2014届高考物理 终极猜想题5 曲线运动
- 格式:doc
- 大小:139.50 KB
- 文档页数:6
高考物理曲线运动试题( 有答案和分析 )一、高中物理精讲专题测试曲线运动1.如下图,一箱子高为H.底边长为L,一小球从一壁上沿口 A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离 C 点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的 B 点,求初速度的可能值。
【答案】( 1)( 2)【分析】【剖析】(1)将整个过程等效为完好的平抛运动,联合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的 B 点,则水平位移应当是2L 的整数倍,经过平抛运动公式列式求解初速度可能值。
【详解】(1)本题能够当作是无反弹的完好平抛运动,则水平位移为: x==v0t竖直位移为: H= gt2解得: v0=;(2)若小球正好落在箱子的 B 点,则小球的水平位移为:x′=2nL( n= 1.2.3 )同理: x′=2nL=v′H=20t,gt ′解得:( n= 1.2.3 )2.小孩乐园里的弹珠游戏不单拥有娱乐性还能够锻炼小孩的眼手合一能力。
某弹珠游戏可简化成如下图的竖直平面内OABCD透明玻璃管道,管道的半径较小。
为研究方便成立平面直角坐标系,O 点为抛物口,下方接一知足方程y 5x2的圆滑抛物线形状管道OA;9AB、BC是半径同样的圆滑圆弧管道,CD 是动摩擦因数μ=0.8 的粗拙直管道;各部分管道在连结处均相切。
A、B、C、D 的横坐标分别为x A=1.20m 、 x B= 2.00m 、x C= 2.65m 、 x D=3.40m。
已知,弹珠质量m= 100g,直径略小于管道内径。
E 为 BC管道的最高点,在 D 处有一反弹膜能无能量损失的反弹弹珠,sin37 °= 0.6, sin53 °= 0.8, g=10m/s 2,求:(1)若要使弹珠不与管道OA 触碰,在 O 点抛射速度ν应当多大;(2)若要使弹珠第一次抵达 E 点时对轨道压力等于弹珠重力的 3 倍,在 O 点抛射速度 v0应当多大;(3)游戏设置 3 次经过 E 点获取最高分,若要获取最高分在O 点抛射速度ν0的范围。
2014年四川省高考物理试卷参考答案与试题解析一、选择题1.(6分)(2014•四川)如图所示,甲是远距离输电线路的示意图,乙是发电机输出电压随时间变化的图象,则()A.用户用电器上交流电的频率是100HzB.发电机输出交流电的电压有效值是500VC.输电线的电流只由降压变压器原副线圈的匝数比决定D.当用户用电器的总电阻增大时,输电线上损失的功率减小考点:远距离输电;变压器的构造和原理.专题:交流电专题.分析:根据图象可知交流电的最大值以及周期等物理量,然后进一步可求出其瞬时值的表达式以及有效值等.同时由变压器电压与匝数成正比,电流与匝数成反比.解答:解:A、发电机的输出电压随时间变化的关系,由图可知,T=0.02s,故f=,故A错误;B、由图象可知交流的最大值为U m=500V,因此其有效值为U=V,故B错误;C、输电线的电流由输送的功率与电压决定的,与降压变压器原副线圈的匝数比无关,故C错误;D、当用户用电器的总电阻增大时,用户的功率减小,降压变压器的输出功率减小,则输入的功率减小,输入的电流减小,输电线上损失的功率减小,故D正确;故选:D.点评:本题考查了有关交流电描述的基础知识,要根据交流电图象正确求解最大值、有效值、周期、频率、角速度等物理量,同时正确书写交流电的表达式.2.(6分)(2014•四川)电磁波已广泛运用于很多领域.下列关于电磁波的说法符合实际的是()A.电磁波不能产生衍射现象B.常用的遥控器通过发出紫外线脉冲信号来遥控电视机C.根据多普勒效应可以判断遥远天体相对于地球的运动速度D.光在真空中运动的速度在不同惯性系中测得的数值可能不同考点:电磁场.分析:电磁波是横波,波都能发生干涉和衍射,常用红外线做为脉冲信号来遥控电视;利用多普勒效应和光速不变原理判断CD选项.解答:解:AB、电磁波是横波,波都能发生干涉和衍射,常用红外线做为脉冲信号来遥控电视,故AB错误;C、由于波源与接受者的相对位移的改变,而导致接受频率的变化,称为多普勒效应,所以可以判断遥远天体相对于地球的运动速度,故C正确;D、根据光速不变原理,知在不同惯性系中,光在真空中沿不同方向的传播速度大小相等,故D错误.故选:C.点评:明确干涉和衍射是波特有的现象;知道电磁波谱及作用功能,多普勒效应和光速不变原理,属于基础题.3.(6分)(2014•四川)如图所示,口径较大、充满水的薄壁圆柱形浅玻璃缸底有一发光小球,则()A.小球必须位于缸底中心才能从侧面看到小球B.小球所发的光能从水面任何区域射出C.小球所发的光从水中进入空气后频率变大D.小球所发的光从水中进入空气后传播速度变大考点:光的折射定律.专题:光的折射专题.分析:小球反射的光线垂直射向界面时,传播方向不发生改变;小球所发的光射向水面的入射角较大时会发生全反射;光从一种介质进入另一介质时频率不变.解答:解:A、无论小球处于什么位置,小球所发的光会有一部分沿水平方向射向侧面,则传播方向不发生改变,可以垂直玻璃缸壁射出,人可以从侧面看见小球,故A错误;B、小球所发的光射向水面的入射角较大时会发生全反射,故不能从水面的任何区域射出,故B错误;C、小球所发的光从水中进入空气后频率不变,C错误;D、小球所发的光在介质中的传播速度v=,小于空气中的传播速度c,故D正确;故选:D.点评:本题考查了折射和全反射现象,由于从水射向空气时会发生全反射,故小球所发出的光在水面上能折射出的区域为一圆形区域,并不是都能射出.4.(6分)(2014•四川)有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.B.C.D.考点:运动的合成和分解.专题:运动的合成和分解专题.分析:根据船头指向始终与河岸垂直,结合运动学公式,可列出河宽与船速的关系式,当路线与河岸垂直时,可求出船过河的合速度,从而列出河宽与船速度的关系,进而即可求解.解答:解:设船渡河时的速度为v c;当船头指向始终与河岸垂直,则有:t去=;当回程时行驶路线与河岸垂直,则有:t回=;而回头时的船的合速度为:v合=;由于去程与回程所用时间的比值为k,所以小船在静水中的速度大小为:v c=,故B正确;故选:B.点评:解决本题的关键知道分运动与合运动具有等时性,以及知道各分运动具有独立性,互不干扰.5.(6分)(2014•四川)如图所示,甲为t=1s时某横波的波形图象,乙为该波传播方向上某一质点的振动图象,距该质点△x=0.5m处质点的振动图象可能是()A .B.C.D.考点:横波的图象;波长、频率和波速的关系.专题:振动图像与波动图像专题.分析:由甲读出波长,由乙图读出周期,从而求出波速.由图乙读出质点的状态,判断出波的传播方向,再根据该质点与△x=0.5m处质点状态关系,分析即可.解答:解:从甲图可以得到波长为2m,乙图可以得到周期为2s,即波速为v===1m/s;由乙图象可以得到t=1s时,该质点位移为负,并且向下运动,该波是可能向左传播,也可能向右传播,而距该质点x=0.5m处质点,就是相差λ或时间相差T,但有两种可能是提前或延后.若是延后,在t=1s时再经过到达乙图的振动图象t=1s时的位移,所以A正确;若是提前,在t=1s时要向返回到达乙图的振动图象t=1s时的位移,该质点在t=1s时,该质点位移为负,并且向上运动,所以BCD都错误.故A正确,BCD错误.故选:A点评:本题关键要分析出两个质点状态的关系,根据质点的振动方向熟练判断波的传播方向.6.(6分)(2014•四川)如图所示,不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H、P固定在框上,H、P的间距很小.质量为0.2kg的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1m的正方形,其有效电阻为0.1Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(0.4﹣0.2t)T,图示磁场方向为正方向,框、挡板和杆不计形变.