,需增建设用地多少万亩?(•精确到0.001万亩)答案:例题经典例1:m=3 例2:(1)一次函数, (2)设y=kx+b ,则由题意,得2216,22819,10k b k k b b =+=⎧⎧⎨⎨=+=-⎩⎩解得 , ∴y=•2x-10,(3)x=26时,y=2×26-10=42.答:应该买42码的鞋. 例3:解:(1)当x ≤40时,设y=kx+b . 根据题意,得20001050300030,1500.k b k k b b =+=⎧⎧⎨⎨=+=⎩⎩解这个方程组,得, ∴当x•≤40时,y 与x 之间的关系式是y=50x+1500,∴当x=40时,y=50×40+1500=3500,当x ≥40•时,根据题意得,y=100(x-40)+3500,即y=100x-500. ∴当x ≥40时,y 与x 之间的关系式是y=100x-500. (2)当y ≥4000时,y 与x 之间的关系式是y=100x-500, 解不等式100x-50≥4000,得x ≥45, ∴应从第45天开始进行人工灌溉. 考点精练1.C 2.C 3.D 4.A 5.B 6.A 7.25 8.1<x<2 9.42x y =-⎧⎨=-⎩ 10.答案不唯一.例如:y=-x-1 11.y=x-2或y=-x+212.(1)t 与h 的函数关系式为t=35h+20.(2)当t=1770时,有1770=35h+20,解得:h=50千米.13.解:(1)设L 2的函数表达式是y=k 2x+b ,则2230,419400.4k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩解之,得k 2=100,b=-75,∴L 2的函数表达式为y=100x-75. (2)乙车先到达B 地,∵300=100x-75,∴x=154. 设L 1的函数表达式是y=k 1x ,∵图象过点(154,300),∴k 1=80.即y=80x .当y=400时,400=80x ,∴x=5,∴5-194=14(小时), ∴乙车比甲车早14小时到达B 地.14.解:(1)设所求函数关系式为y=kx+b ,由图象可知过(10,100),(30,80)两点,•得1010013080,110k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解得:,∴y=-x+110. (2)当y=10时,-x+110=10,x=100,机器运行100分钟时,•第一个加过程停止.。
中考数学辅导之—一次函数的图象和性质一次函数是本章中最重要的一个单元,在课本中,讲叙本部分内容的篇幅虽然不长,但利用它的概念、性质解决的题目却不少,而且有些题目还较难,并且从这部分内容开始,我们将学习利用代数的方法去解决几何问题,这是同学们过去从未涉及到的方法,所以不管从解题思路、解题方法上还是从所学知识的综合应用上的要求都有较大幅度的提高,可能会使同学们感到有时无从下手,“很难学”是同学们普遍的反映。
在本讲中,我们将要补充一些必要的知识,讲解几个例题,以便使同学们体会解题思路和解题方法,从而达到较好的掌握本部分知识的目的。
一、学习要求:1.理解一次函数和正比例函数的概念。
2.会画正比例函数及一次函数的图象。
3.理解并掌握正比例函数和一次函数的性质。
4.会利用待定系数法确定正比例及一次函数的解析式。
5.会解关于一次函数的较难的题目。
二、知识要点:1.正比例函数和一次函数是分别用)0(≠=k kx y 和)0(≠+=k b kx y 来定义的,其中x 是自变量,y 是自变量的函数,k 是自变量的系数,是常数,这两种函数解析式都是方程,而且它的图象上的点的坐标都是对应方程的解,因此,一次函数与一次方程有密不可分的关系。
2.课本中,用具体的函数利用描点法得出正比例函数)0(≠=k kx y 和一次函数)0(≠+=k b kx y 的图象都是一条直线,既然是一条直线,我们只要描出两点即可确定该直线。
因为正比例函数是过原点的直线,当然坐标原点是所描的两点中的一个,另外一个是1=x 时y=k 就是点),1(k ,所以正比例函数的图像是过(0,0)、(1,k )两点的直线。
