SDS-聚丙烯酰胺凝胶垂直板电泳分离蛋白质
- 格式:ppt
- 大小:241.50 KB
- 文档页数:22
天津科技大学生物化学实验报告专业:班级:姓名学号组别第组实验项目同组人完成时间年月日【实验名称】《垂直板聚丙烯酰胺凝胶电泳分离蛋白质》【实验目的】学习SDS-聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋白质的分子量的原理和基本操作技术。
【实验原理】蛋白质的性质:三种物理效应:、、。
1、2、3、成绩:教师签字:批阅日期:聚丙烯酰胺凝胶电泳的四个不连续:、、、。
1、2、3、4、蛋白质的分子量与电泳迁移率之间的关系是:Mr=K(10-b·m)logMr=LogK—b·Rm式中Mr——蛋白质的分子量;logK——截距;b——斜率;Rm——相对迁移率。
实验证明,蛋白质分子量在15,000~200,000的范围内,电泳迁移率与分子量的对数之间呈线性关系。
蛋白质的相对迁移率Rm=蛋白质样品的迁移距离/染料(溴酚蓝)迁移距离。
这样,在同一电场中进行电泳,把标准蛋白质的相对迁移率与相应的蛋白质分子量对数作图,由未知蛋白的相对迁移率可从标准曲线上求出它的分子量。
SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)法测定蛋白质的分子量具有简便、快速、重复性好的优点,是目前一般实验室常用的测定蛋白质分子量的方法。
【材料与设备】1.仪器设备DYCZ-24D垂直板电泳槽(北京市六一仪器厂),电泳仪,微量移液器2.材料烧杯(250mL、500mL)、量筒(500mL、250mL)、培养皿3.主要试剂(1)标准蛋白混合液:内含磷酸化酶(Mw94,000),牛血清蛋白(Mw67,000),肌动蛋白(Mw43,000),磷酸酐酶(Mw30,000)和溶菌酶(Mw14,000)(2)30%凝胶贮备液:Acr30g,Bis0.8g,加蒸馏水至100mL(3)分离胶缓冲液(1.5mol/L):Tris18.15g,加水溶解,6mol/L HCl调pH8.9,定容100mL(4)浓缩胶缓冲液(0.5mol/L):Tris6g,加水溶解,6mol/L HCl调pH6.8,并定容到100mL(5)5×电极缓冲液(pH8.3):SDS lg,Tris6g,Gly28.8g,加水溶解并定容到1000mL。
SDS-聚丙烯酰胺凝胶电泳(PAGE)实验报告一、实验目的1.学习SDS-PAGE分离蛋白质的原理;2.掌握垂直板电泳的操作方法。
二、实验原理1、电泳:(1)定义:是指带电粒子在电场中向与其自身所带电荷相反的电极方向移动的现象。
(2)影响电泳效果的因素:①带电颗粒的大小和形状:颗粒越大,电泳速度越慢,反之越快;②颗粒的电荷数:电荷越少,电泳速度越慢,反之越快;③溶液的粘度:粘度越大,电泳速度越慢,反之越快;④溶液的pH值:影响被分离物质的解离度,离等电点越近,电泳速度越慢,反之越快;⑤电场强度:电场强度越小,电泳速度越慢,反之越快;⑥离子强度:离子强度越大,电泳速度越慢,反之越快;⑦电渗现象:电场中,液体相对于固体支持物的相对移动;⑧支持物筛孔大小:孔径小,电泳速度慢,反之则快。
2、SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)(1)定义聚丙烯酰胺凝胶电泳(PAGE):是以聚丙烯胺凝胶作为载体的一种区带电泳。
SDS-PAGE:是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基磺酸钠)(2)SDS的作用SDS是一种阴离子去垢剂,可与蛋白质结合,形成SDS-蛋白质复合物。
由于SDS带有大量负电荷,好比蛋白质穿上带负电的“外衣”,蛋白质本身带有的电荷则被掩盖,即消除了蛋白质分子之间电荷差异。