则()A.t=1s时,金属杆中感应电流方向从C到DB.t=3s时,金属杆中感应电流方向从D到CC.t=1s时,金属杆对挡板P的压力大小为0.1ND.t=3s时,金属杆对挡板P的压力大小为0.2N考点:法拉第电磁感应定律.专题:电磁感应与电路结合.分析:根据楞次定律,并由时刻来确定磁场的变化,从而判定感应电流的方向;根据法拉第电磁感应定律,结合闭合电路欧姆定律,及安培力表达式,与力的合成与分解,并由三角知识,即可求解.解答:解:A、当t=1s时,则由磁感应强度随时间变化规律是B=(0.4﹣0.2t)T,可知,磁场在减小,根据楞次定律可得,金属杆中感应电流方向从C到D,故A正确;B、同理,当t=3s时,磁场在反向增加,由楞次定律可知,金属杆中感应电流方向从C到D,故B错误;C、当在t=1s时,由法拉第电磁感应定律,则有:E==0.2×12×=0.1V;再由欧姆定律,则有感应电流大小I==1A;则t=1s时,那么安培力大小F=B t IL=(0.4﹣0.2×1)×1×1=0.2N;由左手定则可知,安培力垂直磁场方向斜向上,则将安培力分解,那么金属杆对挡板P的压力大小N=Fcos60°=0.2×0.5=0.1N,故C正确;D、同理,当t=3s时,感应电动势仍为E=0.1V,电流大小仍为I=1A,由于磁场的方向相反,由左手定则可知,安培力的方向垂直磁感线斜向下,根据力的合成,则得金属杆对H的压力大小为N′=F′cos60°=0.2×0.5=0.1N,故D错误;故选:AC.点评:考查楞次定律与法拉第电磁感应定律的应用,掌握左手定则的内容,注意磁场随着时间变化的规律,及理解力的平行四边形定则的应用.7.(6分)(2014•四川)如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时刻P离开传送带.不计定滑轮质量和摩擦,绳足够长.正确描述小物体P速度随时间变化的图象可能是()A.B.C.D.考点:牛顿第二定律;匀变速直线运动的图像.专题:牛顿运动定律综合专题.分析:要分不同的情况进行讨论:若V2<V1:分析在f>Q的重力时的运动情况或f<Q的重力的运动情况若V2<V1:分析在f>Q的重力时的运动情况或f<Q的重力的运动情况解答:解:若V2<V1:f向右,若f>G Q,则向右匀加速到速度为V1后做匀速运动到离开,则为B图若f<G Q,则向右做匀减速到速度为0后再向左匀加速到离开,无此选项若V2>V1:f向左,若f>G Q,则减速到V1后匀速向右运动离开,无此选项若f<G Q,则减速到小于V1后f变为向右,加速度变小,此后加速度不变,继续减速到0后向左加速到离开,则为C图则AD错误,BC正确故选:BC.点评:考查摩擦力的方向与速度的关系,明确其与相对运动方向相反,结合牛顿第二定律分析运动情况,较难.二、解答题8.(6分)(2014•四川)小文同学在探究物体做曲线运动的条件时,将一条形磁铁放在桌面的不同位置,让小钢珠在水平桌面上从同一位置以相同初速度v0运动,得到不同轨迹,图中a、b、c、d为其中四条运动轨迹,磁铁放在位置A时,小钢珠的运动轨迹是b(填轨迹字母代号),磁铁放在位置B时,小钢珠的运动轨迹是c(填轨迹字母代号).实验表明,当物体所受合外力的方向跟它的速度方向不在(选填“在”或“不在”)同一直线上时,物体做曲线运动.考点:物体做曲线运动的条件.专题:物体做曲线运动条件专题.分析:首先知道磁体对钢珠有相互吸引力,然后利用曲线运动的条件判断其运动情况即可.解答:解:磁体对钢珠有相互吸引力,当磁铁放在位置A时,即在钢珠的正前方,所以钢珠所受的合力与运动的方向在一条直线上,所以其运动轨迹为直线,故应是b;当磁铁放在位置B时,先钢珠运动过程中有受到磁体的吸引,小钢珠逐渐接近磁体,所以其的运动轨迹是c;当物体所受的合外力的方向与小球的速度在一条直线上时,其轨迹是直线;当不在一条直线上时,是曲线.故答案为:b,c,不在.点评:明确曲线运动的条件,即主要看所受合外力的方向与初速度的方向的关系,这是判断是否做曲线运动的依据.9.(11分)(2014•四川)如图甲是测量阻值约几十欧的未知电阻R x的原理图,图中R0是保护电阻(10Ω),R1是电阻箱(0﹣99.9Ω),R是滑动变阻器,A1和A2是电流表,E是电源(电动势10V,内阻很小).在保证安全和满足要求的情况下,使测量范围尽可能大.实验具体步骤如下:(Ⅰ)连接好电路、将滑动变阻器R调到最大;(Ⅱ)闭合S,从最大值开始调节电阻箱R1,先调R1为适当值,再调节滑动变阻器R,使A1示数I1=0.15A,记下此时电阻箱的阻值R1和A2的示数I2;(Ⅲ)重复步骤(Ⅱ),再测量6组R1和I2的值;(Ⅳ)将实验测得的7组数据在坐标纸上描点.根据实验回答以下问题:①现有四只供选用的电流表:A.电流表(0﹣3mA,内阻为2.0Ω)B.电流表(0﹣3mA,内阻未知)C.电流表(0﹣0.3A,内阻为5.0Ω)D.电流表(0﹣0.3A,内阻未知)A1应选用D,A2应选用C.②测得一组R1和I2值后,调整电阻箱R1,使其阻值变小,要使A1示数I1=0.15A,应让滑动变阻器R接入电路的阻值变大(“不变”、“变大”或“变小”).③在坐标纸上画出R1与I2的关系图.④根据以上实验得出R x=31.3Ω.考点:伏安法测电阻.专题:实验题.分析:(1)由题意可知,A1示数I1=0.15A,即可确定量程,根据题目中图象示数可知,A2的量程为0.3A;,(2)由欧姆定律,结合电路分析方法,可知滑动变阻器的阻值如何变化;(3)根据描点,作出图象,让图线分布在点两边,删除错误点;(4)根据串并联特征,结合R1与I2的图象的斜率含义,依据欧姆定律,即可求解.解答:解:(1)A1示数I1=0.15A,则A1应选用量程为0.3A的电流表,由于只要知道电流大小即可,即选用D;根据R1与I2的关系图,可知,A2的量程为0.3A,且必须要知道其电阻,因此选用C;(2)调整电阻箱R1,使其阻值变小,要使A1示数I1=0.15A,则与其串联的两个电阻一个电流表的两端电压必须要在减小,因此只有应让滑动变阻器R接入电路的阻值在变大,才能达到这样的条件;(3)根据题目中已知描的点,平滑连接,注意让图线分布在点的两边,删除错误的,如图所示;(4)根据欧姆定律,则有:(R1+R0+R A1)I A1=I2(R X+R A2);整理可得:R1=I2;而R1与I2的图象的斜率k==241.7Ω;则有:R X=kI A1﹣R A2=241.7×0.15﹣5=31.3Ω;故答案为:(1)D,C;(2)变大;(3)如上图所示;(4)31.3.点评:考查如何确定电表的方法,紧扣题意是解题的关键,理解欧姆定律的应用,掌握串并联特点,注意误差与错误的区别,理解图象的斜率含义.10.(15分)(2014•四川)石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯制作超级缆绳,人类搭建“太空电梯”的梦乡有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯沿着这条缆绳运行,实现外太空和地球之间便捷的物资交换.(1)若“太空电梯”将货物从赤道基站运到距地面高度为h1的同步轨道站,求轨道站内质量为m1的货物相对地心运动的动能.设地球自转角速度为ω,地球半径为R.(2)当电梯仓停在距地面高度h2=4R的站点时,求仓内质量m2=50kg的人对水平地板的压力大小.取地面附近重力加速度g=10m/s2,地球自转角速度ω=7.3×10﹣5rad/s,地球半径R=6.4×103km.考点:万有引力定律及其应用.专题:万有引力定律的应用专题.分析:(1)因为同步轨道站与地球自转的角速度相等,根据轨道半径求出轨道站的线速度,从而得出轨道站内货物相对地心运动的动能.(2)根据向心加速度的大小,结合牛顿第二定律求出支持力的大小,从而得出人对水平地板的压力大小.解答:解:(1)因为同步轨道站与地球自转的角速度相等,则轨道站的线速度v=(R+h1)ω,货物相对地心的动能.(2)根据,因为a=,,联立解得N==≈11.5N.根据牛顿第三定律知,人对水平地板的压力为11.5N.答:(1)轨道站内质量为m1的货物相对地心运动的动能为.(2)质量m2=50kg的人对水平地板的压力大小为11.5N.点评:本题考查了万有引力定律与牛顿第二定律的综合,知道同步轨道站的角速度与地球自转的角速度相等,以及知道人所受的万有引力和支持力的合力提供圆周运动的向心力,掌握万有引力等于重力这一理论,并能灵活运用.11.