育才中学高二数学新课标选修2-2复数单元测试题
- 格式:doc
- 大小:185.00 KB
- 文档页数:5
一、选择题1.下列各式的运算结果为纯虚数的是 A .(1+i)2 B .i 2(1-i)C .i(1+i)2D .i(1+i)2.已知复数12z =-,则z z +=( )A .12-- B .12-+C .12+D .12- 3.复数z 满足23z z i +=-,则z =( )A .1i +B .1i -C .3i +D .3i -4.若C z ∈,且22i 1z +-=,则22i z --的最小值是( ) A .2B .3C .4D .55.设复数()()2cos sin z a a i θθ=+++(i 为虚数单位).若对任意实数θ,2z ≤,则实数a 的取值范围为( )A .10,5⎡⎤⎢⎥⎣⎦B .[]1,1-C .⎡⎢⎣⎦D .11,55⎡⎤-⎢⎥⎣⎦6.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( )A .10101010i --B .10111010i --C .10111012i --D .10111010i - 7.已知i 为虚数单位,(1+i )x =2+yi ,其中x ,y ∈R ,则|x +yi |=A .B .2C .4D8.在下列命题中,正确命题的个数是( ) ①两个复数不能比较大小;②复数1z i =-对应的点在第四象限;③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±;④若221223()()0z z z z -+-=,则123z z z ==.A .0B .1C .2D .39.在复平面内,复数201812z i i=++对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限10.设复数11iz i,那么在复平面内复数1z -对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.已知复数z 满足()2z i i i -=+,则z =( )A BC D12.若11iai++是纯虚数(其中i 为虚数单位),则实数a 等于( ) A .1B .1-C .2D .2-二、填空题13.若i 为虚数单位,则计232020232020i i i i ++++=___________.14.若12ω=+(i 为虚数单位),则3ω=_______. 15.在复变函数中,自变量z 可以写成(cos sin )i z r i r e θθθ=⨯+=⨯,其中||r z =,θ是z 的辐角.点(),x y 绕原点逆时针旋转θ后的位置可利用复数推导,点()2,3A 绕原点逆时针旋转3arcsin5得A '_______;复变函数ln (,0)z z C z ω=∈≠,i ωπ=,z =_______.16.已知复数z 满足|z 2-2i||z|+=(i 为虚数单位),则z 在复平面内对应的点的坐标(x ,y )的轨迹方程为__________.17.复数2021111i z i +⎛⎫=-+ ⎪-⎝⎭的辐角主值为________.18.设1x ,2x 是实系数一元二次方程20ax bx c ++=的两个根,若1x 是虚数,212x x 是实数,则24816321111112222221x x x x x x S x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭______.19.若复数z 满足||1z =,则()()z i z i +-的最大值是________. 20.复数(1)(z i i i =-为虚数单位)的共轭复数为________.三、解答题21.设复数(,0)za bi ab R b =+∈≠且,且1z zω=+,12ω-<<.(1)求复数z 的模;(2)求复数z 实部的取值范围; (3)设11zu z-=+,求证:u 为纯虚数. 22.已知复数z 使得2z i R +∈,2zR i∈-,其中i 是虚数单位. (1)求复数z 的共轭复数z ;(2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围. 23.已知关于t 的一元二次方程2(2)2()0(,)t i t xy x y i x y ++++-=∈R . (1)当方程有实根时,求点(,)x y 的轨迹; (2)求方程实根的取值范围.24.在复平面内复数1z 、2z 所对应的点为1Z 、2Z ,O 为坐标原点,i 是虚数单位. (1)112z i =+,234z i =-,计算12z z ⋅与12OZ OZ ⋅;(2)设1z a bi =+,2z c di =+(,,,a b c d ∈R ),求证:1212OZ OZ z z ⋅≤⋅,并指出向量1OZ 、2OZ 满足什么条件时该不等式取等号.25.已知复数1sin 2i z x λ=+,2()i z m m x =+(,,m x λ∈R ),且12z z =. (1)若0λ=且0πx <<,求x 的值; (2)设()f x λ=;①求()f x 的最小正周期和单调递减区间; ②已知当x α=时,12λ=,试求cos(4)3πα+的值.26.若z C ∈,42i z z +=,sin sin i ωθθ=-(θ为实数),i 为虚数单位. (1)求复数z ; (2)求z ω-的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用复数的四则运算,再由纯虚数的定义,即可求解. 【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确; 对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确; 对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确; 对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题.2.C解析:C 【解析】分析:首先根据题中所给的复数z ,可以求得其共轭复数,并且可以求出复数的模,代入求得12z z +=+,从而求得结果.详解:根据122z =--,可得12z =-+,且1z ==,所以有1112222z z +=-++=+,故选C.点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的共轭复数、复数的模、以及复数的加法运算,属于基础题目.3.A解析:A 【解析】令22()331,1z a bi z z a bi a bi a bi i a b =+∴+=++-=-=-∴==4.B解析:B 【分析】由复数的模的几何意义,可得z 在复平面的轨迹是以()2,2-为圆心,以1为半径的圆,根据圆的几何性质可得结果. 【详解】设i z x y =+(),x y ∈R ,则()22i 22i 1z x y +-=++-=, 所以()()22221x y ++-=,表示圆心为()2,2-,半径为1r =的圆.()()22i 22i z x y --=-+-=,表示点(),x y 和()2,2之间的距离,故()min 22i 22413z r --=---=-=. 故选:B. 【点睛】本题考查复数的模的几何意义,考查圆的性质,考查学生的计算求解能力,属于中档题.5.C解析:C 【分析】由1212z z z z +≤+可知()()cos sin 2cos sin 2i a ai i a ai θθθθ+++≤+++,令max2z≤,即可求出a 的范围.【详解】因为对任意θ,2z ≤,则max2z≤,()()cos sin 2cos sin 21z i a ai i a ai θθθθ=+++≤+++=,12∴≤,解得a ≤≤故选:C. 【点睛】本题考查向量模的大小关系,以及不等式的恒成立问题,属于中档题.6.B解析:B 【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案. 【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i iii i i--=+++++⋅⋅⋅+-+-=-,可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-,可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B. 【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.7.A解析:A 【解析】 【分析】首先求得x ,y 的值,然后求解复数的模即可. 【详解】由题意可得:2x xi yi +=+,结合复数的充分必要条件可知:2x x y =⎧⎨=⎩,则2x y ==,22x yi i +=+== 本题选择A 选项. 【点睛】本题主要考查复数相等的充分必要条件,复数模的求解等知识,意在考查学生的转化能力和计算求解能力.8.A【解析】对于选项①,不能说两个复数不能比较大小,如复数3和4就可比较大小,所以该命题是错误的.对于选项②,复数1z i =-对应的点在第二象限,所以该命题是错误的.对于选项③,若()()22132x x x i -+++是纯虚数,则21x -=0且232x x ++≠0,所以x=1,所以该命题是错误的. 对于选项④,若()()2212230z z z z -+-=,可以123,0,1z i z z ===, 所以该命题是错误的. 故选A.9.C解析:C 【解析】因为201812z i i =++()()22231122555i i i i i i --=+=-=--+- ,复数201812z i i=++对应的点的坐标为31,55⎛⎫-- ⎪⎝⎭ ,故复数201812z i i=++对应的点位于第三象限,故选C. 10.C解析:C 【分析】先求出z i =-,11z i -=--,即得解. 【详解】由题得21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以11z i -=--,它对应的点的坐标为(1,1)--, 所以在复平面内复数1z -对应的点位于第三象限. 故选:C11.A解析:A 【分析】首先求得复数z ,然后求解其共轭复数并确定模即可. 【详解】 由题意可得:2211iz i i i i i+=+=-++=-,则1,z i z =+=故选A . 【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力.12.B【分析】设11ibi ai +=+,化简后利用复数相等列方程求解即可. 【详解】设()1,,1ibi a b R ai+=∈+, 所以()11i bi ai ab bi +=⋅+=-+,所以11ab b -=⎧⎨=⎩,解得11a b =-⎧⎨=⎩,故选:B . 【点睛】本题主要考查复数的乘法运算,考查复数相等的性质,属于基础题.二、填空题13.【分析】设两边乘以相减结合等比数列的求和公式和复数的乘除运算法则计算可得所求和【详解】设上面两式相减可得则故答案为:【点睛】本题考查数列的求和方法:错位相减法以及复数的运算考查等比数列的求和公式以及 解析:10101010i -【分析】设232020232020S i i i i =+++⋯+,两边乘以i ,相减,结合等比数列的求和公式和复数的乘除运算法则,计算可得所求和. 【详解】设232020232020S i i i i =+++⋯+, 2342021232020iS i i i i =+++⋯+,上面两式相减可得,2320202021(1)2020i S i i i i i -=+++⋯+-20202021(1)(11)20202020202011i i i i i i i i--=-=-=---,则(1)202020201010101012i i i S i i +=-=-=--. 故答案为:10101010i -. 【点睛】本题考查数列的求和方法:错位相减法,以及复数的运算,考查等比数列的求和公式,以及化简运算能力,属于中档题.14.-1【分析】先把转化为复数的三角形式再利用复数三角形式乘法运算法则进行解题即可【详解】解:复数对应的点在第一象限则所以所以所以故答案为:-1【点睛】本题主要考查由复数的代数形式转化为复数三角形式以及解析:-1 【分析】先把12ω=+转化为复数的三角形式,再利用复数三角形式乘法运算法则进行解题即可. 【详解】解:复数12ω=对应的点在第一象限,则1r ==,1cos 2θ=, 所以arg 3z π=,所以1cos isin 233ππω=+=+, 所以33cos sin cos isin 133333333i ππππππππω⎛⎫⎛⎫⎛⎫=+=+++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:-1. 【点睛】本题主要考查由复数的代数形式转化为复数三角形式以及复数三角形式的乘法运算法则,属于基础题.15.【分析】点对应的复数其中则对应的复数其中利用两角和差公式求得的坐标;由则化简可得【详解】点对应的复数其中则对应的复数其中则则故的坐标为;由则得故答案为:;【点睛】本题考查了复数的运算结合考查了两角和解析:118(,)55-1-【分析】点A 对应的复数sin )z i αα=+,其中cos αα==A '对应的复数)sin()]z i αβαβ'=+++,其中34sin ,cos 55ββ==,利用两角和差公式求得A '的坐标;由ln (,0)z z C z ω=∈≠,i ωπ=,则i z e π=cos sin i ππ=+,化简可得z . 【详解】点A 对应的复数sin )z i αα=+,其中cos ,sin 1313αα==,则A '对应的复数)sin()]z i αβαβ'=+++,其中34sin ,cos 55ββ==,则cos()cos cos sin sin 65αβαβαβ+=-=-,sin()sin cos cos sin αβαβαβ+=+=,则118)55z i '=+=-+,故A '的坐标为118(,)55-;由ln (,0)z z C z ω=∈≠,i ωπ=,则i z e π=cos sin i ππ=+, 得1z =-. 故答案为:118(,)55-;1- 【点睛】本题考查了复数的运算,结合考查了两角和的正弦、余弦公式,还考查了学生阅读理解能力,分析能力,运算能力,属于中档题.16.【分析】设复数根据模的计算公式得到化简即可求解【详解】设复数则所以整理得即在复平面内对应的点的坐标的轨迹方程为故答案为:【点睛】本题主要考查了复数的模的运算以及复数的表示及应用其中解答中熟记复数的模 解析:20x y -+=【分析】设复数(,)z x yi x y R =+∈=简即可求解. 【详解】设复数(,)z x yi x y R =+∈,则z =22(2)(2)z i x y i +-=++-==20x y -+=,即z 在复平面内对应的点的坐标(,)x y 的轨迹方程为20x y -+=. 故答案为:20x y -+=. 【点睛】本题主要考查了复数的模的运算,以及复数的表示及应用,其中解答中熟记复数的模的运算公式,准确运算是解答的关键,着重考查了计算能力.17.【分析】先化简再根据辐角主值的定义求解即可【详解】因为所以所以所以复数z 的辐角主值为故答案为:【点睛】本题主要考查了复数的基本运算与辐角主值的辨析属于基础题解析:34π 【分析】先化简2021111i z i +⎛⎫=-+ ⎪-⎝⎭再根据辐角主值的定义求解即可.【详解】因为11i i i +=-,所以2021202111i i i i +⎛⎫== ⎪-⎝⎭所以331cos sin44z i i ππ⎫=-+=+⎪⎭,所以复数z 的辐角主值为34π. 故答案为:34π【点睛】本题主要考查了复数的基本运算与辐角主值的辨析,属于基础题.18.-2【分析】设(s )则则利用是实数可得于是取则代入化简即可得出【详解】设(s )则则∵是实数∴∴∴∴∴取则∴则故答案为:【点睛】本题考查了实系数一元二次方程的虚根成对定理考查了复数的概念考查了复数的性解析:-2 【分析】设1i x s t =+(s ,t ∈R ,0t ≠).则2i x s t =-.则122x x s +=,2212x x s t =+.利用212x x 是实数,可得223s t =.于是122x x s +=,2212x x s t =+.2112210x x x x ⎛⎫++= ⎪⎝⎭,取12x x ω=,则210ωω++=,31ω=.代入化简即可得出. 【详解】设1i x s t =+(s ,t ∈R ,0t ≠).则2i x s t =-.则122x x s +=,2212x x s t =+.∵()223223122222i 33i i s t x s st s t t x s t s t s t+--==+-++是实数, ∴2330s t t -=, ∴223s t =.∴122x x s +=,2212x x s t =+.∴()22221212121242s x x x x x x x x =+=++=,∴122110x x x x ++=, 取12x x ω=, 则210ωω++=,∴31ω=. 则2481632248163211111122222211x x x x x x S x x x x x x ωωωωωω⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++=++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭220ωωωω=++++2=-.故答案为:2-. 【点睛】本题考查了实系数一元二次方程的虚根成对定理,考查了复数的概念,考查了复数的性质210ωω++=,属于中档题.19.【分析】设求出后再求其模利用可求模的最大值【详解】设则故其中当时故答案为:2【点睛】本题考查复数的乘法共轭复数以及复数的模处理复数的模的问题有两个思路:(1)利用复数的几何意义求解;(2)复数问题实 解析:2【分析】设,,z a bi a b R =+∈,求出()()z i z i +-后再求其模,利用221a b +=可求模的最大值. 【详解】设,,z a bi a b R =+∈,则()()()22()()111z i z i a b i a b i a b +-=+-+-=+-⎡⎤⎡⎤⎣⎦⎣⎦,故()()z i z i +-==[]1,1b ∈-.