SDS-聚丙烯酰胺凝胶电泳简单原理和步骤
- 格式:ppt
- 大小:28.00 KB
- 文档页数:9
SDS-PAGE电泳实验步骤垂直板聚丙烯酰胺凝胶电泳分离蛋⽩质⼀、实验⽬的学习SDS-聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋⽩质的分⼦量的原理和基本操作技术。
⼆、实验原理蛋⽩质是两性电解质,在⼀定的pH条件下解离⽽带电荷。
当溶液的pH⼤于蛋⽩质的等电点(pI)时,蛋⽩质本⾝带负电,在电场中将向正极移动;当溶液的pH⼩于蛋⽩质的等电点时,蛋⽩质带正电,在电场中将向负极移动;蛋⽩质在特定电场中移动的速度取决于其本⾝所带的净电荷的多少、蛋⽩质颗粒的⼤⼩和分⼦形状、电场强度等。
聚丙烯酰胺凝胶是由⼀定量的丙烯酰胺和双丙烯酰胺聚合⽽成的三维⽹状孔结构。
本实验采⽤不连续凝胶系统,调整双丙烯酰胺⽤量的多少,可制成不同孔径的两层凝胶;这样,当含有不同分⼦量的蛋⽩质溶液通过这两层凝胶时,受阻滞的程度不同⽽表现出不同的迁移率。
由于上层胶的孔径较⼤,不同⼤⼩的蛋⽩质分⼦在通过⼤孔胶时,受到的阻滞基本相同,因此以相同的速率移动;当进⼊⼩孔胶时,分⼦量⼤的蛋⽩质移动速度减慢,因⽽在两层凝胶的界⾯处,样品被压缩成很窄的区带。
这就是常说的浓缩效应和分⼦筛效应。
同时,在制备上层胶(浓缩胶)和下层胶(分离胶)时,采⽤两种缓冲体系;上层胶pH=6.7—6.8,下层胶pH=8.9;Tris —HCI缓冲液中的Tris⽤于维持溶液的电中性及pH,是缓冲配对离⼦;CI-是前导离⼦。
在pH6.8时,缓冲液中的Gly-为尾随离⼦,⽽在pH=8.9时,Gly的解离度增加;这样浓缩胶和分离胶之间pH的不连续性,控制了慢离⼦的解离度,进⽽达到控制其有效迁移率之⽬的。
不同蛋⽩质具有不同的等电点,在进⼊分离胶后,各种蛋⽩质由于所带的静电荷不同,⽽有不同的迁移率。
由于在聚丙烯酰胺凝胶电泳中存在的浓缩效应,分⼦筛效应及电荷效应,使不同的蛋⽩质在同⼀电场中达到有效的分离。
如果在聚丙烯酰胺凝胶中加⼊⼀定浓度的⼗⼆烷基硫酸钠(SDS),由于SDS带有⼤量的负电荷,且这种阴离⼦表⾯活性剂能使蛋⽩质变性,特别是在强还原剂如巯基⼄醇存在下,蛋⽩质分⼦内的⼆硫键被还原,肽链完全伸展,使蛋⽩质分⼦与SDS充分结合,形成带负电性的蛋⽩质—SDS复合物;此时,蛋⽩质分⼦上所带的负电荷量远远超过蛋⽩质分⼦原有的电荷量,掩盖了不同蛋⽩质间所带电荷上的差异。
SDS-PAGE电泳的基础原理和实验步骤概述十二烷基硫酸钠聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,简称SDS-PAGE)是聚丙烯酰胺凝胶电泳中最常用的一种蛋白表达分析技术。
此项技术的原理,是根据检体中蛋白质分子量大小的不同,使其在电泳胶中分离。
在大肠杆菌表达纯化外源蛋白的实验中,SDS-PAGE更是必不可少的操作,其通常用于检测蛋白的表达情况(表达量,表达分布),以及分析目的蛋白的纯度等。
SDS-PAGE作用机理蛋白中含有很多的氨基(+)和羧基(-),不同的蛋白在不同的pH值下表现出不同的电荷,为了使蛋白在电泳中的迁移率只与分子量有关,我们在上样前,通常会进行一些处理(上样缓冲液)。
即在样品中加入含有SDS和β-巯基乙醇的上缓冲液。
SDS即十二烷基磺酸钠(CH3-(CH2)10-CH2OSO3-Na+),是一种阴离子表面活性剂,它可以断开分子内和分子间的氢键,破坏蛋白质分子的二级和三级结构;β-巯基乙醇是强还原剂,它可以断开半胱氨酸残基之间的二硫键。