(17分)(2014•四川)在如图所示的竖直平面内,水平轨道CD和倾斜轨道GH与半径r=m的光滑圆弧轨道分别相切于D点和G点,GH与水平面的夹角θ=37°.过G点,垂直于纸面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度B=1.25T;过D点,垂直于纸面的竖直平面右侧有匀强电场电场方向水平向右,电场强度E=1×104N/C.小物体P1质量m=2×10﹣3kg、电荷量q=+8×10﹣6C,受到水平向右的推力F=9.98×10﹣3N的作用,沿CD向右做匀速直线运动,到达D点后撤去推力.当P1到达倾斜轨道底端G点时,不带电的小物体P2在GH顶端静止释放,经过时间t=0.1s与P1相遇.P1和P2与轨道CD、GH 间的动摩擦因数均为μ=0.5,取g=10m/s2,sin37°=0.6,cos37°=0.8,物体电荷量保持不变,不计空气阻力.求:(1)小物体P1在水平轨道CD上运动速度v的大小;(2)倾斜轨道GH的长度s.考点:带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.专题:带电粒子在复合场中的运动专题.分析:(1)P1运动到D点的过程中,对小物体进行正确的受力分析,在水平方向上利用二力平衡可求得小物体P1在水平轨道CD上运动速度v的大小.(2)P1从D点到倾斜轨道底端G点的过程中,电场力和重力做功;P1在GH上运动过程中,受重力、电场力和摩擦力作用;P2在GH上运动过程中,受重力和摩擦力作用;对于各物体在各段的运动利用牛顿第二定律和能量的转化与守恒,列式即可解得轨道GH的长度.解答:解:(1)设小物体P1在匀强磁场中运动的速度为v,受到向上的洛伦兹力为F1,受到的摩擦力为f,则:F1=qvB…①f=μ(mg﹣F1)…②由题意可得水平方向合力为零,有:F﹣f=0…③联立①②③式,并代入数据得:v=4m/s;(2)设P1在G点的速度大小为v G,由于洛伦兹力不做功,根据动能定理有:qErsinθ﹣mgr(1﹣cosθ)=m﹣mv2…⑤P1在GH上运动,受到重力,电场力和摩擦力的作用,设加速度为a1,根据牛顿第二定律有:qEcosθ﹣mgsinθ﹣μ(mgcosθ+qEsinθ)=ma1…⑥P1与P2在GH上相遇时,设P1在GH上运动的距离为s1,运动的时间为t,则有:s1=v G t+a1t2…⑦设P2质量为m2,在GH上运动的加速度为a2,则有:m2gsinθ﹣μm2gcosθ=m2a2…⑧P1与P2在GH上相遇时,设P2在GH上运动的距离为s2,则有:s2=a2t2…⑨联立⑤⑥⑦⑧⑨式,并代入数据得:s=s1+s2s=0.56m答:(1)小物体P1在水平轨道CD上运动速度v的大小为4m/s;(2)倾斜轨道GH的长度s为0.56m.点评:解答该题的关键是对这两个物体运动进行分段分析,分析清晰受力情况和各自的运功规律,利用运动定律和能量的转化与守恒定律进行解答;这是一个复合场的问题,要注意对场力的分析,了解洛伦兹力的特点,洛伦兹力不做功;知道电场力做功的特点,解答该题要细心,尤其是在数值计算上,是一道非常好的题.12.(19分)(2014•四川)如图所示,水平放置的不带电的平行金属板p和b相距h,与图示电路相连,金属板厚度不计,忽略边缘效应.p板上表面光滑,涂有绝缘层,其上O点右侧相距h处有小孔K;b板上有小孔T,且O、T在同一条竖直直线上,图示平面为竖直平面.质量为m,电荷量为﹣q(q>0)的静止粒子被发射装置(图中未画出)从O点发射,沿p板上表面运动时间t后到达K孔,不与其碰撞地进入两板之间.粒子视为质点,在图示平面内运动,电荷量保持不变,不计空气阻力,重力加速度大小为g.(1)求发射装置对粒子做的功;(2)电路中的直流电源内阻为r,开关S接“1”位置时,进入板间的粒子落在b板上的A点,A点与过K孔竖直线的距离为L.此后将开关S接“2”位置,求阻值为R的电阻中的电流强度;(3)若选用恰当直流电源,电路中开关S接“1”位置,使进入板间的粒子受力平衡,此时在板间某区域加上方向垂直于图面的、磁感应强度大小合适的匀强磁场(磁感应强度B只能在0~B m=范围内选取),使粒子恰好从b板的T孔飞出,求粒子飞出时速度方向与b板板面的夹角的所有可能值(可用反三角函数表示).考点:带电粒子在匀强磁场中的运动;动能定理;带电粒子在匀强电场中的运动.专题:电场力与电势的性质专题.分析:(1)由运动学的公式求出粒子的速度,然后由动能定理即可求得发射装置做的功;(2)粒子在匀强电场中做类平抛运动,将运动分解即可求得电场强度,由U=Ed求出极板之间的电势差,再由欧姆定律即可求得电流;(3)没有磁场时,进入板间的粒子受力平衡,粒子只能做匀速直线运动;加磁场后粒子在洛伦兹力的作用下做匀速圆周运动,结合运动的特点与运动轨迹中的几何关系即可求解.解答:解:(1)粒子的速度:…①由动能定理得:;(2)粒子在匀强电场中做类平抛运动,水平方向:L=v0t1…②竖直方向:…③a=…④U=Eh…⑤…⑥联立①②③④⑤⑥得:;(3)没有磁场时,进入板间的粒子受力平衡,粒子只能做匀速直线运动;加磁场后粒子在洛伦兹力的作用下做匀速圆周运动,其运动的轨迹可能如图:由于洛伦兹力提供向心力,得:…⑦磁感应强度最大时,粒子的偏转半径最小.最小为:⑧设此时粒子的速度方向与下极板之间的夹角是θ,则:⑨解得:sinθ≈,由⑦可得,若磁感应强度减小,则r增大,粒子在磁场中运动的轨迹就越接近下极板,粒子到达T的速度方向就越接近平行于下极板.所以粒子飞出时速度方向与b板板面的夹角的所有可能值是:0<θ≤arcsin.答:(1)发射装置对粒子做的功是;(2)阻值为R的电阻中的电流强度是;(3)使粒子恰好从b板的T孔飞出,粒子飞出时速度方向与b板板面的夹角的所有可能值是0<θ≤arcsin.点评:该题考查带电粒子在电场中的运动与带电粒子在磁场中的运动,分别按照平抛运动的规律与圆周运动的规律处理即可.。
高考物理曲线运动解题技巧及经典题型及练习题 ( 含答案 )一、高中物理精讲专题测试曲线运动1. 光滑水平轨道与半径为 R 的光滑半圆形轨道在 B 处连接,一质量为m 2 的小球静止在 B处,而质量为 m 1 的小球则以初速度 v 0 向右运动,当地重力加速度为g ,当 m 1 与 m 2 发生弹性碰撞后, m 2 将沿光滑圆形轨道上升,问:(1)当 m 1 与 m 2 发生弹性碰撞后, m 2 的速度大小是多少?(2)当 m 1 与 m 2 满足 m 2 km 1 (k0) ,半圆的半径 R 取何值时,小球 m 2 通过最高点 C后,落地点距离 B 点最远。
【答案】( 1) 2m 1v 0 /( m 1 +m 2) ( 2) R=v 0 2/2g(1+k)2【解析】【详解】( 1)以两球组成的系统为研究对象,由动量守恒定律得: m 1v 0=m 1v 1+m 2v 2,1 2121由机械能守恒定律得:m 1v 0 =m 1v 1 +2 22m 2v 22,解得: v 22m 1v 0 ; m 1 m 2(2)小球 m 2 从 B 点到达 C 点的过程中,由动能定理可得:1 2 1 2,-m 2g ×2R= m 2v 2 ′-2 m 2v 224gR(2v 0)解得: v 2v 2 4gR (2mv)2 2 4gR ;21m 1 m 21 k小球 m 2 通过最高点 C 后,做平抛运动,竖直方向: 2R= 1gt 2,2水平方向: s=v 2′t ,解得: s(2v 0 )2 4R 16R 2 ,1 k g由一元二次函数规律可知,当v 02 时小 m 2 落地点距 B 最远.Rk )22g(12. 如图所示,质量 m=3kg 的小物块以初速度秽 v 0=4m/s 水平向右抛出,恰好从 A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R= 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道 BD 平滑连接, A 与圆心 D 的连线与竖直方向成37角, MN 是一段粗糙的水平轨道,小物块与 MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