当1b =-时,max ()()2z i z i +-=, 故答案为:2. 【点睛】本题考查复数的乘法、共轭复数以及复数的模,处理复数的模的问题有两个思路:(1)利用复数的几何意义求解;(2)复数问题实数化即把复数的模的问题归结实部和虚部的问题(即实数范围内的问题),本题属于中档题.20.【分析】根据复数的乘法运算可求z 写出其共轭复数即可【详解】因为所以故填【点睛】本题主要考查了复数的运算共轭复数属于中档题 解析:1i -【分析】根据复数的乘法运算可求z,写出其共轭复数即可. 【详解】因为()1z i i =-1i =+, 所以 1z i =-, 故填1i - 【点睛】本题主要考查了复数的运算,共轭复数,属于中档题.三、解答题21.(1)1;(2)1,12⎛⎫- ⎪⎝⎭;(3)见解析【解析】分析:(1)由222211a b z a bi a b i z a bi a b a b ω⎛⎫⎛⎫=+=++=++- ⎪ ⎪+++⎝⎭⎝⎭,由12ω-<<得R ω∈,从而虚部为0,得221a b +=,进而可得解;(2)由(1)知()21,2a ω=∈-,从而求a 范围即可;(3)化简()()2222121a b biu a b ---=++,由(1)知221a b +=,则()22211bbu i i aa b=-=-+++,从而得证. 详解:(1)22222211a bi a b z a bi a bi a b i z a bi a b a b a b ω-⎛⎫⎛⎫=+=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭, 由12ω-<<得R ω∈, 则220bb a b-=+, 由0b ≠,解得221a b +=,所以1z ==,(2)由(1)知()21,2a ω=∈-,所以1,12a ⎛⎫∈- ⎪⎝⎭,即复数z 的实部的取值范围是1,12⎛⎫-⎪⎝⎭. (3)()()()()()()()()222212111111111a b bi a bi a bi a bi z u z a bi a bi a bi a b ---⎡⎤⎡⎤--+----⎣⎦⎣⎦====+++⎡⎤⎡⎤+++-++⎣⎦⎣⎦ , 由(1)知221a b +=,则()22211bbu i i aa b=-=-+++, 应为0b ≠,所以u 为纯虚数.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.22.(1)42i +;(2)()2,2-. 【分析】 (1)根据2z i R +∈、2zR i∈-,结合复数的加法、除法运算即可求出z ,进而由共轭复数的概念求得z ;(2) 复数()2z mi +在复平面上对应的点在第四象限,即对应复数的实部、虚部都小于0,解不等式即可求得m 的范围 【详解】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++ ∵2z i R +∈ ∴2y =-又22242255z x i x x i R i i -+-==+∈--, ∴4x =综上,有42z i =- ∴42z i =+(2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<<故,实数m 的取值范围是()2,2- 【点睛】本题考查了复数,利用复数的四则运算及共轭复数的概念求复数,另外依据复数所处的象限求参数范围23.(1)轨迹是以点(1,1)-为圆心.(2)[4,0]-. 【分析】(1)由复数相等的定义化简得出0t y x =-,将其代入200220t t xy ++=中即可得出所求点的轨迹方程;(2)将方程的根转化为直线与圆的交点问题,由圆心到直线的距离小于等于半径,即可求得方程实根的取值范围. 【详解】解:(1)设方程实根为0t .根据题意得200(2)2()0(,)t i t xy x y i x y ++++-=∈R ,即()()2000220t t xy t x y i ++++-=.根据复数相等的充要条件,得20002200t t xy t x y ⎧++=⎨+-=⎩①由①得0t y x =-,代入200220t t xy ++=得2()2()20y x y x xy -+-+=即22(1)(1)2x y -++=.所以所求的点的轨迹方程是22(1)(1)2x y -++=,轨迹是以点(1,1)-为圆心为半径的圆.(2)由(1)得圆心为(1,1)-,半径r =直线0t y x =-与圆有公共点,2,即022t +,所以040t -.故方程实根的取值范围是[4,0]-. 【点睛】本题主要考查了复数相等的定义以及直线与圆的位置关系,属于中档题.24.(1)12112z z i ⋅=+,125OZ OZ ⋅=-;(2)证明详见解析,当ab cd =时. 【分析】(1)根据复数的乘法运算法则进行运算即可求出12z z ⋅,可知()11,2OZ =,()23,4OZ =-,然后进行数量积的坐标运算即可;(2)根据复数的乘法运算法则进行运算即可求出12z z ⋅,以及复数的几何意义表示出1OZ 、2OZ 计算其数量积,利用作差法比较221212,||z z OZ OZ ⋅⋅的大小,并得出何时取等号. 【详解】解:(1)()()121234112z z i i i ⋅=+⋅-=+()11,2OZ =,()23,4OZ =-所以125OZ OZ ⋅=- 证明(2)1z a bi =+,2z c di =+()()12ac bd ad z i z bc =-++∴⋅()()22212z z ac bd ad bc ∴⋅=-++()1,OZ a b =,()2,OZ c d =12OZ OZ ac bd ∴⋅=+,()2212OZ OZ ac bd ⋅=+()()()222221212||z z OZ OZ ac bd ad bc ac bd ∴-⋅-⋅=-+++ ()()2240ad bc ac bd ad cb =--=+⋅≥所以1212OZ OZ z z ⋅≤⋅,当且仅当ad cb =时取“=”,此时12OZ OZ .【点睛】本题考查了复数的乘法运算法则,向量坐标的数量积运算,复数的模长的计算公式,考查了计算能力,属于基础题. 25.(1)6π,23π;(2)①周期T π=,单调减区间511[,]1212k k ππππ++,k ∈Z ;②78-【分析】根据复数相等的概念列方程,求得关于,,sin 2,cos 2m x x λ的关系式. (1)将0λ=代入上述求得的关系式,由此解出x 的值. (2)由上述求得的关系式,求得()f x λ=的表达式.①利用辅助角公式和三角函数最小正周期和的单调减区间的求法,求得()f x 的最小正周期和单调递减区间.②利用二倍角公式和诱导公式,求得cos(4)3πα+的值.【详解】由于12z z =,所以sin 22x m m xλ=⎧⎪⎨=⎪⎩,故sin 22x x λ=.(1)当0λ=时,sin 220x x -=,则tan 2x =0πx <<所以022πx <<,所以π23x =或4π23x =,所以π6x =或2π3x =. (2)由于sin 22x x λ=,故()πsin 222sin 23f x x x x ⎛⎫=-=- ⎪⎝⎭. ①函数()f x 的最小正周期为2ππ2T ==.由ππ3π2π22π232k x k +≤-≤+,解得5π11πππ1212k x k +≤≤+,所以函数()f x 的单调递减区间为511[,]1212k k ππππ++,k ∈Z . ②依题意π1sin 222sin 232x αα⎛⎫=-= ⎪⎝⎭,所以π1sin 234α⎛⎫-=- ⎪⎝⎭.所以ππcos 4cos 2236αα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭22ππ2cos 212sin 2163αα⎛⎫⎛⎫=+-=-- ⎪ ⎪⎝⎭⎝⎭1721168=⨯-=-.【点睛】本小题主要考查复数相等的概念,考查辅助角公式,考查三角函数最小正周期、单调区间的求法,考查二倍角公式和诱导公式,考查运算求解能力,属于中档题. 26.(1)1i 2z =+;(2)[]0,2. 【分析】(1)设(),z a bi b a =+∈R ,根据复数相等,得出关于实数a 、b 的方程组,解出这两个未知数,即可得出复数z 的值;(2)利用复数的模长公式以及辅助角公式得出z ω-=,利用正弦函数的值域可求出z ω-的取值范围. 【详解】(1)设(),z a bi b a =+∈R ,则z a bi =-,()()42a bi a bi i ++-=∴,即62a bi i +=,所以621a b ⎧=⎪⎨=⎪⎩212a b ⎧=⎪⎪⎨⎪=⎪⎩,122z i ∴=+;(2)()11sin cos sin cos 222z i i i ωθθθθ⎛⎫⎛⎫⎪ ⎪ ⎪=⎝⎭⎝-=+⎭---+=== 1sin 16πθ⎛⎫ ≤⎝--⎪⎭≤,022sin 46πθ≤--⎛⎫ ⎪⎝⎭≤∴,02z ω∴≤-≤,故z ω-的取值范围是[]0,2.【点睛】本题考查复数的求解,同时也考查了复数模长的计算,涉及复数相等以及辅助角公式的应用,考查计算能力,属于中等题.。
一、选择题1.若i 为虚数单位,则复数311i i-+的模是( ) A .22B .5C .5D .22.已知i 是虚数单位,,a b ∈R ,31ia bi i++=-,则a b -等于( ) A .-1B .1C .3D .43.如果复数z 满足21z i -=,i 为虚数单位,那么1z i ++的最小值是( ) A .101-B .21-C .101+D .21+4.设复数z=()()12i i a ++为纯虚数,其中a 为实数,则a =( ) A .2-B .12-C .12D .25.已知复数z 满足:()()312z i i i -+=(其中i 为虚数单位),复数z 的虚部等于( ) A .15-B .25-C .45D .356.若复数满足,则复数的虚部为( )A .B .C .D .7.已知复数3412iz i+=-,是z 的共轭复数,则z 为 ( ) A .55B .221C .5D .58.已知复数z 满足z (1﹣i )=﹣3+i (期中i 是虚数单位),则z 的共轭复数z 在复平面对应的点是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.若复数z 满足(34)112i z i -=+,其中i 为虚数单位,则z 的虚部为( ) A .2-B .2C .2i -D .2i10.满足条件4z i z i ++-=的复数z 在复平面上对应点的轨迹是( ). A .椭圆 B .两条直线C .圆D .一条直线11.已知复数33iz i --=,则z 的虚部为( ) A .3-B .3C .3iD .3i -12.已知复数z 满足(1-i)z=2+i ,则z 的共轭复数为( ) A .3322i + B .1322i - C .3322i - D .1322i + 二、填空题13.已知复数z 满足|2|1z i +-=,则|21|z -的取值范围是________. 14.设复数z 满足(1)1z i i -=+(i 为虚数单位),则z 的模为________. 15.复数z 满足21z i -+=,则z 的最大值是___________. 16.213i(3i)-+化简后的结果为_________. 17.已知i 是虚数单位,则满足()1z i i +=的复数z 的共轭复数为_______________ 18.设a R ∈,若复数3a i z i-=+(i 是虚数单位)的实部为12,则 a = __________.19.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.20.已知z C ∈,||1z =,则2|21|z z ++的最大值为______.三、解答题21.(Ⅰ)已知m R ∈,复数()()2245215z m m m m i =--+--是纯虚数,求m 的值;(Ⅱ)已知复数z 满足方程()20z z i +-=,求z 及2z i +的值. 22.已知复数w 满足()432(w w i i -=-为虚数单位). (1)求w ;(2)设z C ∈,在复平面内求满足不等式12z w ≤-≤的点Z 构成的图形面积. 23.已知复数,, , 求:(1)求的值; (2)若,且,求的值.24.已知复数()()2226z m m m m i =-++-所对应的点分别在(1)虚轴上;(2)第三象限.试求以上实数m 的值或取值范围. 25.已知1z i =+.(1)设23(1)4z i ω=+--,求ω;(2)如果2211z az bi z z ++=--+,求实数,a b 的值. 26.下列方程至少有一个实根,求实数t 的值与相应方程的根.(1)2(2)(2)0x t i x ti ++++=; (2)2(21)(3)0x i x t i --+-=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据复数的除法运算把311i i-+化成(),a bi a b R +∈ 【详解】()()()()2231131331241211112i i i i i i ii i i i i -----++====+++--,31121i i i-∴=+==+ 故选:B . 【点睛】本题考查复数的除法运算和复数的求模公式,属于基础题.2.A解析:A 【分析】根据复数的除法化简31ii+-,再根据复数相等的充要条件求出,a b ,即得答案. 【详解】()()()()2231334241211112i i i i i ia bi i i i i i +++++++=====+--+-, 1,2,1ab a b ∴==∴-=-.故选:A . 【点睛】本题考查复数的除法运算和复数相等的充要条件,属于基础题.3.A解析:A 【分析】由模的几何意义可转化为以(0,2)为圆心,1为半径的圆上一点与点(1,1)--距离的最小值,根据圆的性质即可求解. 【详解】 因为21z i -=,所以复数z 对应的点Z 在以(0,2)为圆心,1为半径的圆上, 因为1z i ++表示Z 点与定点(1,1)--的距离,所以Z 点与定点(1,1)--的距离的最小值等于圆心(0,2)与(1,1)--的距离减去圆的半径,即min 111z i ++==, 故选:A 【点睛】本题主要考查了复数及复数模的几何意义,圆的性质,属于中档题.4.D解析:D 【分析】利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求得a 值. 【详解】()()()()12i i 212i z a a a =++=-++为纯虚数, 20120a a -=⎧∴⎨+≠⎩,解得2a =,故选D. 【点睛】本题主要考查的是复数的乘法运算以及纯虚数的定义,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.5.C解析:C 【分析】利用复数代数形式的乘除运算法则求出241255i z i i i -=+=-++,由此能求出复数z 的虚部. 【详解】∵复数z 满足:()()312z i i i -+=(其中i 为虚数单位),∴()()()122412121255i i i z i i i i i i ---=+=+=-+++-. ∴复数z 的虚部等于45,故选C. 【点睛】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数代数形式的乘除运算法则的合理运用.6.B【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果. 详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为7.C解析:C 【解析】分析:利用复数模的性质直接求解. 详解:∵3412iz i+=-, ∴2222343434512121(2)i i z z i i +++=====--+- 故选C .点睛:复数(,)z a bi a b R =+∈的模为22z a b =+1212z z z z =,1122z z z z =. 8.B解析:B 【分析】先化简得到2z i =--,再计算2z i =-+得到答案。