电泳样品加入样品处理液后,经过高温处理,其目的是将SDS与蛋白质充分结合,以使蛋白质完全变性和解聚,并形成棒状结构同时使整个蛋白带上负电荷;另外样品处理液中通常还加入溴酚蓝染料,用于监控整个电泳过程;另外样品处理液中还加入适量的蔗糖或甘油以增大溶液密度,使加样时样品溶液可以快速沉入样品凹槽底部。
当样品上样并接通两极间电流后(电泳槽的上方为负极,下方为正极),在凝胶中形成移动界面并带动凝胶中所含SDS负电荷的多肽复合物向正极推进。
样品首先通过高度多孔性的浓缩胶,使样品中所含SDS多肽复合物在分离胶表面聚集成一条很薄的区带(或称积层)。
电泳启动时,蛋白样品处于pH6.8的上层,pH8.8的分离胶层在下层,上槽为负极,下槽为正极。
出现了pH 不连续和胶孔径大小不连续:启动时Cl¯解离度大,Pro¯解离度居中,甘aaCOO¯解离度小,迁移顺序为(pH6.8)Cl¯>Pro¯>—COO¯。
sds聚丙烯酰胺凝胶电泳测定蛋白质相对分子量的原理;
SDS聚丙烯酰胺凝胶电泳是一种蛋白质分析方法,常用于测定蛋白质的相对分子量。
其原理是利用SDS(十二烷基硫酸钠)使蛋白质带负电,使蛋白质在凝胶中按照相对分子量大小进行分离。
具体原理如下:
1. SDS:SDS是一种表面活性剂,它可以与蛋白质发生结合,使得所有蛋白质带有相同的电荷密度。
2. 蛋白质解不性:在SDS存在条件下,蛋白质发生解性,其中SDS会形成不溶解的复合物,使蛋白质具有均一负电荷。
3. 凝胶电泳:将SDS处理后的蛋白质样品加于聚丙烯酰胺凝胶电泳胶板上,施加电场使蛋白质迁移。
4. 分离:由于凝胶电泳胶阻力不同,蛋白质经过一段时间后在凝胶上分离成锥形区带。
5. 相对分子量测定:在同一凝胶中,已知相对分子量已知的标准蛋白质样品与待测蛋白质样品进行分析,通过对比标准蛋白质样品的迁移距离和待测蛋白质样品的迁移距离,可以推算出待测蛋白质样品的相对分子量。
需要注意的是,由于SDS聚丙烯酰胺凝胶电泳是以相对分子量进行分析的,所以对于蛋白质的准确分子量测定,还需结合其他方法如质谱等进行综合分析。
实验十一SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子质量一、目的要求学习和掌握采用SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子质量的基本原理和方法。
二、实验原理聚丙烯酰胺凝胶是由丙烯酰胺(Acr)和少量交联剂甲叉双丙烯酰胺(Bis)在催化剂的作用下聚合交联形成的三围网状结构。
通过改变单体Acr浓度或单体与交联剂的比例可以控制凝胶孔径的大小,这取决于两个重要的参数T和C,其中T是两个单体(Acr和Bis)的总百分浓度,C是与总浓度有关的交联百分浓度。
T=(a+b)/m×100(%) C=b/(a+b)×100(%)式中,a为Acr质量(g);b为Bis质量(g);m为水或缓冲液的终体积(mL)。
聚丙烯酰胺凝胶电泳分为连续的和不连续系统两种。
在连续系统中,电泳槽中缓冲液的pH与凝胶中一致,而在不连续系统中上述两者的pH不相同,不连续系统的分辨率较高。
从凝胶形式上可分为柱式或板式。
将凝胶装于垂直的玻璃管中进行电泳分离称柱式电泳,此法制备凝胶方便,样品需要量少,凝胶条便于长期保存;板式电泳的优点是可以在同一凝胶板上同时检测盒比较多个样品,在平板电泳的基础上还建立了分辨率更高的双向电泳。