终极猜想—2014年高考最有可能考的50道题(物理试题)(30道选择题+20道非选择题)一、选择题部分(30道)1.甲乙两车同一平直道路上同向运动,其v -t 图像如图所示,图中△OPQ 和△OQT 的面积分别为s 1和s 2(s 2>s 1)。
初始时,甲车在乙车前方s 0处 A .若s 0=s 1,两车相遇1次 B .若s 0=s 2,两车相遇1次 C .若s 0<s 1,两车相遇2次D .若s 0=s 1+s 2,两车不会相遇2. 甲、乙两物体在同一直线上运动的v -t 图象如图所示。
下列有关说法正确的是A .t 1时刻之前,甲一直在乙的前方B .t 1时刻甲、乙相遇C .t 1时刻甲、乙加速度相等D .t 1之前,存在甲、乙加速度相等的时刻3.如图所示,倾角为α的等腰三角形斜面固定在水平面上,一足够长的轻质绸带跨过斜面的顶端铺放在斜面的两侧,绸带与斜面间无摩擦。
现将质量分别为M 、m (m M 〉)的小物块同时轻放在斜面两侧的绸带上.两物块与绸带间的动摩擦因数相等,且最大静摩擦力与滑动摩擦力大小相等。
在α角取不同值的情况下,下列说法正确的有 A.两物块所受摩擦力的大小总是相等 B.两物块不可能同时相对绸带静止 C M 可能相对绸带发生滑动 D. m不可能相对斜面向上滑动t14.如图所示,光滑的夹角为θ=30°的三角杆水平放置,两小球A 、B 分别穿在两个杆上,两球之间有一根轻绳连接两球,现在用力将小球B 缓慢拉动,直到轻绳被拉直时,测出拉力F =10 N ,则此时关于两个小球受到的力的说法正确的是(两小球重力均不计)A .小球A 受到杆对A 的弹力、绳子的张力B .小球A 受到的杆的弹力大小为20 NC .此时绳子与穿有A 球的杆垂直,绳子张力大小为2033 ND .小球B 受到杆的弹力大小为2033 N5.如图a 所示,水平面上质量相等的两木块A 、B ,用一轻弹簧相连,这个系统处于平衡状态,现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动(如图b),研究从力F 刚作用在木块A 瞬间到木块B 刚离开地面瞬间的这一过程,并选定该过程中木块A 的起点位置为坐标原点,则下面图中能正确表示力F 和木块A 的位移x 之间关系的图是6.质量为m 的物体放在一水平放置的粗糙木板上,缓慢抬起木板的一端,在如图所示的几个图线中,哪一个最能表示物体的加速度大小与木板倾角的关系7.如图所示,将一质量为m 的小球从A 点以初速度v 斜向上抛出,先后经过B 、C 两点。
专题四曲线运动(2017~2018年)20170115.发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响)。
速度较大的球越过球网,速度较小的球没有越过球网,其原因是A.速度较小的球下降相同距离所用的时间较多B.速度较小的球在下降相同距离时在竖直方向上的速度较大C.速度较大的球通过同一水平距离所用的时间较少D.速度较大的球在相同时间间隔内下降的距离较大2018034.在一斜面顶端,将甲乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。
甲球落至斜面时的速率是乙球落至斜面时速率的A.2倍B.4倍C.6倍D.8倍(2016~2014年)1.(2016·全国卷Ⅰ,18,6分)(难度★★)(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变2.(2016·全国卷Ⅱ,16,6分)(难度★★★)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短。
将两球拉起,使两绳均被水平拉直,如图所示。
将两球由静止释放。
在各自轨迹的最低点()A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度3.(2016·江苏单科,2,3分)(难度★★)有A、B两小球,B的质量为A的两倍,现将它们以相同速率沿同一方向抛出,不计空气阻力,图中①为A的运动轨迹,则B的运动轨迹是()A.①B.②C.③D.④4.(2015·安徽理综,14,6分)图示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动.图中所标出的α粒子在各点处的加速度方向正确的是()A.M点B.N点C.P点D.Q点5.(2015·新课标全国Ⅰ,18,6分)(难度★★★)一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是()A.L 12g 6h <v <L 1g 6h B.L 14g hv <(4L 21+L 22)g 6h C.L 12g 6h v <12(4L 21+L 22)g 6h D.L 14g h <v <12(4L 21+L 22)g6h 6.(2015·浙江理综,17,6分)(难度★★★)如图所示为足球球门,球门宽为L .一个球员在球门中心正前方距离球门s 处高高跃起,将足球顶入球门的左下方死角(图中P 点).球员顶球点的高度为h ,足球做平抛运动(足球可看成质点,忽略空气阻力),则()A .足球位移的大小x =L 24+s 2B .足球初速度的大小v 0=g 2h (L 24+s 2)C .足球末速度的大小v =g 2h (L 24+s 2)+4gh D .足球初速度的方向与球门线夹角的正切值tan θ=L 2s7.(2015·天津理综,4,6分)(难度★★)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是()A.旋转舱的半径越大,转动的角速度就应越大B.旋转舱的半径越大,转动的角速度就应越小C.宇航员质量越大,旋转舱的角速度就应越大D.宇航员质量越大,旋转舱的角速度就应越小8.(2015·福建理综,17,6分)(难度★★★)如图,在竖直平面内,滑道ABC关于B点对称,且A、B、C三点在同一水平线上.若小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则()A.t1<t2B.t1=t2C.t1>t2D.无法比较t1、t2的大小9.(2015·浙江理综,19,6分)(难度★★★)(多选)如图所示为赛车场的一个水平“U”形弯道,转弯处为圆心在O点的半圆,内外半径分别为r和2r.一辆质量为m 的赛车通过AB线经弯道到达A′B′线,有如图所示的①、②、③三条路线,其中路线③是以O′为圆心的半圆,OO′=r.赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max.选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则()A.选择路线①,赛车经过的路程最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等10.(2014·四川理综,4,6分)(难度★★)有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为A.kvk2-1B.v1-k2C.kv1-k2D.vk2-111.(2014·新课标全国Ⅱ,15,6分)(难度★★★)取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力.该物块落地时的速度方向与水平方向的夹角为()A.π6B.π4C.π3D.5π1212.(2014·新课标全国Ⅱ,17,6分)(难度★★★)如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg13.(2014·安徽理综,19,6分)(难度★★)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10m/s 2.则ω的最大值是()A.5rad/s B.3rad/s C .1.0rad/s D .0.5rad/s专题五万有引力与航天(2017~2018年)2017.314.2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行。