一、选择题1.已知,a b ∈R ,且2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,那么,p q 的值分别是( )A .4,5p q ==B .4,3p q =-=C .4,5p q =-=D .4,3p q == 2.若i 为虚数单位,则复数311i i -+的模是( )A .BC .5D 3.已知复数z 满足121i z i i +⋅=--(其中z 为z 的共轭复数),则z 的值为( )A .1B .2CD 4.若复数34sin cos 55z i θθ⎛⎫=-+- ⎪⎝⎭是纯虚数,则tan()θ-π的值为( ) A .34± B .43 C .34- D .43- 5.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅=A .25-B .25C .7-D .76.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( )A .1B .iC .1-D .i -7.设复数z 满足1i z --=z 的最大值为( ).A B .2 C .D .48.若复数z 满足()2117z i i -=+(i 为虚数单位),则z =( )A .35i +B .35i -C .35i -+D .35i -- 9.已知复数(3)(2)z m i i =+-+在复平面内对应的点在第三象限,则实数m 的取值范围是( )A .(,1)-∞B .2,3⎛⎫-∞ ⎪⎝⎭C .2,13⎛⎫ ⎪⎝⎭D .2,(1,)3⎛⎫-∞⋃+∞ ⎪⎝⎭ 10.复数411-i ⎛⎫ ⎪⎝⎭的值是( ). A .-4i B .4i C .-4 D .411.已知复数z a =+,其中a R ∈.若4z R z+∈,则a =A .1B .1-C .1或1-D .0 12.已知复数122i z i +=- (i 为虚数单位),则z 的虚部为( ) A .-1 B .0 C .1 D .i二、填空题13.设复数1z i =+,则22||z z -=___________. 14.已知,z w C ∈,1z w +=,224z w +=,则zw 的最大值为______.15.已知||1z =且z C ∈,则|22i |z --(i 为虚数单位)的最小值是________ 16.复数z 满足114z z -++=则复数z 对应点表示的曲线是 _____________.17.在复平面内,到点133i -+的距离与到直线:3320l z z ++=的距离相等的点的轨迹方程是________.18.设a R ∈,若复数3a i z i -=+(i 是虚数单位)的实部为12,则 a = __________. 19.设i 为虚数单位,复数1i i -=______________. 20.有以上结论:①若x , y C ∈,则2x yi i +=+的充要条件是2x =, 1y =;②若实数a 与ai 对应,则实数集与虚数集是一一对应;③由“在平面内,三角形的两边之和大于第三边”类比可得“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”;④由“若a , b , c R ∈,则()()ab c a bc =”类比可得“若a , b , c 为三个向量,则()()a b c a b c ⋅⋅=⋅⋅.其中正确结论的序号为__________.三、解答题21.已知复数0z 满足00|215|10|z z ++,(1)求证:0||z 为定值;(2)设12i x +=,0n n z z x =,若1||n n n a z z -=-,*n N ∈,求12lim()n n a a a →∞++⋯+. 22.知m R ∈,复数()()22231z m m m i =--+-. (1)实数m 取什么值时,复数z 为实数、纯虚数;(2)实数m 取值范围是什么时,复数z 对应的点在第三象限.23.已知m R ∈,复数()()22231m m z m m i m +=++--,当m 为何值时, (1)z R ∈?(2)z 是虚数?(3)z 是纯虚数?(4)z 对应的点位于复平面第二象限?(5)z 对应的点在直线30x y ++=上?24.已知复数, , , 求:(1)求的值; (2)若,且,求的值.25.复数2(21)(1),z a a a i a R =--+-∈.(1)若z 为实数,求a 的值;(2)若z 为纯虚数,求a 的值;(3)若93z i =-,求a 的值.26.设z 是虚数,1=z zω+ 是实数,且-1<2ω< (1) 求z 的实部的取值范围(2)设11z zμ-=+ ,那么μ是否是纯虚数?并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用根与系数的关系列出方程组,根据复数相等运算即可得出所求结果.【详解】因为2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,所以()()22ai b i p ai b i q +++=-⎧⎨++=⎩,所以210220b p a b a q ab +=-⎧⎪+=⎪⎨-=⎪⎪+=⎩,解得1245a b p q =-⎧⎪=⎪⎨=-⎪⎪=⎩. 故选:C【点睛】本题主要考查复数的有关计算,解题的关键是熟练掌握复数相等的条件和一元二次方程根与系数的关系.2.B解析:B【分析】 根据复数的除法运算把311i i-+化成(),a bi a b R +∈22a b +【详解】()()()()2231131331241211112i i i i i i i i i i i i -----++====+++--,31121i i i -∴=+==+ 故选:B .【点睛】本题考查复数的除法运算和复数的求模公式,属于基础题.3.D解析:D【分析】 按照复数的运算法则先求出z ,再写出z ,进而求出z .【详解】21(1)21(1)(1)2i i i i i i i ++===--+, 1222(2)121i i z i i z i z i i i i i+-∴⋅=-⇒⋅=-⇒==--=---,12||z i z ∴=-+⇒==故选:D【点睛】 本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题. 4.C解析:C 【分析】根据所给的虚数是一个纯虚数,得到虚数的实部等于0,而虚部不等于0,得到角的正弦和余弦值,根据同角三角函数之间的关系,得到结果.【详解】若复数34sin (cos )55z i θθ=-+-是纯虚数, 则3sin 05θ-=且4cos 05θ-≠, 所以3sin 5θ=,4cos 5θ=-, 所以3tan 4θ=-,故tan()θ-π=3tan 4θ=-. 故选C .【点睛】本题主要考查了复数的基本概念,属于基础题.纯虚数是一个易错概念,不能只关注实部为零的要求,而忽略了虚部不能为零的限制,属于易错题.5.A解析:A【解析】【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题6.A解析:A【解析】()12i z i +=22(1)112i i i z i i -⇒===++,所以z 的虚部是1,选A. 7.C解析:C【分析】 通过复数的几何意义,得到最大值为直径,计算得到答案.【详解】复数z 对应复平面上的点是以()1,1z 的最大值即为圆的直径故选C【点睛】本题考查了复数模的最大值,找出对应的几何意义是解题的关键.8.B解析:B【分析】根据复数的运算,求得35z i =+,再根据共轭复数的概念,即可曲解.【详解】由复数z 满足()2117z i i -=+,即()()()()11721171525352225i i i i z i i i i ++++====+--+,所以35z i =-,故选B .【点睛】本题主要考查了复数的运算,及共轭复数的概念,其中解答中熟记复数的运算法则和共轭复数的概念是解答的关键,着重考查了运算与求解能力,属于基础题.9.B解析:B【分析】根据复数的几何意义建立不等式关系即可.【详解】(3)(2)(32)(1)z m i i m m i =+-+=-+-,若复数在复平面内对应的点在第三象限,则32010m m -<⎧⎨-<⎩,解得23m <, 所以m 的取值范围是2(,)3-∞,故选B.【点睛】该题考查的是有关复数在复平面内对应的点的问题,属于简单题目.10.C解析:C【解析】【分析】 利用复数的代数形式的乘除运算法则将411i ⎛⎫- ⎪⎝⎭化简,即可求值. 【详解】 ∵21111i i i i-=-=+ ∴2(1)1212i i i +=+-= ∴()421124i i ⎛⎫-==- ⎪⎝⎭故选C.【点睛】 本题考查复数代数形式的乘除运算,利用i 的幂的性质是迅速化简的关键,属于基础题. 11.C解析:C【解析】【分析】首先求解4z z+,然后得到关于a 的方程,解方程即可求得实数a 的值. 【详解】 由题意可得:4z a z +=++()243a a a =++22441133a i a a ⎛⎫⎫=+- ⎪⎪++⎝⎭⎭, 若4z R z +∈,则24103a -=+,解得:a =1或1-. 本题选择C 选项.【点睛】复数的基本概念和复数相等的充要条件是复数内容的基础,高考中常常与复数的运算相结合进行考查,一般属于简单题范畴.12.C解析:C【分析】利用复数的运算法则,和复数的定义即可得到答案.【详解】 复数()()()()1221252225i i i i z i i i i +++====--+,所以复数z 的虚部为1,故选C . 【点睛】本题主要考查了复数的运算法则和复数的概念,其中解答中熟记复数的基本运算法则和复数的概念及分类是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题13.【分析】利用复数运算化简得到再计算复数模得到答案【详解】则则故答案为:【点睛】本题考查了复数的计算复数的模意在考查学生的计算能力和转化能力【分析】 利用复数运算化简得到2212z i z -=--,再计算复数模得到答案. 【详解】1z i =+,则()()()222211111222i i z i i i i i z -=-+=-+=---=--+,则22z z-==【点睛】本题考查了复数的计算,复数的模,意在考查学生的计算能力和转化能力.14.【分析】因为由即可求得答案【详解】当且仅当和共线其方向相反是等号成立如是方程的两个根故等号可以取得综上所述的最大值为故答案为:【点睛】本题解题关键是掌握复数基础知识和不等式求最值的方法考查了分析能力 解析:52【分析】因为,z w C ∈,1z w +=,224z w +=,由()22211|||2|()22zw zw z w z w ==+-+,即可求得答案.【详解】,z w C ∈,1z w +=,224z w +=,∴()2222221115|||2|()()|||2222zw zw z w z w z w z w ⎡⎤==+-+≤+++=⎣⎦ 当且仅当2()z w +和22z w +共线其方向相反是等号成立如221.4z w z w +=+=-.,z w 是方程2502x x -+=的两个根 13132222z w i =+=-, 故等号可以取得 综上所述,zw 的最大值为52. 故答案为:52. 【点睛】本题解题关键是掌握复数基础知识和不等式求最值的方法,考查了分析能力和计算能力,属于中档题. 15.【分析】设根据复数的几何意义分析即可【详解】设因为故即在复平面内是在以原点为圆心1为半径的圆上又几何意义为到的距离故最小值为故答案为:【点睛】本题主要考查了复数的几何意义的运用属于基础题解析:1【分析】设z x yi =+,根据复数的几何意义分析即可.【详解】设z x yi =+,因为||1z =,故221x y +=,即z 在复平面内是在以原点为圆心,1为半径的圆上.又()|22i ||22i |z x y --=-+-=几何意义为(),x y 到()2,2的距离.11=.故答案为:1【点睛】本题主要考查了复数的几何意义的运用,属于基础题.16.椭圆【分析】设利用复数摸的公式化简等式再由椭圆的定义即可判断【详解】设代入可得所以式子的几何意义是:点到点与点的距离之和为定值4又所以复数对应点表示的曲线为以点与点为焦点的椭圆故答案为:椭圆【点睛】 解析:椭圆【分析】设z x yi =+,利用复数摸的公式化简等式,再由椭圆的定义即可判断. 【详解】 设z x yi =+,代入114z z -++=可得114-++++=x yi x yi ,4=,式子的几何意义是:点(),z x y 到点1,0A 与点()1,0B -的距离之和为定值4,又24=<AB ,所以复数z 对应点表示的曲线为以点1,0A 与点()1,0B -为焦点的椭圆. 故答案为:椭圆【点睛】本题主要考查复数模的公式,解题的关键是对椭圆定义的理解,属于中档题.17.【分析】设z =x+yi (xy ∈R )可得直线l :3z+32=0化为:3x+1=0由于点3i 在直线3x+1=0上即可得出点的轨迹【详解】设z =x+yi (xy ∈R )则直线l :3z+32=0化为:3x+1=解析:3y =【分析】设z =x +yi (x ,y ∈R ),可得直线l :3z +3z +2=0化为:3x +1=0.由于点13-+3i 在直线3x +1=0上,即可得出点的轨迹.【详解】设z =x +yi (x ,y ∈R ),则直线l :3z +3z +2=0化为:3x +1=0.∵点13-+3i 在直线3x +1=0上, ∴在复平面内,到点13-+3i 的距离与到直线l :3z +3z +2=0的距离相等的点的轨迹是y =3.故答案为:y =3.【点睛】本题考查了复数的运算性质、几何意义,考查了推理能力与计算能力,属于基础题. 18.2【解析】分析:直接利用复数除法的运算法则化简复数根据实部的定义即可得结果详解:因为复数的实部为解得故答案为点睛:复数是高考中的必考知识主要考查复数的概念及复数的运算要注意对实部虚部的理解掌握纯虚数 解析:2【解析】 分析:直接利用复数除法的运算法则,化简复数3a i z i -=+,根据实部的定义即可得结果. 详解:因为a R ∈,复数()()()()i 3i i 313i 3i 3i 3i 1010a a a a z ------===+++-的实部为12, 311102a -∴=,解得2a =,故答案为2. 点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.19.【解析】故答案为解析:1i --【解析】()()()111i i i i i i i---==---⋅,故答案为1i --. 20.③【解析】当时复数也是故①错误当时没有复数和其对于故②错误平面中的长度类比到空间即是面积故③正确由于方向与相同或者相反方向与方向相同或者相反故④错误综上所述正确的命题是③点睛:本题主要考查命题真假性解析:③【解析】当,2x i y i ==-时,复数也是2i +,故①错误.当0a =时,没有复数和其对于,故②错误.平面中的长度,类比到空间即是面积,故③正确.由于()a b c ⋅⋅方向与c 相同或者相反, ()a b c ⋅方向与a 方向相同或者相反,故④错误.综上所述,正确的命题是③.点睛:本题主要考查命题真假性的判断.第一个是复数的运算,与平时运算的差别是题目中,x y 是在复数集内选两个数,举出反例判断出结论是错误的.第一个结论主要用0a =来排除.第三个结论涉及到的知识点是向量的数量积运算,向量数量积运算结果是实数,数乘以向量,结果是向量.三、解答题21.(1)证明见解析;(2)【分析】(1)设0(,)z x yi x y R =+∈,利用00|215|10|z z +=+,可得2275x y +=,即可证明:0||z 为定值;(2)12||32nn n n a z z -⎛⎫=-= ⎪ ⎪⎝⎭,再求极限.【详解】(1)证明:设0(,)z x yi x y R =+∈,则00|215|10|z z ++, |2152|10|x yi x yi ∴+++-,2222(215)(2)3(10)3x y x y ∴++=++, 2275x y ∴+=,0||z ∴= (2)解:12ix +=,0n n z z x =, 12||32nn n n a z z-⎛⎫∴=-= ⎪ ⎪⎝⎭,121nn a a a⎫⎪-⎪⎝⎭∴++⋯+=∴121lim()nnn n a a a →∞⎫⎪-⎪⎝⎭++⋯+===. 【点睛】本题考查复数模的计算,考查极限的计算,考查学生分析解决问题的能力,属于中档题.22.(1)见解析;(2)()1,1m ∈- 【分析】(1)由虚部为0求得使z 为实数的m 值,再由实部为0且虚部不为0求得使z 为纯虚数的m 值;(2)由实部与虚部均小于0求解. 【详解】解:()1当210m -=,即1m =±时,复数()()22231z m m m i =--+-为实数;当2230210m m m --=⎧⎪-≠⎨⎪⎩,即3m =时, 复数()()22231z m m m i =--+-是纯虚数;()2由题意,2230210m m m --<⎧⎪-<⎨⎪⎩,解得11m -<<.∴当()1,1m ∈-时,复数z 对应的点在第三象限.【点睛】本题考查复数的代数表示法及其几何意义,考查复数的基本概念,是基础题.23.(1)3m =- (2) 13m m ≠≠-且(3)0m =或2m =-(4)3m <-(5)0m =或2m =-【解析】试题分析:(1)要复数为实数,则虚部为零,即2230m m +-=且10m -≠,解得3m =.(2)要复数为纯虚数,则实部()201m m m +=-,虚部2230m m +-≠,解得0,2m m ==-.(3)复数对应的点在第二象限,则实部()201m m m +<-,虚部2230m m +->,解得3m <-.(4)将实部和虚部代入直线方程,解方程可求得0,2m m ==-.试题(1)由2230m m +-=,且10m -≠,得3m =,故当3m =-时, z R ∈;(2)由()220,{1230,m m m m m +=-+-≠ 解得0m =或2m =-,故当0m =或2m =-时, z 为纯虚数;(3)由()220,{1230,m m m m m +<-+-> 解得3m <-,故当3m <-时,复数z 对应的点位于复平面的第二象限; (4)由()()2223301m m m m m +++-+=-,解得0m =或2m =-,故当0m =或2m =-时,复数z 对应的点在直线30x y ++=上. 24.(1);(2).【解析】试题分析:(1)利用复数的减法法则和模长公式进行化简,再利用两角差的余弦公式进行求解;(2)利用两角和的正弦公式进行求解. 试题(1)由题意,得,则,解得cos(α-β)=.(2)∵-,∴0<α-β<π,∴sin(α-β)=. ∴sinα=sin [(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ.考点:1.复数的运算及模长;2.两角和差的正弦、余弦公式. 25.(1)1a =;(2)21-=a ;(3)2-=a . 【解析】试题分析:(1)复数(,)z a bi a b R =+∈为实数的条件0b =;(2)复数z 为纯虚数的条件0,0a b =≠;(3)两复数相等的条件:实部、虚部分别对应相等. 试题解:(1)若z 为实数,则01=-a ,得1=a .(2)若z 为纯虚数,则⎩⎨⎧≠-=--010122a a a ,解得21-=a .(3)若i 39-=z ,则⎩⎨⎧-=-=--319122a a a ,解得2-=a .考点:1.复数为实数、纯虚数的条件;2.两复数相等的条件. 26.(1)1,1;2a ⎛⎫∈-⎪⎝⎭(2)见解析.【分析】(1)设出复数z,写出ω的表示式,把ω整理成最简形式,根据所给的ω的范围,得到ω的虚部为0,实部属于这个范围,得到z的实部的范围.(2)根据设出的z,整理u的代数形式,进行复数的除法的运算,整理成最简形式,根据上一问做出的复数的模长是1,得到u是一个纯虚数.【详解】(1)由z是虚数,设z=a+bi(a,b∈R,b≠0)则∵ω∈R ∴且b≠0得a2+b2=1此时,ω=2a,∵﹣1<ω<2∴即z 的实部的取值范围为.(2)=()()()()22222222 121211a bib a b bia b a b------=++++.∵a2+b2=1∴u=又故u是纯虚数.【点睛】本题考查复数的代数形式的运算,本题是一个运算量比较大的问题,解题时注意数字不要出错,属于中档题.。