不连续聚丙烯酰胺凝胶电泳系统具备三种效应,因此大大提高了分辨率。
(1)浓缩效应:在电泳开始时,样品在浓缩胶与分离胶界面上形成了高度压缩的薄层,作为在分离胶中进一步分离的起始样层,有时甚至能浓缩几百倍。
(2)电荷效应:蛋白质混合物在界面处被高度浓缩,形成一狭小的高浓度的蛋白质区带。
由于每种蛋白质分子所带的电荷不同,因而泳动率不同,各种蛋白质就以一定的顺序排列成一个一个的蛋白质区带。
(3)分子筛效应:当蛋白质分子通过浓缩胶进入分离胶时,颗粒小、呈球形的样品分子移动快,柯利达、形状不规则的分子在通过凝胶空洞时的阻力大,移动就缓慢。
聚丙烯酰胺凝胶电泳分离不同的蛋白质分子的主要极力为上述的电荷效应和分子筛效应,即这些分子所带净电荷的差异和分子质量大小的不同。
SDS-聚丙烯酰胺凝胶电泳(PAGE)实验报告一、实验目的1.学习SDS-PAGE分离蛋白质的原理;2.掌握垂直板电泳的操作方法。
二、实验原理1、电泳:(1)定义:是指带电粒子在电场中向与其自身所带电荷相反的电极方向移动的现象。
(2)影响电泳效果的因素:①带电颗粒的大小和形状:颗粒越大,电泳速度越慢,反之越快;②颗粒的电荷数:电荷越少,电泳速度越慢,反之越快;③溶液的粘度:粘度越大,电泳速度越慢,反之越快;④溶液的pH值:影响被分离物质的解离度,离等电点越近,电泳速度越慢,反之越快;⑤电场强度:电场强度越小,电泳速度越慢,反之越快;⑥离子强度:离子强度越大,电泳速度越慢,反之越快;⑦电渗现象:电场中,液体相对于固体支持物的相对移动;⑧支持物筛孔大小:孔径小,电泳速度慢,反之则快。
2、SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)(1)定义聚丙烯酰胺凝胶电泳(PAGE):是以聚丙烯胺凝胶作为载体的一种区带电泳。
SDS-PAGE:是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基磺酸钠)(2)SDS的作用SDS是一种阴离子去垢剂,可与蛋白质结合,形成SDS-蛋白质复合物。
由于SDS带有大量负电荷,好比蛋白质穿上带负电的“外衣”,蛋白质本身带有的电荷则被掩盖,即消除了蛋白质分子之间电荷差异。
因此在电泳时,蛋白质分子的迁移速度则主要取决于蛋白质分子大小(3) SDS-PAGE分类:¾SDS-PAGE按照缓冲液pH值和凝胶孔径差异分为连续系统和不连续系统两大类:连续系统:电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统:缓冲液离子成分,pH,凝胶浓度及电位梯度均不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳(4)聚丙烯胺凝胶的生成:聚丙烯胺凝胶由丙烯酰胺单体(Acr)和N,N’-甲叉双丙烯酰胺(Bis)在催化剂作用下聚合而成。
sds聚丙烯酰胺凝胶电泳原理
sds聚丙烯酰胺凝胶电泳是一种常用的蛋白质分离和分析技术。
它基于分子的电荷与分子的质量之间的相互作用,通过电场驱动,将蛋白质样品分离成不同的带状条带。
该方法的工作原理可分为以下几个步骤:
1. 样品制备:将待分离的蛋白质样品与sds(十二烷基硫酸钠)混合,使蛋白质样品在含有还原剂的缓冲液中发生变性并且呈带负电荷的复合物。
2. 样品加载:将样品加载到预制的聚丙烯酰胺凝胶槽中的样品孔中。
通过上下两个电极施加电压使样品向凝胶孔移动。