终极猜想六 对运动的合成分解和曲线运动的考查 (本卷共8小题,满分60分.建议时间:30分钟 ) 命题专家寄语 此部分的考查往往结合牛顿运动定律、动能定理等知识,综合性较强.熟练掌握运动的独立性原理,运动的合成与分解的规律是解决问题的关键.十六、曲线运动的特点 1.关于力和运动的关系,下列说法正确的是( ). A.做直线运动的物体一定受到外力的作用 B.做曲线运动的物体一定受到外力的作用 C.物体受到的外力越大,其运动速度越大 D.物体受到的外力越大,其运动速度的变化越快 2.质量为2 kg的质点在xy平面上做曲线运动,在x方向的速度图象和y方向的位移图象如图1所示,下列说法正确的是 ( ).图1 A.质点的初速度为4 m/s B.质点所受的合外力为3 N C.质点初速度的方向与合外力方向垂直 D.2 s末质点速度大小为6 m/s 十七、运动的独立性 3.跳伞表演是人们普遍喜欢的观赏性体育项目,当运动员从直升飞机由静止跳下后,在下落过程中不免会受到水平风力的影响,下列说法正确的是( ). A.风力越大,运动员下落时间越长,运动员可完成更多的动作 B.风力越大,运动员着地速度越大,有可能对运动员造成伤害 C.运动员下落时间与风力无关 D.运动员着地速度与风力无关 4.(2012·济南模拟)一物体运动规律是x=3t2 (m),y=4t2 (m),则下列说法中正确的是( ). A.物体在x轴和y轴方向上都是初速度为零的匀加速直线运动 B.物体的合运动是初速度为零、加速度为5 m/s2的匀加速直线运动 C.物体的合运动是初速度为零、加速度为10 m/s2的匀加速直线运动 D.物体的合运动是加速度为5 m/s2的曲线运动 十八、运动的合成与分解 5.A、B两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体A以v1的速度向右匀速运动,当绳被拉成与水平面夹角分别是α、β时,如图2所示.物体B的运动速度vB为(绳始终有拉力) ( ). 图2 A.v1sin α/sin β B.v1cos α/sin β C.v1sin α/cos β D.v1cos α/cos β 6.民族运动会上有一骑射项目如图3所示,运动员骑在奔跑的马上,弯弓放箭射击侧向的固定目标.假设运动员骑马奔驰的速度为v1,运动员静止时射出的弓箭速度为v2,跑道离固定目标的最近距离为d,要想命中目标且射出的箭在空中飞行时间最短,则( ). A.运动员放箭处离目标的距离为图3 B.运动员放箭处离目标的距离为 C.箭射到固定目标的最短时间为 D.箭射到固定目标的最短时间为 7.已知河水的流速为v1,小船在静水中的速度为v2,且v2>v1,图4中用小箭头表示小船及船头的指向,则能正确反映小船在最短时间内渡河、最短位移渡河的情景图示依次是( ). 图4 A. B. C. D. 8.一人一猴在表演杂技,如图5所示,直杆AB长12 m,猴子在直杆上由A向B匀速向上爬,同时人顶着直杆水平匀速移动,已知在10 s内,猴子由A运动到B,而人也由甲位置运动到了乙位置,已知s=9 m,求: (1)猴子对地的位移;图5 (2)猴子对人的速度,猴子对地的速度; (3)若猴子从静止开始匀加速上爬,其他条件不变,试在图中画出猴子运动的轨迹.参考答案 【终极猜想六】 1.BD [若物体做匀速直线运动可以不受外力作用,所以A错.做曲线运动的物体,加速度不为零,一定受到外力的作用,B对.物体受到的外力越大,只能说明其加速度越大,C错,D对.] 2.B [由x方向的速度图象可知,在x方向的加速度为1.5 m/s2,受力Fx=3 N,由y方向的位移图象可知在y方向做匀速直线运动,速度为vy=4 m/s,受力Fy=0.因此质点的初速度为5 m/s,A选项错误;受到的合外力为3 N,B选项正确;显然,质点初速度方向与合外力方向不垂直,C选项错误;2 s末质点速度应该为v= m/s=2 m/s,D选项错误.] 3.BC [运动员下落过程中,下落时间仅与竖直方向的运动有关,与水平方向的运动无关,即A错,C正确.着地速度是竖直方向速度与风速的合成,即B正确,D错.] 4.AC [由x=3t2及y=4t2知物体在x、y方向上的初速度为0,加速度分别为 ax=6 m/s2,ay=8 m/s2,故a= =10 m/s2.故A、C正确.] 5.D [设物体B的运动速度为vB,此速度为物体B合运动的速度,根据它的实际运动效果,两分运动分别为:沿绳收缩方向的分运动,设其速度为v绳B;垂直绳方向的圆周运动,速度分解如图所示,则有 vB= 物体A的合运动对应的速度为v1,它也产生两个分运动效果,分别是:沿绳伸长方向的分运动,设其速度为v绳A;垂直绳方向的圆周运动,它的速度分解如图所示,则有 v绳A=v1cos α 由于对应同一根绳,其长度不变, 故 v绳B=v绳A 根据三式解得 vB=v1cos α/cos β.选项D正确.] 6.C [要想以箭在空中飞行的时间最短的情况下击中目标,v2必须垂直于v1,并且v1、v2的合速度方向指向目标,如图所示,故箭射到目标的最短时间为,C对,D错;运动员放箭处离目标的距离为 又s=v1t=v1·, 故 = =,A、B错误.] 7.C [最短时间过河船身应垂直岸,对地轨迹应斜向下游.对;最短路程过河船身应斜向上游而船对岸轨迹垂直岸,对,所以选C.] 8.解析 (1)相对于地面,猴子参与沿杆上升和随杆水平移动的两个运动,在爬到杆顶的过程中,满足:s′==m=15 m. (2)由于猴子和人在水平方向运动情况相同,保持相对静止,因此猴子对人的速度v1= m/s=1.2 m/s,猴子对地的速度v= =m/s=1.5 m/s. (3)由于猴子向上匀加速运动,加速度(或外力)方向向上,因此,运动轨迹向上弯曲,其轨迹如图所示. 答案 (1)15 m (2)1.2 m/s 1.5 m/s (3)见解析图 高考学习网: 高考学习网:。
2014高考物理预测题型专项讲解及全解全析5一、单项选择题1.如图1所示的x-t图象和v-t图象中,给出四条曲线1、2、3、4代表四个不同物体的运动情况,关于它们的物理意义,下列描述正确的是()图1A.图线1表示物体做曲线运动B.x-t图象中t1时刻v1>v2C.v-t图象中0至t3时间内3和4的平均速度大小相等D.两图象中,在t2、t4时刻2、4开始反向运动答案 B解析图线1表示的是变速直线运动,A错.x-t图线的斜率表示速度,B正确.v-t 图线和t轴围成的面积表示位移的大小,可得0至t3时间内,v3<v4,C错.t2时刻表示物体开始折返,t4时刻表示物体开始做减速运动,但没有折返,故D错.2.磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈.当以速度v0刷卡时,在线圈中产生感应电动势,其E-t关系如图2所示.如果只将刷卡速度改为v02,线圈中的E-t关系图可能是()图2答案 D解析 当以不同速度刷卡时,磁卡的不同的磁化区经过线圈时,线圈内的磁通量的变化量ΔΦ是相同的,刷卡速度由v 0变为v 02时,完成相同磁通量变化的时间Δt 变为原来的2倍,由E =n ΔΦΔt 得线圈产生的感应电动势相应的都变为原来的12,故D 选项正确.3. 如图3所示的电路中,电源的电动势为E ,内阻为r ,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值.在t =0时刻闭合开关S ,经过一段时间后,在t =t 1时刻断开S.下列表示A 、B 两点间电压U AB 随时间t 变化的图象中,正确的是( )图3答案 B解析 由于自感现象,t =0时刻U AB 较大,随时间推移U AB 减小;t 1时刻断开S 时,L 中的电流方向不变,大小减小,经过L 、R 、D 形成回路,故U AB 方向改变,逐渐减小至0.故B 正确.4.如图4所示,正方形区域MNPQ 内有垂直纸面向里的匀强磁场.在外力作用下,一正方形闭合刚性导线框沿QN 方向匀速运动,t =0时刻,其四个顶点M ′、N ′、P ′、Q ′恰好在磁场边界中点.下列图象中能反映线框所受安培力F 的大小随时间t 变化规律的是( )图4答案 B解析 如图所示,当M ′N ′从初始位置运动到M 1′N 1′位置的过程 中,切割磁感线的有效长度随时间变化关系为:L 1=L -(L -2v t )= 2v t ,L 为导线框的边长.产生的电流I 1=BL 1v R ,导线框所受安培力F 1=BI 1L 1=B 2(2v t )2v R =4B 2v 3t 2R,所以F 1为t 的二次函数图象,是开口向上的抛物线.