因此在电泳时,蛋白质分子的迁移速度则主要取决于蛋白质分子大小(3) SDS-PAGE分类:¾SDS-PAGE按照缓冲液pH值和凝胶孔径差异分为连续系统和不连续系统两大类:连续系统:电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统:缓冲液离子成分,pH,凝胶浓度及电位梯度均不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳(4)聚丙烯胺凝胶的生成:聚丙烯胺凝胶由丙烯酰胺单体(Acr)和N,N’-甲叉双丙烯酰胺(Bis)在催化剂作用下聚合而成。
分子生物学实验报告实验名称:SDS-聚丙烯酰胺凝胶电泳班级:生工xxx姓名:xxx同组人:xxx学号:xxxx日期:xxxxSDS-聚丙烯酰胺凝胶电泳1 引言SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)是目前分离蛋白质亚基并测定其分子量的常用方法,为检测电泳后凝胶中的蛋白质,一般使用考马斯亮蓝(CBB)染色[1]。
本次实验的目的在于学习聚丙烯酰胺凝胶电泳的原理,并掌握聚丙烯酰胺凝胶垂直板电泳分离蛋白质的操作技术。
2 材料和方法.1 实验原理2.1.1 聚丙烯酰胺凝胶的性能及制备原理2.1.1.1 性能聚丙烯酰胺凝胶的机械性能好,有弹性,透明,相对地化学稳定,对pH和温度变化比较稳定,在很多溶剂中不溶,是非离子型的,没有吸附和电渗作用。
通过改变浓度和交联度,可以控制孔径在广泛的范围内变动,并且制备凝胶的重复性好。
由于纯度高和不溶性,因此还适于少量样品的制备,不致污染样品。
2.1.1.2 制备原理聚丙烯酰胺凝胶是用丙烯酰胺(Acr)和交联剂甲叉双丙烯酰胺(Bis)在催化剂的作用下聚合而成。
聚丙烯酰胺凝胶聚合的催化系统有化学聚合和光聚合两种。
本实验是用化学聚合。
化学聚合的催化剂通常多采用过硫酸铵(AP)或过硫酸钾,此外还需要一种脂肪族叔胺作加速剂,最有效的加速剂是N,N,N’,N’-四甲基乙二胺(TEMED)。
在叔胺的催化下,由过硫酸铵形成氧的自由基,后者又使单体形成自由基,从而引发聚合反应。
叔胺要处于自由碱基状态下才有效,所以在低pH 时,常会延长聚合时间;分子氧阻止链的延长,妨碍聚合作用;一些金属也能抑制聚合;冷却可以使聚合速度变慢。
通常控制这些因素使聚合在1小时内完成,以便使凝胶的性质稳定。
聚丙烯酰胺凝胶电泳和SDS-聚丙烯酰胺凝胶电泳有两种系统,即只有分离胶的连续系统和有浓缩胶与分离胶的不连续系统,不连续系统中最典型、国内外均广泛使用的是著名的Ornstein-Davis高pH碱性不连续系统,其浓缩胶丙烯酰胺浓度为4%,pH = 6.8,分离胶的丙烯酰胺浓度为12.5%,pH = 8.8。
SDS- 聚丙烯酰胺凝胶电泳法测定蛋白质分子量【目的】1 . 掌握 SDS-PAGE 测定蛋白质分子量的操作方法。
2 . 熟悉 SDS-PAGE 测定蛋白质分子量的原理。
【原理】带电粒子在电场中向着与其自身电荷方向相反的电极移动, 称为电泳。
不同蛋白质分子具有不同的大小、形状, 在一定的 pH 环境中带有不同的电荷量, 因而在一定的电场中所受的电场引力及介质对其的阻力不同, 二者的作用结果使不同蛋白质分子在介质中以不同的速率移动, 经过一定的时间后得以分离, 这就是电泳分离蛋白质及核酸生物大分子的基本原理。
聚丙烯酰胺凝胶电泳就是以聚丙烯酰胺凝胶作为电泳介质的电泳。
在电泳时, 蛋白质在介质中的移动速率与其分子的大小, 形状和所带的电荷量有关, 为了使其只与蛋白质分子的大小有关, 从而利用蛋白质在介质中的迁移率来测定蛋白质的分子量, 就需要消除蛋白质分子的形状和所带电荷量的不同对迁移率的影响或减小到可忽略不计的程度。
SDS 是十二烷基硫酸钠( sAium dAecyl sulfate )的简称, 它是一种阴离子表面活性剂, 加入到电泳系统中能使蛋白质的氢键和疏水键打开, 并结合到蛋白质分子上(在一定条件下, 大多数蛋白质与 SDS 的结合比为 1.4 g SDS/ 1 g 蛋白质), 使各种蛋白质 -SDS 复合物都带上相同密度的负电荷, 其数量远远超过了蛋白质分子原有的电荷量, 从而掩盖了不同种类蛋白质间原有的电荷差别, 使电泳迁移率只取决于分子大小这一因素, 于是根据标准蛋白质分子量的对数和迁移率所作的标准曲线, 可求得未知物的分子量。
SDS 与蛋白质结合后引起蛋白质构象的改变。