一、选择题1.已知,a b ∈R ,且2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,那么,p q 的值分别是( )A .4,5p q ==B .4,3p q =-=C .4,5p q =-=D .4,3p q ==2.若202031i iz i+=+,则z 在复平面内对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.若复数z 的虚部小于0,|z |=4z z +=,则iz =( ) A .13i +B .2i +C .12i +D .12i -4.若复数34sin cos 55z i θθ⎛⎫=-+- ⎪⎝⎭是纯虚数,则tan()θ-π的值为( ) A .34±B .43C .34-D .43-5.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅= A .25-B .25C .7-D .76.已知(,)z x yi x y R =+∈且1z =,则x +的最大值( ) A.1B .2C .1D7.已知复数12,z z 在复平面内对应的点分别为()()2,1,0,1--,则122z z z +=( ) A .22i +B .22i -C .2i -+D .2i --8.下列命题中,正确的是( ). A .若z 是复数,则22||z z = B .任意两个复数不能比较大小C .当240b ac ->时,一元二次方程20ax bx c ++=(,,)a b c C ∈有两个不相等的实数根D .在复平面xOy 上,复数2z m mi =+(m R ∈,i 是虚数单位)对应的点的轨迹方程是2y x =9.复数1234ii-+在复平面上对应的点位于第________象限 A .一B .二C .三D .四10.设i为虚数单位,则复数z =的共轭复数是( ) A .1i +B .1i -C .1i -+D .2i +11.已知向量OA =(2,2),OB =(4,1),在x 轴上一点P ,使AP ·BP 有最小值,则点P 的坐标为 ( ) A .(-3,0)B .(2,0)C .(3,0)D .(4,0)12.已知复数z 的模为2,则z i -的最大值为:( ) A .1B .2CD .3二、填空题13.已知复数乘法()()cos sin x yi i θθ++(,x y R ∈,i 为虚数单位)的几何意义是将复数x yi +在复平面内对应的点(),x y 绕原点逆时针方向旋转θ角,则将点()8,4绕原点逆时针方向旋转3π得到的点的坐标为_________. 14.已知复数12,z z 满足122,3z z ==,若它们所对应向量的夹角为60︒,则1212z z z z +=-___ 15.已知i 为虚数单位,计算1i1i-=+__________. 16.411i i +⎛⎫=⎪-⎝⎭__________. 17.已知复数43i z =+(i 为虚数单位),则z =____. 18.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.19.复平面内,已知复数13z x i =-所对应的点都在单位圆内,则实数x 的取值范围是__________.20.复平面内有,,A B C 三点,点A 对应的复数为2i +,向量BA 对应的复数为23i +,向量BC 对应的复数为3i -,则点C 对应的复数是___________.三、解答题21.已知复数2(1)(24)33Z i m i m i =+-+-+ (1)当m 为何值时 , Z 为纯虚数 ?(2) 当m 为何值时 , Z 对应的点在y x =上?22.已知关于x 的方程2()40x x m m R ++=∈的两个虚根为α、β,且||2αβ-=,求m 的值. 23.计算:(1))()245i +(2)1-的值.24.设z 是虚数,1=z zω+ 是实数,且-1<2ω< (1) 求z 的实部的取值范围(2)设11zzμ-=+ ,那么μ是否是纯虚数?并说明理由. 25.已知复数2z i =-(i 为虚数单位). (1)求复数z 的模z ; (2)求复数z 的共轭复数;(3)若z 是关于x 的方程250x mx -+=一个虚根,求实数m 的值.26.设m ∈R ,复数z 1=22m mm +++(m -15)i ,z 2=-2+m (m -3)i ,若z 1+z 2是虚数,求m的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用根与系数的关系列出方程组,根据复数相等运算即可得出所求结果. 【详解】因为2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,所以()()22ai b i p ai b i q +++=-⎧⎨++=⎩,所以210220b p a b a q ab +=-⎧⎪+=⎪⎨-=⎪⎪+=⎩,解得1245a b p q =-⎧⎪=⎪⎨=-⎪⎪=⎩. 故选:C 【点睛】本题主要考查复数的有关计算,解题的关键是熟练掌握复数相等的条件和一元二次方程根与系数的关系.2.A解析:A 【分析】化简得到2z i =+,得到答案.【详解】()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限.故选:A . 【点睛】本题考查了复数对应象限,意在考查学生的计算能力.3.C解析:C 【分析】根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解. 【详解】由4z z +=,得()2z mi m =+∈R ,因为||z ==1m =±. 又z 的虚部小于0,所以2z i =-,12iz i =+. 故选:C 【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.4.C解析:C 【分析】根据所给的虚数是一个纯虚数,得到虚数的实部等于0,而虚部不等于0,得到角的正弦和余弦值,根据同角三角函数之间的关系,得到结果. 【详解】 若复数34sin (cos )55z i θθ=-+-是纯虚数, 则3sin 05θ-=且4cos 05θ-≠, 所以3sin 5θ=,4cos 5θ=-,所以3tan 4θ=-,故tan()θ-π=3tan 4θ=-. 故选C . 【点睛】本题主要考查了复数的基本概念,属于基础题.纯虚数是一个易错概念,不能只关注实部为零的要求,而忽略了虚部不能为零的限制,属于易错题.5.A解析:A 【解析】 【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可 【详解】复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A 【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题6.B解析:B 【解析】分析:由1z =可得221x y +=,可设cos x θ=,sin y θ=,R θ∈,可得2sin()6x πθ=+,进而利用正弦函数的性质求出答案.详解:∵(),z x yi x y R =+∈且1z = ∴221x y +=设cos x θ=,sin y θ=,R θ∈.∴cos 2sin()6x πθθθ+=+=+∴x +的最大值是2 故选B.点睛:本题主要考查复数的求模公式及三角函数的性质,解答本题的关键是利用三角换元结合三角函数的性质求函数的最值.7.A解析:A 【解析】分析:首先确定复数12,z z ,然后结合题意进行复数的混合运算即可. 详解:由题意可得:122,z i z i =-=-, 则:()1222212i i z i i z i i--===+--,21z =, 据此可得:12222z z i z +=+.本题选择A 选项.点睛:本题主要考查复数的定义及其运算法则等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D 【分析】举例说明A 错误;当两复数为实数时B 错误;由实系数一元二次方程的判别式与根的关系说明C 错误;求出z 的参数方程,消参后得到z 的轨迹方程说明D 正确. 【详解】 解:对于A ,若zi ,则2||1z =,21z =-,22||z z ≠,故A 错误;对于B ,当两个复数均为实数时,可以比较大小,故B 错误;对于C ,只有当a ,b ,c 均为实数时,在满足240b ac ->时,一元二次方程20ax bx c ++=有两个不相等的实数根,故C 错误;对于D ,由2(z m mi m R =+∈,i 是虚数单位),设z 对应的点(,)Z x y ,得2x m y m⎧=⎨=⎩,消去m 得,2y x =,∴在复平面xOy 上,复数2(z m mi m R =+∈,i 是虚数单位)对应的点的轨迹方程是2y x =.故D 正确. 故选:D . 【点睛】本题考查命题的真假判断与应用,考查了复数的有关概念,考查复数的代数表示法及其几何意义,属于基础题.9.C解析:C 【解析】 【分析】将复数化简为a bi +的形式,得到(,)a b ,就可以得到答案. 【详解】 ∵复数12(12)(34)5101234(34)(34)2555i i i i i i i i -----===--++- ∴复数1234ii -+在复平面上对应的点位于第三象限 故选C. 【点睛】复数化简为a bi +的形式,是解题关键,a b 、的符号决定复数在复平面上对应的点位于的象限.基础题目.10.A解析:A 【解析】【分析】利用复数的运算法则和共轭复数即可求得结果 【详解】()22111i z i i-====--,则共轭复数为1i +故选A 【点睛】本题主要考查了复数的运算法则和共轭复数,属于基础题11.C解析:C 【解析】设点P 坐标为(x ,0),则AP =(x-2,-2),BP =(x-4,-1),·AP BP =(x-2)(x-4)+(-2)×(-1)=x 2-6x+10=(x-3)2+1.当x=3时,P?A BP 有最小值1. 故点P 坐标为(3,0).选C.12.D解析:D 【解析】因为z i -213z i ≤+-=+= ,所以最大值为3,选D.二、填空题13.【分析】写出点对应的复数再乘以即得新复数其对应点坐标为所求【详解】点对应复数为对应点坐标为故答案为:【点睛】本题考查复数的新定义考查复数的乘法运算与复数和几何意义正确理解新定义把新定义转化为复数的乘解析:(42-+【分析】写出点()8,4对应的复数,再乘以cos sin33i ππ+即得新复数,其对应点坐标为所求.【详解】点()8,4对应复数为84z i =+,1(cossin )(84)()332z i i ππ+=+(4(2i =-++,对应点坐标为(42-+.故答案为:(42-+. 【点睛】本题考查复数的新定义,考查复数的乘法运算与复数和几何意义.正确理解新定义把新定义转化为复数的乘法解题关键.14.【解析】【分析】由余弦定理可得故【详解】如图在三角形中由余弦定理得同理可得故答案为:【点睛】本题主要考查复数的运算借助于余弦定理是解决问题的关键属中档题 解析:1337【解析】 【分析】由余弦定理可得12||19Z Z +=,12||7Z Z -=,故12121212||133||||7z z z z z z z z ++==-- 【详解】如图在三角形OAC 中由余弦定理得2212||||23223cos12019Z Z OB +==+-⨯⨯⨯︒=, 同理可得2212||||23223cos607Z Z CA -==+-⨯⨯⨯︒=,∴12121212||19133||||77z z z z z z z z ++===--. 故答案为:1337【点睛】本题主要考查复数的运算,借助于余弦定理是解决问题的关键,属中档题.15.【解析】分析:根据复数除法法则求解详解:复数点睛:首先对于复数的四则运算要切实掌握其运算技巧和常规思路如其次要熟悉复数相关基本概念如复数的实部为虚部为模为对应点为共轭为 解析:i -【解析】分析:根据复数除法法则求解.详解:复数1i (1)(1)2ii 1i (1)(1)2i i i i ----===-++-. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi16.1【解析】分析:先利用复数除法的运算法则化简再利用复数乘方运算法则求解即可详解:故答案为点睛:本题主要考查的是复数的乘法除法运算属于中档题解题时一定要注意和以及运算的准确性否则很容易出现错误解析:1 【解析】分析:先利用复数除法的运算法则化简11ii+-,再利用复数乘方运算法则求解即可. 详解:411i i +⎛⎫ ⎪-⎝⎭()()()4241i 2i =11i 1i 2⎡⎤+⎛⎫==⎢⎥ ⎪-+⎝⎭⎢⎥⎣⎦,故答案为1. 点睛:本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.17.5【解析】解析:5 【解析】5z ==.18.【分析】利用复数为纯虚数可得实部为零虚部不为零从而可求利用同角的三角函数的基本关系式和两角差的正切可求的值【详解】所以故答案为:【点睛】本题考查复数的概念同角的三角函数的基本关系以及两角差的正确理解 解析:7-【分析】利用复数为纯虚数可得实部为零,虚部不为零,从而可求43cos 0,sin 055θθ-=-≠,利用同角的三角函数的基本关系式和两角差的正切可求tan 4πθ⎛⎫- ⎪⎝⎭的值. 【详解】4333cos 0,sin 0sin tan 5554θθθθ-=-≠⇒=-⇒=-, 所以tan 4πθ⎛⎫-= ⎪⎝⎭3147314--=--, 故答案为:7-.【点睛】本题考查复数的概念、同角的三角函数的基本关系以及两角差的正确,理解纯虚数的概念是关键,本题为中档题.19.【详解】∵z 对应的点z(x -)都在单位圆内∴|z|<1即<1∴x2+<1∴x2<∴- 解析:222233x -<<【详解】 ∵z 对应的点z (x ,-)都在单位圆内, ∴|z|<1,即<1.∴x 2+<1.∴x 2<. ∴-.20.【解析】试题分析:由得同理所以点对应的复数是考点:复数的几何意义 解析:33i -【解析】 试题分析:由得(2,1)(2,3)(0,2)OB OA BA =-=-=-,同理(0,2)(3,1)(3,3)OC OB BC =+=-+-=-,所以点C 对应的复数是33i -.考点:复数的几何意义.三、解答题21.(1) 1m =-(2) 3m =. 【解析】 【分析】化简复数为22(23)(43)Z m m m m i =--+-+,(1)由Z 为纯虚数,列出方程组,即可求解;(2)根据Z 对应的点在y x =上,列出方程,即可求解. 【详解】由题意,复数2(1)(24)33Z i m i m i =+-+-+,则22(23)(43)Z m m m m i =--+-+,(1)若Z 为纯虚数,则有22230430m m m m ⎧--=⎨-+≠⎩,解得:1m =-;(2)根据Z 对应的点在y x =上,则有222343m m m m --=-+,解得:3m =.【点睛】本题主要考查了复数的概念,以及复数的表示的应用,其中解答中熟记复数的表示方法,列出相应的方程(组)是解答的关键,着重考查了推理与运算能力,属于基础题. 22.5【解析】【分析】本题首先可以根据复数根虚根必共轭的性质设,a bi a bi αβ=+=-,然后根据韦达定理可得2a =-以及m ,再通过||2αβ-=计算得1b =±,最后通过运算即可得出结果。
复数单元测试题一、选择题。
(每题 5 分,共 60 分)1.若i为虚数单位,则(1 i )i ()A .1 i B.1 i C. 1 i D . 1 i2.a 0是复数a bi(a,b R) 为纯虚数的()A .充足条件 B.必需条件 C.充要条件 D.非充足非必需条件3.在复平面内,复数 2 i 对应的点位于( )1 iA. 第一象限B. 第二象限C. 第三象限D. 第四象限4.设复数 1 3 i ,则1 =()2 2A .B . 1 C. 2 D.125.设a,b,c, d R ,则复数 (a bi)(c di) 为实数的充要条件是()A .ad bc 0 B.ac bd 0 C.ac bd 0 D.ad bc 0 6.假如复数 2 bi 的实部与虚部互为相反数,那么实数 b 等于()1 2iA . 2 B.2 C. 2 D. 23 37.若复数z知足方程z2 2 0 ,则z3的值为()A.22 B.22 C. 2 2 i D. 2 2 i 8.设 O 是原点,向量OA, OB对应的复数分别为 2 3i , 3 2i ,那么向量 BA 对应的复数是()A .5 5i B. 5 5i C.5 5i D. 5 5i9.i表示虚数单位,则i 1 i 2 i 3 i 2008的值是()A .0B .1 C.i D .i10.复数(1 1 8 的值是())iA .16iB .4i C. 16 D . 411.关于两个复数 1 3 i , 1 3 i ,有以下四个结论:①1;2 2 2 2②1;③ 1 ;④331,此中正确的结论的个数为()A. 1B.2C. 3D.412.若z C 且| z | 1,则| z 2 2i |的最小值是()A.22B.22 1C.22 1D. 2二、填空题。
(每题 5 分,共 20 分)13.已知m 1 ni ,此中 m, n 是实数,i 是虚数单位,则m ni1 i14.在复平面内,若复数z 知足 | z 1| | z i |,则 z 所对应的点的会合组成的图形是。