当Q ′P ′由CD 位置运动到M ′N ′位置的过程中,切割磁感线的有效长度不变,电流恒定.当Q ′P ′由M ′N ′位置运动到M 1′N 1′位置的过程中,切割磁感线的有效长度L 2=L -2v t ,产生的电流I 2=BL 2v R ,导线框所受的安培力F 2=B 2(L -2v t )2vR ,也是一条开口向上的抛物线,所以应选B.5. 图5甲是在温度为10℃左右的环境中工作的某自动恒温箱原理简图,箱内的电阻R 1=20kΩ,R 2=10 kΩ,R 3=40 kΩ,R t 为热敏电阻,它的电阻随温度变化的图线如图乙所示.当a 、b 端电压U ab ≤0时,电压鉴别器会令开关S 接通,恒温箱内的电热丝发热,使箱内温度升高;当a 、b 端电压U ab >0时,电压鉴别器会令开关S 断开,停止加热,则恒温箱内的温度可保持在( )图5A .10 ℃B .20 ℃C .35 ℃D .45 ℃答案 C解析 本题需要弄清分压电路和a 、b 两点的电势关系.由电路图可看出R 1、R 2和R 3、R t 并联,当R 1R 2=R 3R t ,U ab =0,解得R t =20 kΩ,由R t -t 图可查出t =35 ℃.当温度t >35 ℃时,由R t -t 图象可知R t 减小,R 1R 2<R 3R t ,a 点的电势大于b 点电势,a 、b 两点的电压U ab >0,电压鉴别器会令开关S 断开,停止加热.当温度t ≤35 ℃时,由R t -t 图象可知R t 增大,R 1R 2≥R 3R t,a 点的电势小于b 点的电势,a 、b 两点的电压U ab ≤0,电压鉴别器会令开关S 接通,恒温箱内的电热丝发热,使箱内温度升高,所以C 选项正确. 二、多项选择题6. 从同一地点同时开始沿同一方向做直线运动的两个物体A 、B 的速度—时间图象如图6所示.在0~t 0时间内,下列说法中正确的是( )图6A .A 、B 两个物体的加速度大小都在不断减小B .A 物体的加速度不断增大,B 物体的加速度不断减小C .A 、B 物体的位移都不断增大D .A 、B 两个物体的平均速度大小都大于v 1+v 22答案 AC解析 在v -t 图象中,斜率表示加速度,两图线的斜率都是逐渐减 小的,选项A 对,B 错;v -t 图象与时间轴所围成的面积代表位移, 由题图知,在0~t 0时间内,两者“面积”均不断增大,选项C 对; 一般做匀变速直线运动的物体才满足v =v 1+v 22,根据v -t 图象“面积”的意义,v A <v 1+v 22,v B >v 1+v 22,选项D 错.7. 如图7所示,光滑水平面上,木板m 1向左匀速运动.t =0时刻,木块m 2从木板的左端向右以与木板相同大小的速度滑上木板,t 1时刻,木块和木板相对静止,共同向左匀速运动.以v 1和a 1表示木板的速度和加速度;以v 2和a 2表示木块的速度和加速度,以向左为正方向,则下列图中正确的是()图7答案BD解析二者相对静止前,木块m2受到的摩擦力水平向左,木板m1受到的摩擦力水平向右,故a2方向为正,a1方向为负;根据题述“t1时刻,木块和木板相对静止,共同向左匀速运动”可知,木块的加速度大小大于木板的加速度大小,图象B、D正确.8.某同学将一直流电源的总功率P E、输出功率P R和电源内部的发热功率P r随电流I变化的图线画在了同一坐标上,如图8中的a、b、c所示.以下判断正确的是()图8A.直线a表示电源的总功率P E-I图线B.曲线c表示电源的输出功率P R-I图线C.电源的电动势E=3 V,内电阻r=1 ΩD.电源的最大输出功率P m=9 W答案AB解析电源的总功率P E=E·I,故为a图象;电源内部的发热功率P r=I2r,所以为b图象;电源的输出功率P R=EI-I2r,所以为c图象.根据题中数据可解得E=4 V,r=2 Ω;由题图知当I=1 A时电源的最大输出功率为P m=2 W.9.某电动汽车在平直公路上从静止开始加速,测得发动机功率随时间变化的图象和其速度随时间变化的图象分别如图9甲、乙所示,若电动汽车所受阻力恒定,则下列说法正确的是()图9A.测试时该电动汽车所受阻力为1.0×103 NB.该电动汽车的质量为1.2×103 kgC.在0~110 s内该电动汽车的牵引力做功为4.4×106 JD.在0~110 s内该电动汽车克服阻力做的功为2.44×106 J答案ABD解析由题图甲可知额定功率P=40 kW,而汽车的最大速度为40 m/s,P=F v m=F f v m,F f=Pv m=40×10340N=1.0×103N,A对;在50 s末,发动机已达额定功率,由牛顿第二定律得F-F f=ma,F=Pv1,v1=25 m/s,a=0.5 m/s2,解得m=1.2×103 kg,B对;由于0~110 s内发动机功率不恒定,不能直接用公式W=Fl求出牵引力做的功,应用动能定理W牵-W f=12m v2m,在P-t图象中图象与坐标轴包围的面积表示功,W牵=(12×50×40+60×40)×103 J=3.4×106 J,W f=W牵-12m v2m=2.44×106 J,C错,D对.三、非选择题10.如图10甲所示,光滑水平面上的O处有一质量为m=2 kg物体.物体同时受到两个水平力的作用,F1=4 N,方向向右,F2的方向向左大小如图乙所示,x为物体相对O点的位移.物体从静止开始运动.问:(1)当位移为x=0.5 m时物体的加速度多大?(2)物体在x=0至x=2 m内何位置,物体的加速度最大?最大值为多少?(3)物体在x=0至x=2 m内何位置,物体的速度最大?最大值为多少?图10答案见解析解析(1)由题图乙可知F2与x的函数关系式为F2=(2+2x) N当x =0.5 m 时,F 2=(2+2×0.5) N =3 N F 1-F 2=maa =F 1-F 2m =4-32 m/s 2=0.5 m/s 2(2)物体所受的合力为F 合=F 1-F 2=4-(2+2x ) N =(2-2x ) N 作出F 合-x 图如图所示从图中可以看出,在0到2 m 范围内 当x =0时,物体有最大加速度a 0. F 0=ma 0a 0=F 0m =22m/s 2=1 m/s 2当x =2 m 时,物体也有最大加速度a 2. F 2=ma 2a 2=F 2m =-22 m/s 2=-1 m/s 2负号表示加速度方向向左.(3)当物体的加速度为零时速度最大.从上图中可以看出,当x =1 m 时,a 1=0,速度v 1最大.从x =0至x =1 m 内合力所做的功 W 合=12F 合x =12×2×1 J =1 J根据动能定理,有E k1=W 合=12m v 21=1 J所以当x =1 m 时,物体的速度最大,为v 1=2E k1m=2×12m/s =1 m/s. 11.如图11甲所示,质量M =1 kg 的薄木板静止在水平面上,质量m =1 kg 的铁块(可视为质点)静止在木板的右端.设最大静摩擦力等于滑动摩擦力,已知木板与水平面间的动摩擦因数μ1=0.05,铁块与木板之间的动摩擦因数μ2=0.2,重力加速度g =10 m/s 2.现给铁块施加一个水平向左的力F ,图11(1)若力F 恒为4 N ,经过时间1 s ,铁块运动到木板的左端,求木板的长度;(2)若力F 从零开始逐渐增加,且铁块始终在木板上没有掉下来.试通过分析与计算,在图乙中作出铁块受到的摩擦力F f 随力F 大小变化的图象. 答案 (1)0.5 m (2)见解析图解析 (1)对铁块,由牛顿第二定律得F -μ2mg =ma 1 对木板,由牛顿第二定律得μ2mg -μ1(M +m )g =Ma 2 设木板的长度为L ,经时间t 铁块运动到木板的左端,则 x 铁=12a 1t 2x 木=12a 2t 2又x 铁-x 木=L联立以上各式并代入数据解得L =0.5 m(2)①当F ≤μ1(m +M )g =1 N 时,系统没有被拉动,静摩擦力与外力成正比且相等,即F f =F②当F >μ1(m +M )g =1 N 时,若M 、m 相对静止,铁块与木板有相同的加速度a ,则F -μ1(m +M )g =(m +M )a F -F f =ma 解得F =2F f -1 N此时F f ≤μ2mg =2 N ,即F ≤3 N 所以当1 N<F ≤3 N 时,F f =F2+0.5 N③当F >3 N 时,M 、m 相对滑动,此时铁块受到的摩擦力为F f =μ2mg =2 N F f -F 图象如图所示.。