SDS- 蛋白质复合物的流体力学和光学性质表明, 它们在水溶液中的形状, 近似于雪茄烟形状的长椭园棒, 不同蛋白质的 SDS 复合物的短轴长度都一样(约为 18? , 即 1.8 nm ), 而长轴则随蛋白质分子量成正比的变化。
实验十聚丙烯酰胺凝胶电泳(SDS-PAGE)分离蛋白质【实验目的】1. 了解和掌握聚丙烯酰胺凝胶电泳的技术和原理;2. 掌握用此法分离蛋白质组分的操作方法。
【实验原理】在生物化学、分子生物学和基因(遗传)工程实验中,常常要进行蛋白质和核酸的分离工作。
聚丙烯酰胺凝胶电泳(Polyacrylamide Gel Electrophoresis, PAGE)是以聚丙烯酰胺凝胶作为支持介质进行蛋白质或核酸分离的一种电泳方法。
聚丙烯酰胺凝胶是由丙烯酰胺单体(acrylamide,简称ACR)和交联剂N,N-甲叉双丙烯酰胺(N,N-methylene bisacrylsmide 简称BIS)在催化剂的作用下聚合交联而成的三维网状结构的凝胶。
通过改变单体浓度与交联剂的比例,可以得到不同孔径的凝胶,用于分离分子量大小不同的物质。
聚丙烯酰胺凝胶聚合的催化体系有两种:(1)化学聚合:催化剂采用过硫酸铵,加速剂为N,N,N,N-四甲基乙二胺(简称TEMED)。
通常控制这二种溶液的用量,使聚合在1小时内完成。
(2)光聚合:通常用核黄素为催化剂,通过控制光照时间、强度控制聚合时间,也可加入TEMED 加速反应。
聚丙烯酰胺凝电泳常分为二大类:第一类为连续的凝胶(仅有分离胶)电泳;第二类为不连续的凝胶(浓缩胶和分离胶)电泳。
一般地,不连续聚丙烯酰胺凝胶电泳有三种效应:①电荷效应(电泳物所带电荷的差异性);②凝胶的分子筛效应(凝胶的网状结构及电泳物的大小形状不同所致)。
③浓缩效应(浓缩胶与分离胶中聚丙烯酰胺的浓度及pH的不同,即不连续性所致)。
因此,样品分离效果好,分辨率高。
SDS即十二烷基硫酸钠(Sodium Dodecyl Sulfate,简称SDS)是阴离子表面活性剂,它能以一定比例和蛋白质结合,形成一种SDS-蛋白质复合物。
这时,蛋白质即带有大量的负电荷,并远远超过了其原来的电荷,从而使天然蛋白质分子间的电荷差别降低仍至消除。
聚丙烯酰胺凝胶电泳分离血清蛋白质一、电泳的概念带有电荷的离子在电场中称动的现象称为电泳。
电泳技术的发展:1937年Tiselius利用U形玻管进行血清蛋白电泳后用光学系统使各种蛋自所形成界面折光率差别成为曲线图象,发现血清蛋白可分为4~5高峰,即白蛋白、α(α1和α2)、β和γ球蛋白,使电泳技术开始应用于临床研究。
但这类电泳仪结构较复杂,价值昂贵不易推广。
1940年代,Kӧnig和Wieland等发明用滤纸作为支持物,使电泳技术大为简化,而且可使许多组份相互分离为区带,所以这类电泳被称为区带电泳,而Tiselius 的电泳装置则称界面自由电泳,纸上电泳发明后在临床上到广泛的应用。
1950年发展为琼脂凝胶电泳。
1953年又发展为电泳后用免疫沉淀线检测的免疫电泳。
1955年Smithies以淀粉胶为支持物进行血清蛋白电泳分离,结果可分为十余条区带,这是由于淀粉胶尚具有分子筛作用使蛋白更有效地分离,淀粉胶的制备不易标准化是该法的缺点。
1959年Davis发明聚丙烯酰胺凝胶电泳,聚丙烯酰胺具有耐热、透明、化学性质稳定等优点,并可以不同浓度的丙烯酰胺单体聚合为各种不同大小孔径的凝胶,即可制备各种不同孔径的分子筛,对于蛋白质和核酸等大分子物质的分离提供了有用的技术。
六十年代以来又出现了等电聚焦电泳和等速电泳等新电泳技术。
二、电泳的基本原理设一带电粒子在电场中所受的力为F,F的大小决定于粒子所带电荷Q的电场的强度X,即:F= QX又按Stoke氏定律,一球形的粒子运动时所受到的阻力F’与粒子运动的速度v、粒子的半径r、介质的粘度η的关系为:F’= 6πrηV当F=F’时,即达到动态平衡时:QX= 6πrηV移项得:V/X= Q/6πrηV/X表示单位电场强度时粒子运动的速度,称为迁移率(mobility),也称为电泳速度,以u表示。
由公式可见,粒子的迁移率在一定条件下决定于粒子本身的性质,包括其所带电荷及其大小和形态。