选修2-2第三章复数测试题时间:120分钟 总分:150分 第Ⅰ卷(选择题,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案一、选择题(每小题5分,共60分)1.i 为虚数单位,⎝⎛⎭⎪⎫1-i 1+i 2=( ) A .-1 B .1 C .-i D .i 2.设复数z =1+2i ,则z 2-2z 等于( )A .-3B .3C .-3iD .3i3.若复数z =(x 2-4)+(x -2)i 为纯虚数,则实数x 的值为( ) A .-2 B .0 C .2 D .-2或2 4.如右图,在复平面内,向量OP→对应的复数是1-i ,将OP →向左平移一个单位后得到O 0P 0→,则P 0对应的复数为( )A .1-iB .1-2iC .-1-iD .-i5.已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )A .5-4iB .5+4iC .3-4iD .3+4i6.复数z =1+i ,z 为z 的共轭复数,则z z -z -1=( ) A .-2i B .-i C .i D .2i7.z 是z 的共轭复数,若z +z =2,(z -z )i =2(i 为虚数单位),则z =( )A .1+iB .-1-iC .-1+iD .1-i8.满足条件|z -1|=|5+12i|的复数z 在复平面上对应Z 点的轨迹是( )A .一条直线B .两条直线C .圆D .椭圆9.定义运算⎪⎪⎪⎪⎪⎪a cb d =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪1z -1z i =4+2i 的复数z 为( )A .3-iB .1+3iC .3+iD .1-3i 10.已知复数z 1=a +2i ,z 2=a +(a +3)i ,且z 1z 2>0,则实数a 的值为( )A .0B .0或-5C .-5D .以上均不对 11.复数z 满足条件:|2z +1|=|z -i|,那么z 对应的点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 12.设z 是复数,α(z )表示满足z n =1的最小正整数n ,则对虚数单位i ,α(i)等于( )A .8B .6C .4D .2第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.复数i 2(1+i)的实部是__________.14.复数z =2+i1+i (i 为虚数单位),则z 对应的点在第________象限.15.设a ,b ∈R ,a +b i =11-7i1-2i (i 为虚数单位),则a +b 的值为________.16.已知复数z =a +b i(a ,b ∈R +,i 是虚数单位)是方程x 2-4x +5=0的根.复数ω=u +3i(u ∈R)满足|ω-z |<25,则u 的取值范围为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)m 为何实数时,复数z =(2+i)m 2-3(i +1)m -2(1-i)是:(1)实数;(2)虚数;(3)纯虚数.18.(12分)计算:(1)(2+i )(1-i )21-2i ; (2)4+5i (5-4i )(1-i ).19.(12分)已知复数z =(-1+3i )(1-i )-(1+3i )i,ω=z +a i(a ∈R),当⎪⎪⎪⎪⎪⎪ωz ≤2时,求a 的取值范围. 20.(12分)在复平面内,复数z 1在连结1+i 和1-i 的线段上移动,设复数z 2在以原点为圆心,半径为1的圆周上移动,求复数z 1+z 2在复平面上移动范围的面积.21.(12分)设复数z =x +y i(x ,y ∈R)满足z ·z +(1-2i)·z +(1+2i)·z ≤3,求|z |的最大值和最小值.22.(12分)关于x 的方程x 2-(1+3i)x +(2i -m )=0(m ∈R)有纯虚根x 1.(1)求x 1和m 的值;(2)利用根与系数的关系猜想方程的另一个根x 2,并给予证明; (3)设x 1,x 2在复平面内的对应点分别为A ,B ,求|AB |.答案1.A ⎝ ⎛⎭⎪⎫1-i 1+i 2=(1-i )2(1+i )2=-2i 2i =-1,故选A. 2.A z 2-2z =z (z -2) =(1+2i)(2i -1) =-2-1=-3.3.A ∵z =(x 2-4)+(x -2)i 为纯虚数, ∴{ x 2-4=0,x -2≠0,⇒x =-2.4.D 要求P 0对应的复数,根据题意,只需知道OP 0→,而OP 0→=OO 0→+O 0P 0→,从而可求P 0对应的复数.∵O 0P 0→=OP →,OO 0→对应的复数是-1,∴P 0对应的复数即OP 0→对应的复数是-1+(1-i)=-i. 5.D 由a -i 与2+b i 互为共轭复数,可得a =2,b =1.所以(a +b i)2=(2+i)2=4+4i -1=3+4i.6.B ∵z =1+i ,∴z =1-i. ∴z ·z =|z |2=2.∴z ·z -z -1=2-(1+i)-1=-i.7.D 设z =a +b i(a ∈R ,b ∈R),则z =a -b i. 由z +z =2,得2a =2,即a =1; 又由(z -z )i =2,得2b i·i =2,即b =-1. 故z =1-i.8.C 本题中|z -1|表示点Z 到点(1,0)的距离,|5+12i|表示复数5+12i 的模长,所以|z -1|=13,表示以(1,0)为圆心,13为半径的圆.注意复数的模的定义及常见曲线的定义.9.A 由定义,⎪⎪⎪⎪⎪⎪1z -1z i =z i +z ,所以z i +z =4+2i ,所以z =4+2i 1+i =3-i.10.C z 1z 2=(a +2i)·[a +(a +3)i]=(a 2-2a -6)+(a 2+5a )i ,由z 1z 2>0知z 1z 2为实数,且为正实数,因此满足{ a 2+5a =0,a 2-2a -6>0,解得a =-5(a =0舍去). 11.A 设z =x +y i(x ,y ∈R), 则|2x +2y i +1|=|x +y i -i|, 即(2x +1)2+4y 2=x 2+(y -1)2, 所以3x 2+3y 2+4x +2y =0, 即⎝ ⎛⎭⎪⎫x +232+⎝ ⎛⎭⎪⎫y +132=59. 12.C ∵α(z )表示满足z n =1的最小正整数n ,∴α(i)表示满足i n=1的最小正整数n .∵i 2=-1,i 4=1.∴α(i)=4. 13.-1解析:∵i 2(1+i)=-1-i , ∴i 2(1+i)的实部为-1. 14.四解析:∵z =2+i 1+i =(2+i )(1-i )2=3-i 2=32-12i ,∴复数z 对应点的坐标为32,-12,为第四象限的点.15.8解析:∵a +b i =11-7i1-2i ,∴a +b i =(11-7i )(1+2i )(1-2i )(1+2i )=5+3i.根据复数相等的充要条件可得a =5,b =3, 故a +b =8.16.(-2,6)解析:原方程的根为x =2±i.∵a ,b ∈R +,∴z =2+i.∵|ω-z |=|(u +3i)-(2+i)|=(u -2)2+4<25,∴-2<u <6.17.解:∴z =(2+i)m 2-3(i +1)m -2(1-i) =2m 2+m 2i -3m i -3m -2+2i =(2m 2-3m -2)+(m 2-3m +2)i ,∴(1)由m 2-3m +2=0,得m =1,或m =2,即m =1或2时,z 为实数.(2)由m 2-3m +2≠0,得m ≠1,且m ≠2, 即m ≠1,且m ≠2时,z 为虚数.(3)由⎩⎪⎨⎪⎧2m 2-3m -2=0,m 2-3m +2≠0,得m =-12,即m =-12时,z 为纯虚数.18.解:(1)(2+i )(1-i )21-2i =(2+i )(-2i )1-2i =2(1-2i )1-2i =2.(2)4+5i (5-4i )(1-i )=(5-4i )i(5-4i )(1-i ) =i1-i =i (1+i )(1-i )(1+i )=i -12 =-12+12i.19.解:∵z =2+4i -(1+3i )i =1+ii =-i(1+i)=1-i , ∴ω=1+(a -1)i , ∴ωz =1+(a -1)i 1-i=[1+(a -1)i](1+i )2=2-a +a i 2. 由⎪⎪⎪⎪⎪⎪ωz ≤2,得⎝ ⎛⎭⎪⎫2-a 22+⎝ ⎛⎭⎪⎫a 22≤2, 解得1-3≤a ≤1+ 3.故a 的取值范围是[1-3,1+3].20.解:设ω=z 1+z 2,z 2=ω-z 1,|z 2|=|ω-z 1|,∵|z 2|=1,∴|ω-z 1|=1.上式说明对于给定的z 1,ω在以z 1 为圆心,1为半径的圆上运动,又z 1在连结1+i 和1-i 的线段上移动,∴ω的移动范围的面积为:S =2×2+π×12=4+π.21.解:z ·z +(1-2i)·z +(1+2i)·z ≤3 ⇒x 2+y 2+(1-2i)(x +y i)+(1+2i)(x -y i)≤3⇒(x +1)2+(y +2)2≤8,即|z +1+2i|≤22,所以复数z 对应的点的集合是以C (-1,-2)为圆心,22为半径的圆面(包括边界).又因为|OC |=5<22,所以,原点在圆(x +1)2+(y +2)2=8的内部,如下图.所以,当z =-5+2105-10+4105i 时,|z |max =5+22;当z =0时,|z |min =0.22.解:(1)由题意,设x 1=b i(b ≠0且b ∈R),代入方程,得(b i)2-(1+3i)·b i +(2i -m )=0,即-b 2-b i +3b +2i -m =0,即(-b 2+3b-m )+(2-b )i =0,所以⎩⎪⎨⎪⎧-b 2+3b -m =0,2-b =0,解得⎩⎪⎨⎪⎧b =2,m =2.所以x 1=2i ,m =2.(2)由根与系数的关系知x 1+x 2=1+3i ,所以x 2=1+3i -x 1=1+3i -2i =1+i.证明:把x 2=1+i 代入原方程的左边,得(1+i)2-(1+3i)(1+i)+(2i -2)=2i -(-2+4i)+(2i -2)=0,所以x 2=1+i 是方程x 2-(1+3i)x +(2i -2)=0的根.(3)由(1),(2)知,A (0,2),B (1,1),所以|AB|=(0-1)2+(2-1)2= 2.。
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
一、选择题1.设复数z 满足1z =,则1z i -+的最大值为( ) A .21- B .22- C .21+ D .22+ 2.若复数z 的虚部小于0,|z |5=,且4z z +=,则iz =( )A .13i +B .2i +C .12i +D .12i - 3.如果复数z 满足21z i -=,i 为虚数单位,那么1z i ++的最小值是( ) A .101- B .21- C .101+ D .21+4.设复数,在复平面内对应的点关于实轴对称,若,则等于 A .4iB .C .2D . 5.已知复数,满足,那么在复平面上对应的点的轨迹是( ).A .圆B .椭圆C .双曲线D .抛物线 6.已知复数z 满足()(13)10z i i i ++=,其中i 为虚数单位,则z =( )A 3B 6C .6D .3 7.若复数1a i a i -+为纯虚数,则实数的值为 A .i B .0 C .1 D .-18.满足条件4z i z i ++-=的复数z 在复平面上对应点的轨迹是( ).A .椭圆B .两条直线C .圆D .一条直线9.2(1)1i i+=-( ) A .1i + B .1i - C .1i -+ D .1i -- 10.已知3(0)z a i a =>且||2z =,则z =( )A .13iB .13iC .23iD .33i + 11.已知复数(3)(2)z m i i =+-+在复平面内对应的点在第三象限,则实数m 的取值范围是( )A .(,1)-∞B .2,3⎛⎫-∞ ⎪⎝⎭C .2,13⎛⎫ ⎪⎝⎭D .2,(1,)3⎛⎫-∞⋃+∞ ⎪⎝⎭12.已知i 为虚数单位,a R ∈,若2i a i -+为纯虚数,则复数23z a i =的模等于( )A .17B .3C .11D .2二、填空题13.设11()()()()11n n i i f n n i N i+-=+∈-+,则集合{|()}x x f n =的子集个数是___________. 14.已知35z i -=,则2z +的最大值为_________.15.设复数z 满足(1)1z i i -=+(i 为虚数单位),则z 的模为________.16.已知i 是虚数单位,则满足()1z i i +=的复数z 的共轭复数为_______________ 17.已知i 为虚数单位,计算1i 1i -=+__________. 18.复数21z i=-,则z z -对应的点位于第__________象限 19.设i 是虚数单位,1i 2ia ++是纯虚数,则实数a 的值是________. 20.复平面内有,,A B C 三点,点A 对应的复数为2i +,向量BA 对应的复数为23i +,向量BC 对应的复数为3i -,则点C 对应的复数是___________.三、解答题21.已知复数2(1)(24)33Z i m i m i =+-+-+(1)当m 为何值时 , Z 为纯虚数 ?(2) 当m 为何值时 , Z 对应的点在y x =上?22.在复平面内,复数21i z i =+(i 为虚数单位)的共轭复数z 对应点为A ,点A 关于原点O 的对称点为B ,求:(Ⅰ)点A 所在的象限;(Ⅱ)向量OB 对应的复数.23.设复数z a i =+(i 是虚数单位,a R ∈,0a >),且10z =.(Ⅰ)求复数z ;(Ⅱ)在复平面内,若复数1m i z i ++-()m R ∈对应的点在第四象限,求实数m 的取值范围.24.复数2(21)(1),z a a a i a R =--+-∈.(1)若z 为实数,求a 的值;(2)若z 为纯虚数,求a 的值;(3)若93z i =-,求a 的值.25.已知复数(1)m 取什么值时,z 是实数?(2)m 取什么值时,z 是纯虚数?26.已知复数z 满足(2)z i a i -=+()a R ∈.(1)求复数z ;(2)a 为何值时,复数2z 对应点在第一象限.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】 如图所示,复数满足1z =时轨迹方程为复平面内的单位圆, 而()11z i z i -+=--表示z 与复数1i -所对应的点在复平面内的距离,结合圆的性质可知,1z i -+的最大值为()2211121+-+=+.本题选择C 选项.2.C解析:C【分析】根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解.【详解】由4z z +=,得()2z mi m =+∈R ,因为2||45z m =+=1m =±.又z 的虚部小于0,所以2z i =-,12iz i =+.故选:C【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解. 3.A解析:A【分析】由模的几何意义可转化为以(0,2)为圆心,1为半径的圆上一点与点(1,1)--距离的最小值,根据圆的性质即可求解.【详解】 因为21z i -=,所以复数z 对应的点Z 在以(0,2)为圆心,1为半径的圆上, 因为1z i ++表示Z 点与定点(1,1)--的距离,所以Z 点与定点(1,1)--的距离的最小值等于圆心(0,2)与(1,1)--的距离减去圆的半径, 即22min 11(21)1101z i ++=++-=-,故选:A【点睛】本题主要考查了复数及复数模的几何意义,圆的性质,属于中档题.4.D解析:D【解析】【分析】利用复数的运算法则可得:,再利用几何意义可得.【详解】,复数,在复平面内对应的点关于实轴对称,,则. 故选:D .【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题. 5.D解析:D【分析】把复数z 代入|z ﹣1|=x ,化简可求z 在复平面上对应的点(x ,y )的轨迹方程,推出轨迹.【详解】已知复数z=x+yi (x ,y ∈R ,x≥),满足|z ﹣1|=x ,(x ﹣1)2+y 2=x 2即y 2=2x ﹣1那么z 在复平面上对应的点(x ,y )的轨迹是抛物线.故选D .【点睛】本题考查复数的基本概念,轨迹方程,抛物线的定义,考查计算能力,是基础题.6.D解析:D【解析】分析:由()()1310z i i i ++=,,可得10i 13iz i =-+,利用复数除法法则可得结果. 详解:因为()()1310z i i i ++=, 所以()()()2210i 13i 10i 30i 10i 13i 13i 13i 19i z i i i --+=-=-=-++-- 30+10i 310i =-=,所以3z =,故选D. 点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.7.C解析:C【解析】分析:由题意首先设出纯虚数,然后利用复数相等的充分必要条件整理计算即可求得最终结果. 详解:不妨设()1a i ki k R i-=∈+,则:()21a i ki i ki ki k ki -=+=+=-+, 由复数相等的充分必要条件可得:1a k k =-⎧⎨-=⎩,即11a k =⎧⎨=-⎩, 即实数a 的值为1.本题选择C 选项.点睛:本题主要考查复数的分类,复数的综合运算等知识,意在考查学生的转化能力和计算求解能力.8.A解析:A【分析】转化复数方程为复平面点的几何意义,然后利用椭圆的定义,即可判定,得到答案.【详解】 由题意,复数4z i z i ++-=的几何意义表示:复数z 在复平面上点到两定点(0,1)和(0,1)-的距离之和等于4,且距离之和大于两定点间的距离,根据椭圆的定义,可知复数z 对应点的轨迹为以两定点(0,1)和(0,1)-为焦点的椭圆, 故选A .【点睛】本题主要考查了复数的几何意义的应用,其中解答中熟记复数的表示,以及复数在复平面内的几何意义是解答的关键,注重考查了分析问题和解答问题的能力,属于基础题. 9.C解析:C【分析】由题意结合复数的运算法则计算其值即可.【详解】由复数的运算法则有:()()()()()22121(1)21111112i i i i i i i i i i i i i +++====+=-+---+. 故选C .【点睛】本题主要考查复数的除法运算,复数的乘法运算等知识,意在考查学生的转化能力和计算求解能力.10.B解析:B【解析】【分析】利用复数求模公式得到关于a 的方程,解方程后结合题意即可确定z 的值.【详解】根据复数的模的公式,可知234a +=,即21a =,因为0a >,所以1a =,即1z =,故选B .故答案为B .【点睛】本题主要考查复数的模的运算法则,复数的表示方法等知识,意在考查学生的转化能力和计算求解能力.11.B解析:B【分析】根据复数的几何意义建立不等式关系即可.【详解】(3)(2)(32)(1)z m i i m m i =+-+=-+-,若复数在复平面内对应的点在第三象限,则32010m m -<⎧⎨-<⎩,解得23m <, 所以m 的取值范围是2(,)3-∞,故选B.【点睛】该题考查的是有关复数在复平面内对应的点的问题,属于简单题目.12.D解析:D【分析】先根据纯虚数概念得a ,再根据模的定义求结果.【详解】 因为()()221221a a i i a i a --+-=++为纯虚数,所以21020a a ,-=+≠,即12a =,因此21z a ==,所以2z =,选D.