2014年高考物理真题分类汇编:曲线运动20. [2014新课标全国卷I ]如图所示,两个质量均为 m 的小木块a 和b (可视为质点) 放在水平圆盘上,a 与转轴00的距离为I , b 与转轴的距离为 21.木块与圆盘的最大静摩擦 用3表示圆盘转动的角速度.下列说法正确的是( )A . b 一定比a 先开始滑动B . a 、b 所受的摩擦力始终相等 20. AC [解析]本题考查了圆周运动与受力分析.a 与b 所受的最大摩擦力相等,而b 需要的向心力较大,所以 b 先滑动,A 项正确;在未滑动之前,a 、b 各自受到的摩擦力等 于其向心力,因此 b 受到的摩擦力大于 a 受到的摩擦力,B 项错误;b 处于临界状态时 kmg =m 3 2 - 2I ,解得,k gl , C 项正确;w=- ,2k |g 小于a 的临界角速度,a 所受摩擦力没 有达到最大值 ,D 项错误.4. [2014四川卷]有一条两岸平直、河水均匀流动、流速恒为 v 的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间 的比值为k ,船在静水中的速度大小相同,则小船在静水中的速度大小为( )kvvkvvA._k 2—1 B_1— k 2 C_1 - k 2 D._k 2— 1-J -J4. B [解析]设河岸宽为d ,船速为u ,则根据渡河时间关系得-:2" 2= k 解得uuJ u 2— v 2 1— k 2,所以B 选项正确.17. [2014新课标n 卷]如图,一质量为 M 的光滑大圆环,用一细轻杆固定在竖直平面 内;套在大环上质量为 m 的小环(可视为质点),从大环的最高处由静止滑下. 重力加速度大小为 g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为 ( )A . Mg — 5mgB . Mg + mgC . Mg + 5mgD . Mg + 10mg17. C [解析]小环在最低点时,对整体有T — (M + m )g = ,其中T 为轻杆对大环的 1拉力;小环由最咼处运动到最低处由动能定理得mg 2R =^mv 2— 0,联立以上二式解得 T =Mg + 5mg ,由牛顿第三定律知,大环对轻杆拉力的大小为 T = T = Mg + 5mg , C 正确.6. [2014 •苏卷]为了验证做平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验.小锤打击弹性金属片,A 球水平抛出,同时松开,自由下落.关于该实验,下列说法中正确的有( )力为木块所受重力的 k 倍,重力加速度大小为 g 若圆盘从静止开始绕转轴缓慢地加速转动 kmgb 开始滑动的临界角速度C .a 所受摩擦力的大小为A .两球的质量应相等B .两球应同时落地C.应改变装置的高度,多次实验D •实验也能说明A球在水平方向上做匀速直线运动6. BC [解析]由牛顿第二定律可知,只在重力作用下的小球运动的加速度与质量无关,故A 错误;为了说明做平抛运动的小球在竖直方向上做自由落体运动,应改变装置的高度,多次实验,且两球应总能同时落地,故B、C正确;该实验只能说明做平抛运动的小球在竖直方向上做自由落体运动,而不能说明小球在水平方向上做匀速直线运动,故D错误.8. [2014四川卷](1)小文同学在探究物体做曲线运动的条件时,将一条形磁铁放在桌面的不同位置,让小钢珠在水平桌面上从同一位置以相同初速度v o运动,得到不同轨迹.图中a、b、c、d为其中四条运动轨迹,磁铁放在位置A时,小钢珠的运动轨迹是_________ (填轨迹字母代号),磁铁放在位置B时,小钢珠的运动轨迹是_____________ (填轨迹字母代号)•实验表明,当物体所受合外力的方向跟它的速度方向____________ (选填“在”或“不在”)同一直线上时,物体做曲线运动.8. (1)b c 不在21. [2014安徽卷](18分)I •图1是“研究平抛物体运动”的实验装置图,通过描点画出平抛小球的运动轨迹.(1) 以下是实验过程中的一些做法,其中合理的有___________a. 安装斜槽轨道,使其末端保持水平b. 每次小球释放的初始位置可以任意选择c. 每次小球应从同一高度由静止释放d. 为描出小球的运动轨迹,描绘的点可以用折线连接(2) 实验得到平抛小球的运动轨迹,在轨迹上取一些点,以平抛起点O为坐标原点,测量它们的水平坐标x和竖直坐标y,图2中yx2图像能说明平抛小球运动轨迹为抛物线的是图2图3(3) 图3是某同学根据实验画出的平抛小球的运动轨迹,0为平抛的起点,在轨迹上任取三点A、B、C,测得A、B两点竖直坐标y i为5.0 cm,y为45.0 cm,A、B两点水平间距A x为40.0 cm.则平抛小球的初速度v o为________________ m/s,若C点的竖直坐标y3为60.0 cm,则小球在C点的速度v c为 __________ m/s(结果保留两位有效数字,g取10 m/s2).21.I.D3(1)ac (2)c (3)2.0 4.0[解析]I .本题考查“研究平抛物体的运动”实验原理、理解能力与推理计算能力. (1)要保证初速度水平而且大小相等,必须从同一位置释放,因此选项a、c正确.⑵根据平抛位移公式x= V0t与y = ~gt2,可得y =翁,因此选项c正确.⑶将公式y= 2X0变形可得‘2人0, AB水平距离厶x=V0,可得V0 =2.0 m/s , C点竖直速度V y= ,2gy3,根据速度合成可得v c= ,2gy3 + v0 = 4.0 m/s.[2014天津卷](1)半径为R的水平圆盘绕过圆心O的竖直轴匀速转动,A为圆盘边缘上一点.在O的正上方有一个可视为质点的小球以初速度v水平抛出,半径OA的方向恰好与v的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h = ____________________圆盘转动的角速度大小3= _________ .gR22n n *⑴舜R (n € N )19 .[2014安徽卷]如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度3转动,盘面上离转轴距离 2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为丁(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30° g取10 m/s2.则3的最大值是()A. . 5 rad/sB. ,3 rad/sC. 1.0 rad/s D . 0.5 rad/s19. C [解析]本题考查受力分析、应用牛顿第二定律、向心力分析解决匀速圆周运动 问题的能力•物体在最低点最可能出现相对滑动,对物体进行受力分析,应用牛顿第二定律,有 卩 mcos 0- mgsin # m w 2r ,解得 w = 1.0 rad/s ,选项 C 正确。
终极猜想五 万有引力定律的应用(本卷共12小题,满分60分.建议时间:30分钟 )命题老师寄语万有引力定律应用问题是每年高考中必考的内容,主要有以下三类考查方式. (1)以万有引力提供向心力为主线考查行星的运动.(2)将万有引力定律应用到航天技术中去,考查宇宙速度、人造卫星. (3)同步卫星的发射及轨道特点. 【题组1】 行星的运动m 动.已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的 ( ).A .线速度v =GM RB .角速度ω=gRC .运行周期T =2πR gD .向心加速度a =Gm R2解析 由GMm R 2=m v 2R =m ω2R =m 4π2T 2R =mg =ma 得v =GMR ,A 对;ω=gR,B 错;T =2πR g ,C 对;a =GMR2,D 错. 答案 AC2.(2012·重庆卷,18)(单选)冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O 点运动的( ).A .轨道半径约为卡戎的17B .角速度大小约为卡戎的17C .线速度大小约为卡戎的7倍D .