3. 分离:当电压施加后,带电的蛋白质复合物将根据其质量和电荷大小在凝胶中移动。
较小的蛋白质在电场作用下通过凝胶孔移动更快,而较大的蛋白质移动较慢。
4. 染色:在分离完成后,经过染色处理使分离出的蛋白质带呈现出可视化的条带。
常用的染色方法包括银染、共染和荧光染色等。
通过观察得到的条带模式,可以确定蛋白质的分子质量和其含量。
这种方法比较简单、经济且广泛应用于蛋白质研究领域。
sds聚丙烯酰胺凝胶电泳原理
sds(sodium dodecyl sulfate,即十二烷基硫酸钠)聚丙烯酰胺凝胶电泳原理是利用sds聚丙烯酰胺凝胶和一定的电压对其进行凝胶化,以分离两种不同的物质,从而实现电泳分析的原理。
sds聚丙烯酰胺凝胶电泳的基本原理是sds聚丙烯酰胺凝胶需要在固态/液态和空间/时间上凝聚时才能有效地进行电泳,其原理可归纳为:sds在固态/液态环境中能够使蛋白质和核酸分子呈现出好的动力学性质,在空间/时间上固定,并不对外界原料械有影响。
当电流经过sds凝胶时,sds凝胶会发生变换,从而给蛋白质和核酸引起的动力场就可能使两者以不同的速度在sds凝胶中分别运动,从而实现电泳分析。
由于sds聚丙烯酰胺凝胶的力学稳定性,和使用的电压的强度相关,因此,可以使用精密调节的高压稳定性进行对样品进行电泳分析,获得高质量的结果。
sds聚丙烯酰胺凝胶电泳技术在分子生物学、细胞生物学以及药理学中都有着广泛的应用,如:用于蛋白质和核酸研究的2D-PAGE技术、用于糖蛋白分析的糖蛋白电泳仪、用于活性和结构的蛋白质电泳仪。
总之,sds聚丙烯酰胺凝胶电泳原理是利用sds聚丙烯酰胺凝胶和一定的电压对其进行凝胶化,以分离两种不同的物质,从而实现电泳分析的原理。
由于sds聚丙烯酰胺凝胶的力学稳定性,和使用的电压的强度相关,因此,可以使用精密调节的高压稳定性进行对样品进行电泳分析,获得高质量的结果。
而sds聚丙烯酰胺凝胶电泳技术,则已经在分子生物学,细胞生物学和药理学中的研究中得到了广泛的应用。
实验七 SDS —聚丙烯酰胺凝胶电泳法测定蛋白质的分子量一、 实验原理了解SDS-聚丙烯酰胺凝胶电泳的原理,学会用这种方法测定蛋白质的相对分子量 二、实验原理带电的颗粒(蛋白质)在电场的作用下,移动的速度是根据此公式,在同一电场强度(v /d)和电极缓冲液(η)条件下,带电的各种蛋白质成分,移动的速度决定于各蛋白质的带电量(q)和自身分子的大小(6πr)。
若使各蛋白质成分的带电量(q)相近似时,则各蛋白质成分移动的速度就只决定于各蛋白质成分自身分子的大小(6πr)。
1967年Shapiro 等人发现,在聚丙烯酰胺凝胶中加入阴离子去污剂十二烷基硫酸钠(sodium dodecylsulfate ,SDS),不影响凝胶的形成,而蛋白质的电泳迁移率则主要取决于它的自身分子量的大小。
加入SDS 之所以能获得如此的效应,是因为SDS 能打开蛋白质分子间的氢键和疏水键,使蛋白质变性成为松散的线状。
同时大多数蛋白质的每个氨基酸都能与固定量的SDS 相结合[溶液中的SDS 总量,至少要比蛋白质的量高3倍以上,大多数蛋白质与SDS 按1:1.4(W /W)的比例结合],形成SDS 一蛋白质复合物。
其结果: (1)由于SDS 解离后带有很强的负电荷,致使SDS 一蛋白质复合物都带上了相同密度的负电荷,其电量大大超过了蛋白质分子原有的电荷量,基本掩盖了不同种类蛋白质间原有的电荷差异。