【点睛】本题考查纯虚数以及复数的模,考查基本分析求解能力,属基础题.二、填空题13.8【分析】化简得到计算结合复数乘方的周期性得到得到答案【详解】根据的周期性知子集个数为故答案为:【点睛】本题考查了复数的运算集合的子集意在考查学生的计算能力和综合应用能力周期性的利用是解题的关键 解析:8【分析】化简得到()()()n ni f n i =+-,计算结合复数乘方的周期性得到{}{}|()2,0,2x x f n ==-,得到答案.【详解】()()()()()()()()22111()()()()()1111111n n n n n n i i i f n i i i i i i i i i -+-=+=+-+-=+-++-+, ()()00(0)2i f i =+-=,()()11(1)0i f i =+-=,()()22(2)2i f i =+-=-, ()()33(3)0i f i =+-=,()()44(4)2i f i =+-=,根据n i 的周期性知{}{}|()2,0,2x x f n ==-,子集个数为328=.故答案为:8.【点睛】本题考查了复数的运算,集合的子集,意在考查学生的计算能力和综合应用能力,周期性的利用是解题的关键. 14.【分析】利用复数模的几何意义及圆的性质求解【详解】满足的对应点在以为圆心5的半径的圆上表示点到的距离∴的最大值为故答案为:【点睛】本题考查复数模的最值解题关键是掌握复数模的几何意义利用复数差的模表示5【分析】利用复数模的几何意义及圆的性质求解.【详解】 满足35z i -=的z 对应点Z 在以(0,3)C 为圆心,5的半径的圆上,2z +表示点Z 到(2,0)A -的距离,AC =∴AZ 5+.5.【点睛】本题考查复数模的最值,解题关键是掌握复数模的几何意义,利用复数差的模表示复平面上两点间的距离,结合点到圆的位置关系求解更加简便.15.【分析】根据复数的运算可得再利用模的计算公式即可求解【详解】由题意复数满足则则的模为【点睛】本题主要考查了复数的运算以及复数模的计算其中解答中熟记复数的运算法则以及复数模的计算公式是解答的关键着重考 解析:【分析】 根据复数的运算可得11i z i i +==-,再利用模的计算公式,即可求解. 【详解】由题意,复数z 满足(1)1z i i -=+,则()()()()11121112i i i i z i i i i +++====--+, 则z 的模为1z i ==.【点睛】本题主要考查了复数的运算以及复数模的计算,其中解答中熟记复数的运算法则,以及复数模的计算公式是解答的关键,着重考查了运算与求解能力,属于基础题. 16.【解析】【分析】把等式两边同时乘以直接利用复数的除法运算求解再根据共轭复数的概念即可得解【详解】由得∴复数的共轭复数为故答案为【点睛】本题考查了复数代数形式的乘除运算复数的除法采用分子分母同时乘以分 解析:122i - 【解析】【分析】 把等式两边同时乘以11i +,直接利用复数的除法运算求解,再根据共轭复数的概念即可得解.【详解】由()1z i i +=,得(1)111(1)(1)222i i i i i z i i i -+====+++-.∴复数z 的共轭复数为122i - 故答案为122i -. 【点睛】本题考查了复数代数形式的乘除运算,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.17.【解析】分析:根据复数除法法则求解详解:复数点睛:首先对于复数的四则运算要切实掌握其运算技巧和常规思路如其次要熟悉复数相关基本概念如复数的实部为虚部为模为对应点为共轭为解析:i -【解析】分析:根据复数除法法则求解. 详解:复数1i (1)(1)2i i 1i (1)(1)2i i i i ----===-++-. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi18.二【解析】则对应的点位于第二象限解析:二【解析】()()()2121111i z i i i i +===+--+,则1z z i -=+(1位于第二象限. 19.【解析】由题意可得:满足题意时:解得:解析:2-【解析】 由题意可得:()()()()21i 21i 222212i 2i 2555a i a ai i ai a a i i +-++--+-===+++- , 满足题意时:2052105a a +⎧=⎪⎪⎨-⎪≠⎪⎩ ,解得:2a =- . 20.【解析】试题分析:由得同理所以点对应的复数是考点:复数的几何意义 解析:33i -【解析】试题分析:由得(2,1)(2,3)(0,2)OB OA BA =-=-=-,同理(0,2)(3,1)(3,3)OC OB BC =+=-+-=-,所以点C 对应的复数是33i -.考点:复数的几何意义.三、解答题21.(1) 1m =-(2) 3m =.【解析】【分析】化简复数为22(23)(43)Z m m m m i =--+-+,(1)由Z 为纯虚数,列出方程组,即可求解;(2)根据Z 对应的点在y x =上,列出方程,即可求解.【详解】由题意,复数2(1)(24)33Z i m i m i =+-+-+,则22(23)(43)Z m m m m i =--+-+,(1)若Z 为纯虚数,则有22230430m m m m ⎧--=⎨-+≠⎩,解得:1m =-; (2)根据Z 对应的点在y x =上,则有222343m m m m --=-+,解得:3m =.【点睛】本题主要考查了复数的概念,以及复数的表示的应用,其中解答中熟记复数的表示方法,列出相应的方程(组)是解答的关键,着重考查了推理与运算能力,属于基础题. 22.(Ⅰ)位于第四象限;(Ⅱ)-1+i.【分析】(I )利用复数的运算法则、几何意义即可得出.(II )利用复数的几何意义即可得出.【详解】解:(Ⅰ)z ()()()2i 1i 2i 1i 1i 1i -===++-1+i ,所以z =1﹣i , 所以点A (1,﹣1)位于第四象限.(Ⅱ)又点A ,B 关于原点O 对称.∴点B 的坐标为B (﹣1,1).因此向量OB 对应的复数为﹣1+i .【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题. 23.(Ⅰ)3i z =+.(Ⅱ)﹣5<m <1【解析】试题分析:(Ⅰ)根据复数的模长公式进行化简即可.(Ⅱ)根据复数的几何意义进行化简求解. 试题(Ⅰ)∵z a i =+,10z =,∴2110z a =+=, 即29a =,解得3a =±,又∵0a >,∴3a =,∴3z i =+.(Ⅱ)∵3z i =+,则3z i =-,∴()()()()151311122m i i m i m m z i i i i i ++++-+=-+=+--+ 又∵复数1m i z i++-(m R ∈)对应的点在第四象限, ∴502{102m m +>-< 得5{1m m >-< ∴﹣5<m <1点睛:本题考查的是复数的运算和复数的概念,首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(a+bi)(c+di)=(ac−bd)+(ad+bc)i,(a,b,c ∈R). 其次要熟悉复数相关基本概念,如复数a+bi(a,b ∈R)的实部为a 、虚部为b 、模为22a b +对应点为(a,b)、共轭复数为a−bi24.(1)1a =;(2)21-=a ;(3)2-=a . 【解析】试题分析:(1)复数(,)z a bi a b R =+∈为实数的条件0b =;(2)复数z 为纯虚数的条件0,0a b =≠;(3)两复数相等的条件:实部、虚部分别对应相等.试题解:(1)若z 为实数,则01=-a ,得1=a . (2)若z 为纯虚数,则⎩⎨⎧≠-=--010122a a a ,解得21-=a . (3)若i 39-=z ,则⎩⎨⎧-=-=--319122a a a ,解得2-=a .考点:1.复数为实数、纯虚数的条件;2.两复数相等的条件.25.(1);(2)3【解析】试题分析:本题考查了复数的基本概念,明确实数的条件是复数的虚部是0,且分式的分母有意义第二问明确复数是纯虚数的条件是虚部不为0而实部为0.试题(1)解当时,z 为实数 (2)解:当时,z 为纯虚数考点:复数是实数,纯虚数的条件. 26.(1)3z ai =-(2)30a -<<【详解】(1)由已知得21a i z ai i +-==-,∴3z ai =-. (2)由(1)得2296z a ai =--,∵复数2z 对应点在第一象限,∴290{60a a ->->,解得30a -<<.。
一、选择题1.已知复数1z ,2z 满足()1117i z i +=-+,21z =,则21z z -的最大值为( )A .3B .4C .5D .62.已知复数z 满足2||230z z --=的复数z 的对应点的轨迹是( ) A .1个圆B .线段C .2个点D .2个圆3.已知复数z 满足()20161i z i -=(其中i 为虚数单位),则z 的虚部为( )A .12B .12-C .12i D .12i -4.213(1)ii +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 5.如果复数z 满足|||i 2|i z z ++-=,那么|1|z i ++的最小值是( )A .1 BC .2D6.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.若复数z 满足()11z i i --⋅=+,则z =( )A BC .D .38.设复数()()2cos sin z a a i θθ=+++(i 为虚数单位).若对任意实数θ,2z ≤,则实数a 的取值范围为( )A .10,5⎡⎤⎢⎥⎣⎦B .[]1,1-C .⎡⎢⎣⎦D .11,55⎡⎤-⎢⎥⎣⎦9.已知复数Z 满足()13Z i i +=+,则Z 的共轭复数为( ) A .2i +B .2i -C .2i -+D .2i --10.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则ab的值为( ) A .32-B .23-C .23D .3211.设3iz i+=,i 是虚数单位,则z 的虚部为( )A .1B .-1C .3D .-3 12.若复数z 满足(12)5z i +=,则它的共轭复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.若复数72aiz i+=-的实部为3,其中a 是实数,i 是虚数单位,则2z 的虚部为______. 14.已知11z i --=,则z i +的取值范围是_____________;15.复数2021111i z i +⎛⎫=-+ ⎪-⎝⎭的辐角主值为________.16.复数3(2) i (,)z x y x y =++-∈R ,且||2z =,则点(,)x y 的轨迹是_____________.17.若复数z 满足||1z =,则()()z i z i +-的最大值是________.18.已知复数集合{i |1,1,,}A x y x y x y R =+≤≤∈221133{|(i),}44B z z z z A ==+∈,其中i 为虚数单位,若复数z A B ∈,则z 对应的点Z 在复平面内所形成图形的面积为________19.设b R ∈,i 是虚数单位,已知集合{}|2A z z i =-≤,{}11|1,B z z z bi z A ==++∈,若A B ⋂≠∅,则b 的取值范围是________.20.已知i 是虚数单位,则复数21iz i-=+的共轭复数是_______. 三、解答题21.已知复数1z 、2z满足1||1z =、2||1z =,且12||4z z -=,求12z z 与12||z z +的值.22.(1)在复数范围内解方程()232iz z z i i-++=+(i 为虚数单位) (2)设z 是虚数,1z zω=+是实数,且12ω-<< (i )求z 的值及z 的实部的取值范围; (ii )设11zzμ-=+,求证:μ为纯虚数; (iii )在(ii )的条件下求2ωμ-的最小值.23.设复数z 1=1-ai (a ∈R ),复数z 2=3+4i . (1)若12z z R +∈,求实数a 的值;(2)若12z z 是纯虚数,求|z 1|.24.已知i 是虚数单位,复数11()z ai a R =-∈,复数2z 的共轭复数234z i =-. (1)若12z z R +∈,求实数a 的值;(2)若12z z 是纯虚数,求1z .25.已知m ∈R ,复数z =()()22211m m m m i m +++--,当m 为何值时:(1)z ∈R ; (2)z 是虚数; (3)z 是纯虚数.26.已知1251034.z i z i =+=-,(1)若12z z ,若在复平面上对应的点分别为A,B ,求AB 对应用的复数 (2)若12111z z z z =+,求【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先求得1z ,设出2z ,然后根据几何意义求得21z z -的最大值. 【详解】 由()()()()11711768341112i i i iz i i i i -+--++====+++-,令2z x yi =+,x ,y R ∈,由 222||11z x y =⇒+=,()()2134z z x y i -=-+-=2z 对应点在单位圆上,所以21z z -表示的是单位圆上的点和点()3,4的距离,()3,4到圆心()0,05=,单位圆的半径为1,所以21max 516z z -=+=. 故选:D 【点睛】本小题主要考查复数除法运算,考查复数模的最值的计算.2.A解析:A【详解】因为2||230z z --=,所以3z =,3z = (负舍)因此复数z 的对应点的轨迹是以原点为圆心以3为半径的圆,选A.3.B解析:B 【分析】 根据题意求出1122z i =+,即可得到z ,得出虚部. 【详解】20164504=⨯,201641i i ∴==.111122z i i ∴==+-,1122z i ∴=-,z ∴的虚部为12-.故选:B. 【点睛】此题考查复数的运算和概念辨析,易错点在于没能弄清虚部的概念导致选错.4.A解析:A 【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果. 【详解】()21313312221ii i i i ++==-+, 故选A. 【点睛】该题考查的是有关复数的运算,属于简单题目.5.A解析:A 【分析】直接利用复数模的几何意义求出z 的轨迹.然后利用点到直线的距离公式求解即可. 【详解】:∵|z +i|+|z -i|=2∴点Z 到点A (0,-1)与到点B (0,1)的距离之和为2. ∴点Z 的轨迹为线段AB .而|z +1+i|表示为点Z 到点(-1,-1)的距离. 数形结合,得最小距离为1 故选A . 【点睛】本题只要弄清楚复数模的几何意义,就能够得到解答.6.C解析:C 【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案. 【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件. 故选C. 【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.7.A解析:A 【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解. 【详解】由()11z i i --⋅=+,得()()21111i i i z i i i+-+--===--,则2z i =-+,∴z ==故选:A 【点睛】本题主要考查了复数的除法运算,复数的模的运算,属于中档题.8.C解析:C 【分析】由1212z z z z +≤+可知()()cos sin 2cos sin 2i a ai i a ai θθθθ+++≤+++,令max2z≤,即可求出a 的范围.【详解】因为对任意θ,2z ≤,则max2z≤,()()cos sin 2cos sin 21z i a ai i a ai θθθθ=+++≤+++=,12∴≤,解得55a -≤≤. 故选:C. 【点睛】本题考查向量模的大小关系,以及不等式的恒成立问题,属于中档题.9.A解析:A 【分析】根据复数的运算法则得()()()()31242112i i i Z ii i +--===-+--,即可求得其共轭复数.【详解】由题:()13Z i i +=+,所以()()()()31242112i i i Z ii i +--===-+--,所以Z 的共轭复数为2i +. 故选:A 【点睛】此题考查求复数的共轭复数,关键在于准确求出复数Z ,需要熟练掌握复数的运算法则,准确求解.10.B解析:B 【分析】先根据复数乘法计算,再根据复数概念求a,b 比值. 【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=, 因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi 11.D解析:D 【解析】 因为z=3ii+13i =-∴z 的虚部为-3,选D. 12.A解析:A 【分析】根据复数的除法运算法则,可得12z i =-,求得12z i =+,结合复数的几何意义,即可求解. 【详解】由题意,复数z 满足(12)5z i +=,可得51212z i i==-+, 所以12z i =+,它在复平面内对应的点为(1,2)在第一象限.故选:A. 【点睛】本题主要考查了复数的除法运算法则,以及共轭复数的概念和复数的几何意义,其中解答中熟记复数的除法的运算法则,准确化简、运算是解答的关键,着重考查推理与运算能力.二、填空题13.6【分析】化简复数实部为3求出a 进而求出【详解】解:由题意知的虚部为6故答案为:6【点睛】本题考查复数的基础知识和含参复数的运算属于基础题解析:6 【分析】化简复数,实部为3,求出a ,进而求出2z . 【详解】 解:7(7)(2)2(2)(2)ai ai i z i i i +++==--+(14)(72)1472555a a i a ai -++-+==+. 由题意知1435a-=,1a ∴=-, 3z i ∴=+,286z i ∴=+, 2z ∴的虚部为6. 故答案为:6. 