而一次函数与两条坐标轴各有一个交点(注意:与x 轴、y 轴交点的坐标是极其重要的),那么“两点确定一条直线”中的两点就可以取这两个交点,由于一次函数与x 轴的交点必在x 轴上,而在x 轴上的点的特点是纵坐标为0,即:在一次函数)0(≠+=k b kx y 中,当y=0时可得kx+b=0,解此方程得x=-k b ,从而得出一次函数)0(≠+=k b kx y 与x 轴交于(-kb ,0)点;同理,由一次函数)0(≠+=k b kx y 与y 轴交点的横坐标为0可以得出:它与y 轴的交点为(0,b );因此一次函数)0(≠+=k b kx y 的图象是过它与x 轴的交点(-kb ,0)和它与y 轴的交点(0,b )两点的直线。
初三数学一次函数的图象和性质;圆的有关性质首师大版【同步教育信息】 一. 本周教学内容:(1)一次函数的图象和性质 (2)圆的有关性质【例题分析】一次函数的图象和性质[重点、难点]会画正比例函数与一次函数的图象,并能结合图象说出它们的性质。
会用待定系数法确定一次函数的解析式。
本节的重点是一次函数的概念、图象和性质,无论是对平面直角坐标系的有关概念的理解,还是对函数意义和函数表示法的了解,都离不开对于具体函数的认识。
本章介绍的函数中以一次函数为最基本,学习一次函数后,学生对研究函数的基本方法有了初步的了解,再学习其他函数就有基础了。
用待定系数求一次函数的解析式也是本节的重点。
根据自变量的取值X 围画出函数的图象是本节的难点。
一般地,正比例函数y =kx 有下列性质: (1)当k >0时,y 随x 的增大而增大; (2)当k <0时,y 随x 的增大而减小。
例1. 在同一直角坐标系内画出下列函数的图象: y x y x =-+=+22; 解:x y x y 0220022-画图如图所示:例2. 已知函数y =kx+b 的图象通过两点A (1,2)和B (-1,1),求这个函数。
分析:这里是要求k 和b 的值,因为A 点在图象上,所以它的坐标x =1,y =2应当适合y =kx +b 。
这样,把这个值代入等式可以得到关于k 和b 的一个方程;同样把x =-1,y =1代入等式可以得出另一个关于k 和b 的方程。
解这两个方程所组成的方程组就可以了。
解:()由已知条件,得:2111=⋅+=-+⎧⎨⎩k bk b解得:,k b ==1232所以所求的函数是:y x =+1232例3. 已知一次函数的图象经过P (0,-2),且与两条坐标轴截得的直角三角形的面积为3,求一次函数的解析式。
分析:先画草图如图所示:根据已知条件:,S OP OA OA OPA ∆=⋅=⨯123122 |OA|可求出,A 点坐标可求出,再求解析式。
苏科版数学九年级上册《小结与思考》说课稿3一. 教材分析苏科版数学九年级上册《小结与思考》这一章节,是在学生已经学习了概率的初步知识、二次函数、相似三角形等数学知识的基础上进行讲解的。
本章主要内容包括:几何图形的对称性、圆的性质、函数的性质、概率的性质等。
这些内容是学生进一步学习高中数学的基础,也是培养学生逻辑思维、空间想象、抽象概括能力的重要环节。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有一定的了解。
但是,学生在学习过程中,对于一些抽象的数学概念和理论的理解还不够深入,需要通过大量的练习来巩固。
此外,学生的学习兴趣和学习习惯也影响着他们的学习效果,因此在教学过程中,需要关注学生的学习兴趣,培养良好的学习习惯。
三. 说教学目标根据教材内容和学情分析,本节课的教学目标如下:1.理解并掌握本章所涉及的几何图形的对称性、圆的性质、函数的性质、概率的性质等基本概念和性质。
2.培养学生的逻辑思维、空间想象、抽象概括能力。
3.提高学生的数学运用能力,使他们在解决实际问题时,能够灵活运用所学的数学知识。
4.激发学生的学习兴趣,培养他们积极主动探究数学问题的习惯。
四. 说教学重难点1.教学重点:理解和掌握本章所涉及的几何图形的对称性、圆的性质、函数的性质、概率的性质等基本概念和性质。
2.教学难点:对于一些抽象的数学概念和理论的理解,以及如何在实际问题中灵活运用所学的数学知识。
五. 说教学方法与手段为了达到本节课的教学目标,我将采用以下教学方法和手段:1.讲授法:对于一些基本的数学概念和性质,我将通过讲解来引导学生理解和掌握。
2.案例分析法:通过分析一些实际问题,让学生学会如何灵活运用所学的数学知识。
3.小组讨论法:学生进行小组讨论,培养他们的合作意识和团队精神。
4.多媒体教学:利用多媒体课件,直观地展示一些几何图形的对称性、圆的性质等,帮助学生更好地理解和掌握。
六. 说教学过程1.导入:通过复习前几章的内容,引导学生进入本章的学习。