(2)SDS 与蛋白质结合后,改变了蛋白质原有构象,使所有蛋白质水溶液中的形状都近似椭圆柱形。
不同SDS 一蛋白质复合物的短轴直径都一样,约为18nm ,而长轴则与蛋白质分子的大小成正比。
这样SDS 一蛋白质复合物在凝胶电泳中的迁移率,就不再受蛋白质原有电荷及其形状的影响了,而只取决于椭圆柱长度,即蛋白质分子的大小。
需要注意的是:为使SDS 与蛋白质能充分的按比例结合,必须将蛋白质间的二硫键完全打开。
因此,在用SDS 处理蛋白质样品时,必须同时用巯基乙醇处理。
蛋白质相对分子质量的测定——SDS-聚丙烯酰胺凝胶电泳法一、实验目的1、学会SDS-聚丙烯酰胺凝胶电泳法原理。
2、掌握用SDS-聚丙烯酰胺凝胶电泳法测定蛋白质相对分子质量的操作技术。
二、实验原理SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)是对蛋白质进行量化,比较及特性鉴定的一种经济、快速、而且可重复的方法。
该法主要依据蛋白质的分子量对其进行分离。
SDS与蛋白质的疏水部分相结合,破坏其折叠结构,并使其稳定地存在于一个广泛均一的溶液中。
SDS-蛋白质复合物的长度与其分子量成正比。
由于在样品介质和聚丙烯酰胺凝胶中加入离子去污剂和强还原剂后,蛋白质亚基的电泳迁移率主要取决于亚基分子量的大小,而电荷因素可以被忽略。
SDS-PAGE因易于操作和广泛的用途,使它成为许多研究领域中一种重要的分析技术。
Acr和bis单独存在或混合在一起时是稳定的,但在具有自由基团体系时就能聚合。
引发自由基的方法有化学法和光化学法两种。
化学法的引发剂是过硫酸铵(Ap),催化剂十四甲基乙二胺(TEMED);光化学法是以光敏感物核黄素来代替过硫酸铵,在紫外光照射下引发自由基团。
采用不同浓度的acr、bis、Ap、TEMED使之聚合,产生不同孔径的凝胶。
因此可按分离物质的大小、形状来选择凝胶浓度。
SDS是十二烷基硫酸钠(sodium dodecyl sulfate)的简称,它是一种阴离子表面活性剂,加入到电泳系统中能使蛋白质的氢键和疏水键打开,并结合到蛋白质分子上(在一定条件下,大多数蛋白质与SDS的结合比为1.4gSDS/1g蛋白质),使各种蛋白质-SDS复合物都带上相同密度的负电荷,其数量远远超过了蛋白质分子原有的电荷量,从而掩盖了不同种类蛋白质间原有的电荷差别。
这样就使电泳迁移率只取决于分子大小这一因素,于是根据标准蛋白质分子量的对数和迁移率所作的标准曲线,可求得未知物的分子量。
三、实验器材及数据30%分离胶储存液、10%浓缩胶储存液、分离胶缓冲液、浓缩胶缓冲液、电泳缓冲液、样品溶解液、染色液、脱色液;标准蛋白,样品蛋白;电泳槽,移液管1ml,烧杯100ml四、注意事项1、acr和bis均为神经毒剂,对皮肤有刺激作用,操作时应戴口罩和手套,纯化应在通风处内进行。
S D S聚丙烯酰胺凝胶电泳S D S P A G E实验原理和操作步骤The pony was revised in January 2021SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)实验原理和操作步骤实验原理:SDS-PAGE是对蛋白质进行量化,比较及特性鉴定的一种经济、快速、而且可重复的方法。
该法是依据混合蛋白的分子量不同来进行分离的。
SDS是一种去垢剂,可与蛋白质的疏水部分相结合,破坏其折叠结构,并使其广泛存在于一个广泛均一的溶液中。
SDS蛋白质复合物的长度与其分子量成正比。