【点睛】本题考查复数的基础知识和含参复数的运算,属于基础题.14.【分析】利用复数的几何意义求解表示复平面内到点距离为1的所有复数对应的点表示复平面内到点的距离结合两点间距离公式可求范围【详解】因为在复平面内表示复平面内到点距离为1的所有复数对应的点即复数对应的点解析:1]【分析】利用复数的几何意义求解,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,z i +表示复平面内到点(0,1)-的距离,结合两点间距离公式可求范围. 【详解】因为在复平面内,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,即复数z 对应的点都在以(1,1)为圆心,半径为1的圆上;z i +表示复平面内的点到点(0,1)-11=,11=,所以z i +的取值范围是1].故答案为:1]-. 【点睛】结论点睛:本题考查复数的模,复数的几何意义,复数的几何意义是复平面内两点之间的距离公式,若z x yi =+,则z a bi --表示复平面内点(,)x y 与点(,)a b 之间的距离,z a bi r --=表示以(,)a b 为圆心,以r 为半径的圆上的点.15.【分析】先化简再根据辐角主值的定义求解即可【详解】因为所以所以所以复数z 的辐角主值为故答案为:【点睛】本题主要考查了复数的基本运算与辐角主值的辨析属于基础题解析:34π【分析】先化简2021111i z i +⎛⎫=-+ ⎪-⎝⎭再根据辐角主值的定义求解即可.【详解】因为11i i i +=-,所以2021202111i i i i +⎛⎫== ⎪-⎝⎭所以331cos sin 44z i i ππ⎫=-+=+⎪⎭,所以复数z 的辐角主值为34π. 故答案为:34π【点睛】本题主要考查了复数的基本运算与辐角主值的辨析,属于基础题.16.以为圆心2为半径的圆【分析】根据复数模的定义确定复数对应点满足条件化简即得轨迹【详解】解:∵∴即点的轨迹是以为圆心2为半径的圆故答案为:以为圆心2为半径的圆【点睛】本题考查复数模的定义以及圆的方程含解析:以(3,2)-为圆心,2为半径的圆 【分析】根据复数模的定义确定复数对应点满足条件,化简即得轨迹. 【详解】解:∵||2z =,∴22(3)(2)4x y ++-=,即点(,)x y 的轨迹是以(3,2)-为圆心,2为半径的圆.故答案为:以(3,2)-为圆心,2为半径的圆 【点睛】本题考查复数模的定义以及圆的方程含义,考查基本分析求解能力,属基础题.17.【分析】设求出后再求其模利用可求模的最大值【详解】设则故其中当时故答案为:2【点睛】本题考查复数的乘法共轭复数以及复数的模处理复数的模的问题有两个思路:(1)利用复数的几何意义求解;(2)复数问题实 解析:2【分析】设,,z a bi a b R =+∈,求出()()z i z i +-后再求其模,利用221a b +=可求模的最大值. 【详解】设,,z a bi a b R =+∈,则()()()22()()111z i z i a b i a b i a b +-=+-+-=+-⎡⎤⎡⎤⎣⎦⎣⎦,故()()z i z i +-==[]1,1b ∈-.当1b =-时,max ()()2z i z i +-=, 故答案为:2. 【点睛】本题考查复数的乘法、共轭复数以及复数的模,处理复数的模的问题有两个思路:(1)利用复数的几何意义求解;(2)复数问题实数化即把复数的模的问题归结实部和虚部的问题(即实数范围内的问题),本题属于中档题.18.【分析】先由复数的几何意义确定集合所对应的平面区域再确定集合所对应的平面区域由复数可得复数对应的点在复平面内所形成图形即为集合与集合所对应区域的重叠部分结合图像求出面积即可【详解】因为复数集合所以集解析:72【分析】先由复数的几何意义确定集合A 所对应的平面区域,再确定集合B 所对应的平面区域,由复数z A B ∈⋂,可得复数z 对应的点Z 在复平面内所形成图形即为集合A 与集合B 所对应区域的重叠部分,结合图像求出面积即可. 【详解】因为复数集合{i |1,1,,}A x y x y x y R =+≤≤∈,所以集合A 所对应的平面区域为1x =±与1y =±所围成的正方形区域;又221133{|,}44B z z i z z A ⎛⎫==+∈ ⎪⎝⎭,设1z a bi =+,且1a ≤, 1b ≤, ,a b R ∈, 所以()()()21333333444444z i z i a bi a b a b i ⎛⎫⎛⎫=+=++=-++⎪ ⎪⎝⎭⎝⎭,设2z 对应的点为(),x y ,则()()3434x a b y a b ⎧=-⎪⎪⎨⎪=+⎪⎩,所以3232a x y b y x ⎧=+⎪⎪⎨⎪=-⎪⎩,又1a ≤,1b ≤,所以33223322x y y x ⎧-≤+≤⎪⎪⎨⎪-≤-≤⎪⎩, 因为复数z A B ∈⋂,z 对应的点Z 在复平面内所形成图形即为集合A 与集合B 所对应区域的重叠部分,如图中阴影部分所示,由题意及图像易知:阴影部分为正八边形,只需用集合A 所对应的正方形区域的面积减去四个小三角形的面积即可.由321x y y ⎧+=⎪⎨⎪=⎩得112B ⎛⎫ ⎪⎝⎭,,由321x y x ⎧+=⎪⎨⎪=⎩得112C ⎛⎫⎪⎝⎭,, 所以11172242222S =⨯-⨯⨯⨯=阴影. 故答案为72【点睛】本题主要考复数的几何意义,以及不等式组所表示平面区域问题,熟记复数的几何意义,灵活掌握不等式组所表示的区域即可,属于常考题型.19.【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(01)为圆心半径为2的圆及内部;集合B 表示圆的圆心移动到了(11+b );两圆面有交点即可求解b 的取值范围【详解】由题意集 解析:15b 15-≤≤【解析】 【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示圆的圆心移动到了(1,1+b );两圆面有交点即可求解b的取值范围.【详解】由题意,集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部; 集合B 表示点的轨迹为以(1,1+b )为圆心,半径为2的圆及内部∵A∩B≠∅,说明,两圆面有交点;∴4≤.可得:b ≤≤,故答案:b ≤≤,【点睛】本题考查复数几何意义,圆与圆的位置关系,体现了数学转化思想方法,明确A.B 集合的意义是关键,是中档题20.【解析】分析:利用复数代数形式的乘除运算法则化简求出复数z 进而求得其共轭复数从而求得结果详解:因为所以故答案是点睛:该题考查的是有关复数的除法运算以及共轭复数的概念与求解问题在解题的过程中需要对复数 解析:1322i + 【解析】分析:利用复数代数形式的乘除运算法则化简,求出复数z ,进而求得其共轭复数,从而求得结果. 详解:因为2(2)(1)13131(1)(1)222i i i i z i i i i ----====-++-, 所以1322z i =+,故答案是1322i +. 点睛:该题考查的是有关复数的除法运算以及共轭复数的概念与求解问题,在解题的过程中,需要对复数的除法运算法则灵活掌握,以及共轭复数满足的条件是实部相等,虚部互为相反数.三、解答题21.12z z =,12||4z z +=. 【分析】设复数1z 、2z 在复平面上对应的点为1Z 、2Z ,从模长入手,可以得到2221212||||z z z z +=-,进而得到以1OZ 、2OZ 为邻边的平行四边形是矩形.【详解】设复数1z 、2z 在复平面上对应的点为1Z 、2Z ,由于222(71)(71)4++-=, 故2221212||||z z z z +=-,故以1OZ 、2OZ 为邻边的平行四边形是矩形,从而12OZ OZ ⊥,则1212||||4z z z z +=-=,()()212717147717171z z ++==±=±--+. 【点睛】 本题的易错点在12771z z =-,原因是12,z z 可以交换位置,所以这个取正负值均可. 22.(1)1322z i =-±;(2)(i )1z =;1,12a ⎛⎫∈- ⎪⎝⎭(ii )证明见解析;(iii )1 【分析】(1)利用待定系数法,结合复数相等构造方程组来进行求解;(2)(i )采用待定系数法,根据实数的定义构造方程即可解得z 和ω,利用ω的范围求得a 的范围;(ii )利用复数的运算进行整理,根据纯虚数的定义证得结论;(iii )将2ωμ-整理为123t t ⎛⎫+- ⎪⎝⎭,1,22t ⎛⎫∈ ⎪⎝⎭,利用基本不等式求得最小值. 【详解】(1)()()()()()23235512225i i i i z z z i i i i i ----++====-++- 设(),z x yi x y R =+∈,则2221x y xi i ++=-22121x y x ⎧+=∴⎨=-⎩,解得:1232x y ⎧=-⎪⎪⎨⎪=±⎪⎩ 1322z ∴=-± (2)(i )设z a bi =+(,a b R ∈且)0b ≠2222221a bi a b a bi a bi a b i a bi a b a b a b ω-⎛⎫⎛⎫∴=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭ω为实数 220b b a b∴-=+,整理可得:221a b += 即1z = ()21,2a ω∴=∈- 1,12a ⎛⎫∴∈- ⎪⎝⎭(ii )()()()()()222211111211111a bi a bi z a bi a b bi z a bi a bi a bi a b μ--+-------====++++++-++ 由(i )知:221a b +=,则1b i a μ=-+ 1,12a ⎛⎫∈- ⎪⎝⎭且0b ≠ 01b a ∴-≠+ μ∴是纯虚数(iii )()()22222211212221111b a a a a a a a a a a a ωμ--++-=+=+=+=++++ 令1a t +=,则1,22t ⎛⎫∈ ⎪⎝⎭,1a t =- ()2222111232123t t t t t t t t ωμ-+-+-+⎛⎫∴-===+- ⎪⎝⎭12t t+≥(当且仅当1t =时取等号) 2431ωμ∴-≥-= 即2ωμ-的最小值为:1【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,利用待定系数法结合复数相等的条件进行转化是解决本题的关键.运算量较大,综合性较强.23.(1)a =4(2)54【分析】(1)由已知利用复数代数形式的加减化简,再由虚部为0求得a 值; (2)利用复数代数形式的乘除运算化简12z z ,由实部为0且虚部不为0求得a 值,再由复数模的计算公式求|z 1|.【详解】解:(1)∵z 1=1-ai (a ∈R ),z 2=3+4i ,∴z 1+z 2=4+(4-a )i ,由12z z R +∈,得4-a =0,即a =4;(2)由12z z =()()()()134134343434342525ai i ai a a i i i i ----+==-++-是纯虚数, 得{340340a a -=+≠,即34a =, ∴|z 1|=|314i -54=. 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,是中档题.24.(1)4;(2)54. 【分析】(1)先求出124(4)z +z =+a i -,再根据12z z R +∈,求出实数a 的值;(2)由已知得1234(34)25z a a i z --+=,再根据12z z 是纯虚数求出a 的值即得解. 【详解】 223434z i z i =-∴=+(1)由已知得12(1)(34)4(4)z +z =ai ++i =+a i --12,40z z R a +∈-=∴4a ∴=(2)由已知得121(1)(34)34(34)34(34)(34)25z ai ai i a a i z i i i -----+===++- 12z z 是纯虚数,340340a a -=⎧∴⎨+≠⎩, 解得34a =, 135144z i ∴=-==.【点睛】本题主要考查复数的计算和复数的概念,考查复数模的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.25.(1)1m =-+1m =-2)1m ≠-+1m ≠-1m ≠;(3)0m =或2m =-.【分析】(1)解221m m +-=0,1m ≠,即可得解;(2)虚部不为0,则该复数为虚数,则2210m m +-≠,1m ≠即可得解;(3)复数是纯虚数,则实部为0,虚部不为0,根据()20m m +=,2210m m +-≠,1m ≠即可得解.【详解】(1)z ∈R ,所以221m m +-=0,1m ≠,212m -±==-所以,当1m =-+1m =--z ∈R ;(2)z 是虚数,则2210m m +-≠,1m ≠,当1m ≠-+1m ≠--1m ≠时,z 是虚数;(3)z 是纯虚数,()20m m +=,2210m m +-≠,1m ≠,所以0m =或2m =-时,z 是纯虚数.【点睛】此题考查复数的概念,根据复数的分类求解参数的取值,需要熟练掌握复数的概念,准确求解.26.(1)214i --(2)552i -【详解】 (1)()()2134i 510i 214.AB z z i =-=--+=--所以AB 对应用的复数为214i --. (2)由题得121212111z z z z z z z +=+= 1212552z z z i z z ∴==-+。
一、选择题1.已知,a b ∈R ,i 是虚数单位,若(1)(1)i bi a +-=,则a bi +=( )A .2B .2C .5D .52.已知i 是虚数单位,则复数1012ii-的共轭复数在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知复数z x yi =+,x ∈R ,y R ∈,满足114z z ++-=,则点()x y ,的轨迹是( ) A .线段 B .圆 C .双曲线 D .椭圆 4.若复数z 满足(34)25i z i +=,其中i 为虚数单位,则z 的虚部是A .3iB .3i -C .3D .-35.若复数满足,则复数的虚部为( )A .B .C .D .6.已知(,)z x yi x y R =+∈且1z =,则3x y 的最大值( ) A .13B .2C .1D 37.在下列命题中,正确命题的个数是( )①若z 是虚数,则20z ;②若复数2z 满足2z ∈R ,则z R ∈;③若复数11z i =+,2z t i =+,且12z z ⋅对应的复数位于第四象限,则实数t 的取值范围是()1,1-;④若()()2212230z z z z -+-=,则123z z z ==. A .0B .1C .2D .38.已知复数12,z z 在复平面内对应的点分别为()()2,1,0,1--,则122z z z +=( ) A .22i +B .22i -C .2i -+D .2i --9.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( ) A .1B .iC .1-D .i -10.已知2(1i)=1i z(i 为虚数单位),则复数z 的共轭复数等于( )A .1i --B .1i -C .1i -+D .1i +11.复数1234ii-+在复平面上对应的点位于第________象限 A .一B .二C .三D .四12.已知t ∈R ,i 为虚数单位,复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则t 等于( )A .34B .43C .43-D .34-二、填空题13.复数z 满足114z z -++=则复数z 对应点表示的曲线是 _____________.14.计算10251(12)()1i i i i+-⋅+=-__.15.若复数z 满足221(1)2i z i ⎛⋅=+ ⎝⎭,则z =_______________. 16.已知i 为虚数单位,若(1)2z i i ⋅+=,则复数z =________. 17.已知i 为虚数单位,计算1i1i-=+__________. 18.已知复数z=i (2+i ),则|z|=___.19.已知复数()()13i z m m m R =-+-∈对应的点在x 轴上方,则m 的取值范围是_______.20.复平面内,已知复数13z x i =-所对应的点都在单位圆内,则实数x 的取值范围是__________.三、解答题21.已知复数0z 满足00|215|10|z z ++, (1)求证:0||z 为定值; (2)设12i x +=,0n n z z x =,若1||n n n a z z -=-,*n N ∈,求12lim()n n a a a →∞++⋯+. 22.实数m 取怎样的值时,复数226(215)z m m m m i =--+--是: (1)实数?(2)虚数?(3)纯虚数?23.(1)设复数z 和它的共轭复数z 满足:42i z z +=,求复数z ; (2)设复数z 满足:228z z ++-=,求复数z 对应的点的轨迹方程. 24.已知复数22(34)(224)z m m m m i =+-+--()m R ∈.(1)若复数z 所对应的点在一、三象限的角平分线上,求实数m 的值; (2)若复数z 为纯虚数,求实数m 的值.25.已知复数1z 满足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,12z z ⋅是实数,求2z .26.已知M ={1,(m 2-2m )+(m 2+m -2)i },P ={-1,1,4i },若M P P =,求实数m的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据复数相等的充要条件,构造关于,a b 的方程组,解得,a b 的值,进而可得答案. 【详解】因为(1)(1)1(1)i bi b b i a +-=++-=,结合,a b ∈R ,所以有110b a b +=⎧⎨-=⎩,解得21a b =⎧⎨=⎩,所以2a bi i +=+==故选C. 【点睛】该题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件,属于简单题目.2.C解析:C 【分析】 先计算出104212ii i=-+-,求出其共轭复数,即得解. 