向心力大小约为卡戎的7倍解析 本题是双星问题,设冥王星的质量、轨道半径、线速度大小分别为m 1、r 1、v 1,卡戎的质量、轨道半径、线速度大小分别为m 2、r 2、v 2,由双星问题的规律可得,两星间的万有引力分别给两星提供做圆周运动的向心力,且两星的角速度相等,故B 、D 均错;由Gm 1m 2L 2=m 1ω2r 1=m 2ω2r 2(L 为两星间的距离),因此r 1r 2=m 2m 1=17,v 1v 2=ωr 1ωr 2=m 2m 1=17,故A 对,C 错. 答案 A3.(多选)一行星绕恒星做圆周运动.由天文观测可得,其运行周期为T ,速度为v .引力常量为G ,则( ).A .恒星的质量为v 3T2πGB .行星的质量为4π2v3GT2C .行星运动的轨道半径为vT2πD .行星运动的加速度为2πvT解析 由GMm r 2=mv 2r =m 4π2T 2r 得M =v 2r G =v 3T 2πG ,A 对;无法计算行星的质量,B 错;r =v ω=v2πT=vT 2π,C 对;a =ω2r =ωv =2πT v ,D 对. 答案 ACD【题组2】 人造地球卫星及宇宙速度4.(多选)关于第一宇宙速度,下列说法正确的是( ).A .它是人造地球卫星绕地球飞行的最小速度B .它是近地圆形轨道上人造地球卫星的运行速度C .它是能使卫星进入近地圆形轨道的最小发射速度D .它是卫星在椭圆轨道上运行时近地点的速度解析 运行速度是卫星在圆形轨道上运行的线速度,由万有引力提供向心力得GMmr 2=m v 2r ,进而得运行速度v =GMr.由此可知卫星运行的轨道越高(即卫星的轨道半径r 越大),其运行速度越小.发射速度是指在地面上将卫星发射出去时的速度,虽然轨道越高时运行速度越小,但由于人造地球卫星在发射过程中要克服地球引力做功,势能增大,所以要想将卫星发射到离地面越远的轨道上,所需要的发射速度就越大,例如,要使物体摆脱地球引力,需要的发射速度v ≥11.2 km/s.所以,人造地球卫星发射速度越大,其运行轨道离地面高度越大,其运行速度反而越小.只有当卫星贴近地面运行时,其发射速度与运行速度才相等,此时发射速度最小,而运行速度却最大.由以上分析知,答案为B 、C. 答案 BC5.(多选)2012年4月30日,我国用一枚“长征3号乙”火箭成功发射一颗北斗导航卫星.若该卫星绕地球做匀速圆周运动的半径为r ,地球质量为M ,半径为R ,万有引力常量为G ,下列表述正确的是( ).图1A .卫星的线速度大小为GMr B .卫星的向心加速度大小为GM R 2C .若某一卫星加速,则该卫星将做离心运动D .卫星处于完全失重的状态,不受地球的引力作用 答案 AC6.(多选)质量为m 的人造卫星在地面上未发射时的重力为G 0,它在离地面的距离等于地球半径R 的圆形轨道上运行时 ( ). A .周期为4π2mRG 0B .速度为2G 0RmC .动能为14G 0RD .重力为0解析 卫星在地面上时G 0=GMmR 2,在离地面的距离等于地球半径R 的圆形轨道上运行时,由G mM 4R 2=m v 22R =m ·2R 4π2T 2=G 04可得,v =G 0R2m,T =4π2mRG 0,动能为E k =14G 0R ,重力为G 04,故A 、C 项正确. 答案 AC7.(单选)某人在一星球上以速率v 竖直上抛一物体,经时间t 落回手中.已知该星球半径为R ,则至少以多大速度沿星球表面发射,才能使物体不落回该星球?( ).A.vtrB .2vRtC .vR tD .vR 2t解析 小球运动到最高点的时间为t2,设星球表面的加速度的大小为g ′,得g ′t2=v ①设以v ′速度沿星球表面发射,才能使物体不落回该星球.由万有引力定律得mg ′=m v ′2r② ①②两式联立得v ′=2vRt选项B 正确. 答案 B8.(单选)火星是太阳系中的一颗行星,它有众多卫星.观察测出:火星绕太阳做圆周运动的半径为r 1、周期为T 1;火星的某一卫星绕火星做圆周运动的半径为r 2、周期为T 2.则根据题中给定条件( ).A .能够求出火星的第一宇宙速度B .能够求出太阳的第一宇宙速度C .能够求出太阳与火星的质量之比D .可以断定r 31T 21=r 32T 22解析 火星绕太阳做圆周运动,由r 1、T 1可以写出太阳质量的表达式,卫星绕火星做圆周运动,由r 2、T 2可以写出火星质量的表达式,从而求出太阳与火星的质量之比,选项C 正确;因太阳的半径不知道,因而无法求出太阳的第一宇宙速度,选项B 错误;同理,因火星的半径不知道,无法求出火星的第一宇宙速度,选项A 错误;因火星与卫星不是绕同一中心天体运动的,所以,开普勒第三定律不适用,选项D 错误. 答案 C【题组3】 同步卫星9.(单选)由于通信和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的( ).A .质量可以不同B .轨道半径可以不同C .轨道平面可以不同D .速率可以不同解析 同步卫星运行时,万有引力提供向心力,GMm r 2=m 4π2T 2r =m v 2r ,故有r 3T 2=GM4π2,v =GMr,由于同步卫星运行周期与地球自转周期相同,故同步卫星的轨道半径大小是确定的,速度v 也是确定的,同步卫星的质量可以不同.要想使卫星与地球自转同步,轨道平面一定是赤道平面.故只有选项A 正确.答案 A10.(多选)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是 ( ).A .甲的周期大于乙的周期B .乙的速度大于第一宇宙速度C .甲的加速度小于乙的加速度D .甲在运行时能经过北极的正上方解析 地球卫星绕地球做圆周运动时,万有引力提供向心力,由牛顿第二定律知G Mm r2=m 4π2rT2,得T =2πr 3GM.r 甲>r 乙,故T 甲>T 乙,选项A 正确;贴近地表运行的卫星的速度称为第一宇宙速度,由G Mm r 2=mv 2r知v =GMr,r 乙>R 地,故v 乙比第一宇宙速度小,选项B 错误;由G Mmr 2=ma ,知a =GMr 2,r 甲>r 乙,故a 甲<a 乙,选项C 正确;同步卫星在赤道正上方运行,故不能通过北极正上方,选项D 错误. 答案 AC11.(多选)已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G .有关同步卫星,下列表述正确的是( ). A .卫星距地面的高度为3GMT 24π2B .卫星的运行速度小于第一宇宙速度C .卫星运行时受到的向心力大小为G Mm R2D .卫星运行的向心加速度小于地球表面的重力加速度解析 天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀速圆周运动,即F 引=F 向=m v 2r =4π2mr T 2.当卫星在地表运行时,F 引=GMmR2=mg (此时R 为地球半径),设同步卫星离地面高度为h ,则F 引=GMmR +h 2=F 向=ma 向<mg ,所以C 错误,D正确.由GMmR +h 2=mv 2R +h 得,v =GM R +h <GM R ,B 正确.由GMm R +h 2=4π2m R +h T2,得R +h =3GMT 24π2,即h =3GMT 24π2-R ,A 错.答案 BD12.(单选)有a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球表面一起转动,b 处于地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图2,则有( ).图2A .a 的向心加速度等于重力加速度gB .c 在4 h 内转过的圆心角是π6C .b 在相同时间内转过的弧长最长D .d 的运动周期有可能是20 h解析 对于卫星a ,根据万有引力定律、牛顿第二定律可得,GMm r2=m ω2r +mg ,故a 的向心加速度小于重力加速度g ,A 项错;由c 是同步卫星可知c 在4 h 内转过的圆心角是π3,B 项错;由GMm r 2=m v2r得,v =GMr,故轨道半径越大,线速度越小,故卫星b 的线速度大于卫星c 的线速度,卫星c 的线速度大于卫星d 的线速度,而卫星a 与同步卫星c 的周期相同,故卫星c 的线速度大于卫星a 的线速度,C 项正确;由GMm r 2=m ⎝ ⎛⎭⎪⎫2πT 2r得,T =2πr 3GM,轨道半径r 越大,周期越长,故卫星d 的周期大于同步卫星c 的周期,故D 项错. 答案 C。