在样品介质和凝胶中加入强还原剂和去污剂后,电荷因素可被忽略。
蛋白亚基的迁移率取决于亚基分子量。
试剂和器材:试剂:1. 5x样品缓冲液(10ml):0.6ml 1mol/L的Tris-HCl(pH6.8),5ml 50%甘油,2ml 10%的SDS,0.5ml巯基乙醇,1ml 1%溴酚蓝,0.9ml蒸馏水。
可在4℃保存数周,或在-20℃保存数月。
2. 凝胶贮液:在通风橱中,称取丙烯酰胺30g,甲叉双丙烯酰胺0.8g,加重蒸水溶解后,定容到100ml。
过滤后置棕色瓶中,4℃保存,一般可放置1个月。
3. pH8.9分离胶缓冲液: Tris 36.3g ,加1mol/L HCl 48ml,加重蒸水80ml使其溶解,调pH8.9,定容至100ml,4℃保存。
4. pH6.7浓缩胶缓冲液: Tris5.98g ,加1mol/L HCl 48ml,加重蒸水80ml使其溶解,调pH6.7,定容至100ml,4℃保存。
5. TEMED(四乙基乙二胺)原液6.10%过硫酸铵(用重蒸水新鲜配制)7. pH8.3 Tris-甘氨酸电极缓冲液:称取Tris 6.0g,甘氨酸28.8g,加蒸馏水约900ml,调pH8.3后,用蒸馏水定容至1000ml。
置4℃保存,临用前稀释10倍。
8. 考马斯亮蓝G250染色液:称100mg考马斯亮蓝G250,溶于200ml蒸馏水中,慢慢加入7.5ml 70%的过氯酸,最后补足水到250ml,搅拌1小时,小孔滤纸过滤。
实验名称:SDS聚丙烯酰胺凝胶电泳实验报告一、实验目的1. 了解SDS-PAGE实验的原理和方法;2. 掌握SDS-PAGE实验的操作流程;3. 分析不同蛋白质在SDS-PAGE中的分离情况;4. 对实验结果进行解读和总结。
二、实验原理SDS-PAGE(Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis)是一种常用的蛋白质分离和分析技术。
其原理是利用SDS将蛋白质变性并赋予等电点,将蛋白质按照分子量大小在凝胶中进行分离。
通过电泳操作,蛋白质会根据其分子量在凝胶中移动,最终形成不同的条带,便于观察和分析。
三、实验步骤1. 准备样品:获取需要分析的蛋白质样品,并进行处理使其可以被SDS-PAGE分离;2. 制备凝胶:根据实验需要,配置聚丙烯酰胺凝胶,并在凝胶板中固定好;3. 样品加载:将处理好的蛋白质样品加载到凝胶槽中;4. 电泳分离:在设定好电压和时间的条件下,进行电泳操作,使蛋白质在凝胶中分离;5. 染色观察:将分离后的蛋白质用染色剂染色,然后观察分离的条带;6. 结果分析:根据实验结果,进行蛋白质的分析和解读。
四、实验材料与仪器1. 样品:蛋白质样品;2. 凝胶:聚丙烯酰胺凝胶;3. 电泳槽:用于进行SDS-PAGE电泳的设备;4. 电源:用于提供电泳操作所需电压的电源设备;5. 染色剂:用于染色观察蛋白质条带的染色剂。
五、实验结果与分析经过SDS-PAGE实验操作,观察到样品中不同蛋白质在凝胶中的分离情况。
根据不同分子量的蛋白质在凝胶中形成了明显的条带,条带的位置和密度反映了样品中蛋白质的分布情况。
通过染色观察和数据分析,可以得出样品中蛋白质的组成和含量。
六、实验结论SDS-PAGE实验是一种重要的蛋白质分析方法,通过实验操作可以对蛋白质样品进行分离和分析,从而了解样品的蛋白质组成和特性。
本次实验结果表明,SDS-PAGE可以有效地对蛋白质样品进行分离,为后续的分析和研究奠定了基础。