【详解】由题得1010(12)20104212(12)(12)5i i i ii i i i +-+===-+--+, 所以1012ii-的共轭复数为42i --,它对应的点为(4,2)--,在第三象限. 故选:C 【点睛】本题主要考查复数的除法和共轭复数,考查复数的几何意义,意在考查学生对这些知识的理解掌握水平.3.D解析:D 【分析】根据复数模长的几何意义,结合椭圆的定义知,复数z 对应的点在某一椭圆上. 【详解】复平面上,复数z 满足114z z ++-=, 则z 对应的点M 到点()11,0F -,点()21,0F 的距离和为4, 即12124,24MF MF F F +==<, ∴复数z 对应的点M 在以12,FF 为焦点,长轴长为4的椭圆上.故选:D . 【点睛】本题考查了复数的代数形式与模长几何意义应用问题,也考查了椭圆的定义应用问题,是基础题.4.C解析:C 【分析】本道题目可以设出z a bi =+,然后结合待定系数法,计算参数,即可得出答案. 【详解】设z a bi =+,代入原式得到()()()()34343434i z i a bi a b b a i +=++=-++ 结合待定系数法得到340,3425a b b a -=+=,解得3b =, 故选C. 【点睛】本道题目考查了待定系数法和复数的四则运算,注意虚部是指i 的系数.5.B解析:B 【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果. 详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为6.B解析:B 【解析】分析:由1z =可得221x y +=,可设cos x θ=,sin y θ=,R θ∈,可得32sin()6x πθ+=+,进而利用正弦函数的性质求出答案.详解:∵(),z x yi x y R =+∈且1z = ∴221x y +=设cos x θ=,sin y θ=,R θ∈. ∴3cos 32sin()6x πθθθ+=+=+∴x 的最大值是2 故选B.点睛:本题主要考查复数的求模公式及三角函数的性质,解答本题的关键是利用三角换元结合三角函数的性质求函数的最值.7.B解析:B 【解析】分析:利用复数的知识对每一个命题逐一分析判断.详解:对于①,举例z=1+i ,但是22z i =,但是不能说2i≥0,因为虚数和实数不能比较大小.所以①不正确.对于②,举例z=i ,所以21,z R =-∈但是i R ∉,所以②不正确. 对于③,12z z ⋅=(1)()1(1),i t i t t i +-=++-所以10,1 1.10t t t +>⎧∴-<<⎨-<⎩所以③正确.对于④,若()()2212230z z z z -+-=,举例1232,1,1,z z z i ===-但是123z z z ==不成立.所以④不正确. 故答案为B点睛:(1)本题主要考查复数的基础知识,意在考查学生对复数的基础知识的掌握能力.(2)判断命题的真假时,要灵活,可以证明,也可以举反例.8.A解析:A 【解析】分析:首先确定复数12,z z ,然后结合题意进行复数的混合运算即可. 详解:由题意可得:122,z i z i =-=-,则:()1222212i i z i i z i i --===+--,21z =, 据此可得:12222z z i z +=+. 本题选择A 选项.点睛:本题主要考查复数的定义及其运算法则等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】()12i z i +=22(1)112i i i z i i -⇒===++,所以z 的虚部是1,选A. 10.A【解析】 【分析】由复数的运算法则,化简复数1z i =-+,再根据共轭复数的概念,即可求解,得到答案. 【详解】由题意,复数满足2(1)=1i i z,即221(1)2=11111i i i iz i i ii i,所以复数z 的共轭复数等于1z i =--,故选A . 【点睛】本题主要考查了复数的运算法则,以及共轭复数的概念的应用,其中解答中熟记复数的运算法则,准确求解复数z 是解答的关键,着重考查了运算与求解能力,属于基础题.11.C解析:C 【解析】 【分析】将复数化简为a bi +的形式,得到(,)a b ,就可以得到答案. 【详解】 ∵复数12(12)(34)5101234(34)(34)2555i i i i i i i i -----===--++- ∴复数1234ii-+在复平面上对应的点位于第三象限 故选C. 【点睛】复数化简为a bi +的形式,是解题关键,a b 、的符号决定复数在复平面上对应的点位于的象限.基础题目.12.D解析:D 【详解】因为z 1=3+4i ,z 2=t +i ,所以z 1·z 2=(3t -4)+(4t +3)i , 又z 1·z 2是实数,所以4t +3=0,所以t =34-. 故选:D.二、填空题13.椭圆【分析】设利用复数摸的公式化简等式再由椭圆的定义即可判断【详解】设代入可得所以式子的几何意义是:点到点与点的距离之和为定值4又所以复数对应点表示的曲线为以点与点为焦点的椭圆故答案为:椭圆【点睛】解析:椭圆设z x yi =+,利用复数摸的公式化简等式,再由椭圆的定义即可判断. 【详解】设z x yi =+,代入114z z -++=可得114-++++=x yi x yi ,4=,式子的几何意义是:点(),z x y 到点1,0A 与点()1,0B -的距离之和为定值4,又24=<AB ,所以复数z 对应点表示的曲线为以点1,0A 与点()1,0B -为焦点的椭圆.故答案为:椭圆 【点睛】本题主要考查复数模的公式,解题的关键是对椭圆定义的理解,属于中档题.14.【分析】由复数的除法和乘法化简再求即可【详解】故答案为:【点睛】本题主要考查了复数的四则运算属于中档题 解析:13i -+【分析】由复数的除法和乘法化简11i i+-,102i ,再求10251(12)()1i i i i +-⋅+-即可. 【详解】221(1)121(1)(1)2i i i i i i i i ++++===-+-,()51102251(1)1i i ==-=- 102551(12)()1212131i i i i i i i i i+∴-⋅+=-++=-++=-+-故答案为:13i -+ 【点睛】本题主要考查了复数的四则运算,属于中档题.15.【分析】利用复数的四则运算得出结合共轭复数的定义即可得出答案【详解】故答案为:【点睛】本题主要考查了复数的四则运算以及共轭复数的定义属于中档题 i【分析】利用复数的四则运算得出z i ,结合共轭复数的定义,即可得出答案.【详解】()2222112(1)12i i i z i i ⎛⎫⎫+- ⎪⎪⎫+==⎪⎪⎛⎝⎭+ ⎝⎭⎝⎭⎝⎭⎭=⎝z i ∴=i 【点睛】本题主要考查了复数的四则运算以及共轭复数的定义,属于中档题.16.【解析】【分析】由题意利用复数的除法运算法则确定z 的值即可【详解】【点睛】本题主要考查复数的除法运算属于基础题解析:1i +. 【解析】 【分析】由题意利用复数的除法运算法则确定z 的值即可. 【详解】()()()2122211112i i i i z i i i i -+====+++-. 【点睛】本题主要考查复数的除法运算,属于基础题.17.【解析】分析:根据复数除法法则求解详解:复数点睛:首先对于复数的四则运算要切实掌握其运算技巧和常规思路如其次要熟悉复数相关基本概念如复数的实部为虚部为模为对应点为共轭为 解析:i -【解析】分析:根据复数除法法则求解. 详解:复数1i (1)(1)2ii 1i (1)(1)2i i i i ----===-++-. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi18.【解析】分析:先计算复数再根据复数的模的定义求结果详解:点睛:本题重点考查复数的基本运算和复数的概念属于基本题首先对于复数的四则运算要切实掌握其运算技巧和常规思路如其次要熟悉复数相关基本概念如复数的【解析】分析:先计算复数,再根据复数的模的定义求结果.详解:(2)21z i i i z =+=-∴==点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭为.-a bi19.【解析】分析:首先根据复数在复平面内对应的点的坐标为之后根据坐标系中各个象限内的点的横纵坐标的符号结合题中要求点落在轴上方要求其纵坐标大于零从而确定出所满足的不等关系式最后求得结果详解:复数在复平面解析:3m <. 【解析】分析:首先根据复数z 在复平面内对应的点的坐标为(1,3)m m +-,之后根据坐标系中各个象限内的点的横纵坐标的符号,结合题中要求点落在x 轴上方,要求其纵坐标大于零,从而确定出m 所满足的不等关系式,最后求得结果.详解:复数()()13,z m m i m R =-+-∈在复平面上对应的点的坐标为(1,3)m m --, 如果该点落在x 轴上方,则有30m ->,解得3m <.点睛:该题考查的是有关复数在复平面内对应的点的坐标的问题,应用实部是横坐标,虚部是纵坐标,结合题中的要求,列出式子,求得结果.20.【详解】∵z 对应的点z(x -)都在单位圆内∴|z|<1即<1∴x2+<1∴x2<∴- 解析:222233x -<<【详解】 ∵z 对应的点z (x ,-)都在单位圆内, ∴|z|<1,即<1.∴x 2+<1.∴x 2<. ∴-.三、解答题21.(1)证明见解析;(2)356 【分析】(1)设0(,)z x yi x y R =+∈,利用00|215|310|z z +=+,可得2275x y +=,即可证明:0||z 为定值;(2)12||532nn n n a z z -⎛⎫=-= ⎪ ⎪⎝⎭,再求极限.【详解】(1)证明:设0(,)z x yi x y R =+∈,则00|215|10|z z ++,|2152|10|x yi x yi ∴+++-,2222(215)(2)3(10)3x y x y ∴++=++, 2275x y ∴+=,0||z ∴= (2)解:12ix +=,0n n z z x =, 12||32nnn n a z z-⎛⎫∴=-= ⎪ ⎪⎝⎭,121nn a a a ⎫⎪-⎪⎝⎭∴++⋯+=∴121lim()nnn n a a a →∞⎫⎪-⎪⎝⎭++⋯+===.【点睛】本题考查复数模的计算,考查极限的计算,考查学生分析解决问题的能力,属于中档题. 22.(1)5m =或3m =-;(2)5m ≠且3m ≠-;(3)3m =或2m =- 【分析】(1)由虚部等于0列式求解m 的值; (2)由虚部不等于0列式求解m 的值;(3)由实部等于0且虚部不等于0列式求解m 的值. 【详解】(1)当22150m m --=,即5m =或3m =-时,z 的虚部等于0, 所以当5m =或3m =-时,z 为实数;(2)当22150m m --≠时,即5m ≠且3m ≠-时,z 为虚数;(3)当22602150m m m m ⎧--=⎨--≠⎩时,即3m =或2m =-时,z 为纯虚数.【点睛】该题考查的是有关根据复数的类别求解参数的值的问题,涉及到的知识点有复数的分类,属于简单题目.23.(1)1i 2z =+;(2)2211612x y +=【解析】分析:(1)设(),z x yi x y R =+∈,由题意结合复数的运算法则可得62x yi i +=,则12x y ==,12z i =+. (2)设复数(),z x yi x y R =+∈,由题意可得()884=>,则其轨迹是椭圆,轨迹方程为:2211612x y +=. 详解:(1)设(),z x yi x y R =+∈,则4262z z x yi +=+,由42z z i +=可得:62x yi i +=,所以12x y ==,12z i ∴= (2)设复数(),z x yi x y R =+∈,由228z z ++-=得:()884=>,其轨迹是椭圆,此时28,4a a ==,24,2c c ==,212b =,所求的轨迹方程为:2211612x y +=. 点睛:求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可以直接根据定义先定轨迹类型,再写出其方程,这种求轨迹方程的方法叫做定义法,其关键是准确应用解析几何中有关曲线的定义.24.(1)4m =-;(2)1m =.【解析】试题分析:(1)利用实部与虚部相等列方程求解即可;(2)利用实部为零列方程,验证虚部不为零即可得结果.试题(1)复数z 所对应的点在一、三象限的角平分线上,∴ 2234224m m m m +-=--,解得 4m =-.(2)复数z 为纯虚数,∴ 22340{2240m m m m +-=--≠ 41{46m m m m =-=≠-≠或且 解得 1m =. 25.242z i =+【解析】解:1(2)(1)1z i i -+=-⇒12z i =-(4分)设22,z a i a R =+∈,则12(2)(2)(22)(4)z z i a i a a i =-+=++-, (12分) ∵12z z R ∈,∴242z i =+(12分)26.m =1或m =2.【分析】先由M P P =,知M 是P 的子集,再依据集合中元素的互异性得复数22(2)(2)m m m m i -++-的取值,最后根据复数相等的定义即可解出m .【详解】由MP P =,知M 是P 的子集,从而可知22(2)(2)1m m m m i -++-=-或4i . 由22(2)(2)1m m m m i -++-=-,得222120m m m m ⎧-=-⎨+-=⎩,解之得:1m =, 由22(2)(2)4m m m m i i -++-=,得222024m m m m ⎧-=⎨+-=⎩,解之得:2m =, 综上可知:1m =或2m =.【点睛】本题主要考查了并集及运算、复数的基本概念,是一道复数与集合交汇的题目,属于基础题.。
育才中学高二复数复习题
一、选择题:
1.(1-i)2
·i =
( )
A .2-2i
B .2+2i
C . 2
D .-2 2.设复数ωω++-
=1,2
321则i =
( )
A .ω-
B .2
ω
C .ω
1
- D .21ω
3.复数4
)11(i
+的值是
( )
A .4i
B .-4i
C .4
D .-4
4.在复平面上复数i,1,4+2i 所对应的点分别是A 、B 、C,则平面四边形ABCD 的对角线BD 的长为 ( ) (A)5 (B)13 (C)15 (D) 17
5.复数10
1()1i i
-+的值是 ( )
A .-1
B .1
C .32
D .-32
6.复数的值是 ( )
A .-16
B .16
C .-
14 D .14- 7.若复数(m 2
-3m -4)+(m 2
-5m -6)i 是虚数,则实数m 满足( )
(A )m ≠-1 (B )m ≠6
(C) m ≠-1或m ≠6 (D) m ≠-1且m ≠6
8.已知复数z 1=3+4i ,z 2=t+i ,且12z z 是实数,则实数t = ( )
A .
4
3
B .
3
4 C .-
3
4 D .-
4
3 9.
=+-2
)
3(31i i
( )
A .
i 4
341+ B .i 4
341--
C .
i 2
321+ D .i 2
321-- 10.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是 ( )
A .2
B .3
C .4
D .5
11.复数5
34+i
的共轭复数是 ( )
A .34-i
B .354
5
+i
C .34+i
D .
3545
-i 12.设12()1,23,5,=-=+=-f z z z i z i 则12()-=f z z ( )
i
44D i 44C i 44B i 44A +--+--
二、填空题:
13.实数x 、y 满足(1–i )x+(1+i)y=2,则xy 的值是 .
14.已知复数z 与 (z +2)2
-8i 均是纯虚数,则 z = ____________.
15.复数
i
a ai
222+-的模为2,则实数a 的值是 。
16.在复平面内,O 是原点,OA ,OC ,AB 表示的复数分别为-+++23215i i i ,,,那
么BC 表示的复数为____________.
三、解答题: 17.计算2025100
)2
1(])11()21[(i i i i i +-+-+⋅+
18.在复平面上,正方形ABCD 的两个顶点A ,B 对应的复数分别为 1+2i ,3-5i 。
求另外两个顶点C ,D 对应的复数。
19.(本小题满分12分)已知复数z 1满足(1+i)z 1=-1+5i , z 2=a -2-i , 其中i 为虚数单位,
a ∈R , 若21z z -<|z 1|,求a 的取值范围.
20.(本小题满分12分)已知z 、ω为复数,(1+3i )z 为实数,ω=,||2z
i
ωω=+且求.
试卷答案
一、1.C 2.C 3.D 4.B 5.A 6.A 7.D 8.A 9.B 10.B 11.B 12.C 二、13.1 14.-2i 15
. 16.4-4i 三、 17.解:
20
25100)2
1(])11()21[(i i i i i +-+-+⋅+
5210[(12)1()]i i i =+⋅+--
()2
10112i i i =+-=+
18.解:设D (x,y )
(12)1(2)(1,2)AD x yi i x y i x y =+-+=-+-=-- (1)27(2)0AD AB x y ⊥⇒-⋅--=
AD AB ==⇒=6804x x y y =-=⎧⎧∴⎨⎨
==⎩⎩或 684D D z z i ∴=-=+或
由C B D A C D A B BC AD z z z z z z z z z z =⇒-=-⇒=-+
68447103D D C C
z z i z i z i =-=+⎧⎧∴⎨⎨=--=-⎩⎩或
19.解:由题意得 z 1=
i
i
++-151=2+3i , 于是21z z -=i a 24+-=4)4(2
+-a ,1z =13. 4)4(2
+-a <13,
得a 2
-8a+7<0,1<a<7.
20.解:设ω=x+yi(x ,y ∈R),
()()2()22z
z i x yi i i
ω=
⇒=ω+=+++
依题意得(1+3i)(2+i)ω=(-1+7i)ω为实数,且|ω|=
∴22
7050
x y x y -=⎧⎨+=⎩, 解之得17x y =⎧⎨=⎩或17x y =-⎧⎨=-⎩
,
∴ω=1+7i 或ω=-1-7i 。