sds聚丙烯酰胺凝胶电泳与聚丙烯酰胺凝胶电泳原理sds聚丙烯酰胺凝胶电泳和聚丙烯酰胺凝胶电泳都是生物化学中常用的蛋白质分离和分析技术。
这两种技术的基本原理不同,下面我们将分别介绍它们的原理。
1. SDS聚丙烯酰胺凝胶电泳的原理SDS聚丙烯酰胺凝胶电泳是一种常用的蛋白质分离技术,使用SDS(dodecyl sulfate)这种表面活性剂将蛋白质完全去除其天然构象,使得所有蛋白质变成一种负电荷。
具体步骤如下:(1) 样品制备:需要将样品先进行热变性,然后进一步加入SDS和还原剂(如β-巯基乙醇)。
(2) 凝胶制备:需要制备一个连续的聚丙烯酰胺凝胶,这个凝胶有着不同大小的孔洞,可以用来分离蛋白质。
(3) 电泳过程:将样品放在凝胶的顶部,然后进行电泳。
在电场作用下,蛋白质将按照大小和电荷密度被排列。
(4) 染色:完成电泳后,可以使用染色剂如银染来可视化蛋白质的位置。
这种技术能够将蛋白质按照大小、形状和电荷分离出来。
SDS聚丙烯酰胺凝胶电泳还可用于测定蛋白质的分子量,因为分子量和蛋白出现的位置呈线性关系。
聚丙烯酰胺凝胶电泳也是一种基于凝胶色谱的生物分离技术,主要是根据多肽分子量的分布来进行分离。
具体步骤如下:(2) 样品制备:将样品加入到凝胶孔中,用电泳进行分离。
(3) 电泳过程:在电场的作用下,蛋白质将向着阳极进行移动。
在聚丙烯酰胺凝胶电泳中,一般将蛋白质或多肽样品电泳分离,而不使用SDS。
因此,聚丙烯酰胺凝胶电泳能够检测到带电的多肽,而且可以检测到未被完全转化的蛋白质保留其完整分子量的多肽。
总之,两种凝胶电泳技术的原理各有不同,根据实验需求可以选择不同的技术。
SDS-聚丙烯酰胺凝胶电泳目的要求(1)学习SDS-PAGE测定蛋白质分子量的原理。
(2)掌握SDS-PAGE测定蛋白质分子量的操作方法。
原理SDS-PAGE是PAGE是一种特殊形式,SDS是带负电荷的阴离子去污剂。
用SDS-PAGE 测定蛋白质分子量时,蛋白质需经样品溶解液处理。
在样品溶解液中含有巯基乙醇及SDS,各种蛋白质样品在巯基乙醇作用下,还原成单链,再进一步与SDS结合形成带大量负电荷的SDS-蛋白质复合物。
因此各种蛋白质分子在SDS-PAGE中,只能按其分子量大小而分离。
SDS-PAGE有连续体系(b)及不连续体系两种(d),这两种体系有各自的样品溶解液及缓冲液,但加样方式,电泳过程及固定、染色与脱色方法完全相同。
聚丙烯酰胺凝胶电泳是以聚丙烯酰胺凝胶作为载体的一种区带电泳。
这种凝胶是以丙烯酰胺单体(Acrylamide,简写为Acr)和交联剂N,N'-甲叉双丙烯酰胺(N,N'-Methylena Bisacrylamide,简写为Bis)在催化剂的作用下聚合而成的。
Acr 和Bis 在它们单独存在或混合在一起时是稳定的,且具有神经毒性,操作时应避免接触皮肤。
但在具有自由基团体系时,它们聚合。
引发产生自由基团的方法有两种,即化学法和光化学法。
化学聚合的引发剂是过硫酸铵(NH4)2S2O3(Ammonium persulfate,简写为Ap),催化剂是N,N,N',N'-四甲基乙二胺(Tetramethylenediamine,简写为TEMED)。
在催化剂TEMED的作用下,由过硫酸铵(Ap)形成的自由基又使单体形成自由基,从而引起聚合作用。
TEMED 在低pH 时失效,会使聚合作用延迟;冷却也可使聚合速度变慢;一些金属抑制聚合;分子氧阻止链的延长,防碍聚合作用。
这些因素在实际操作时都应予以控制。
光聚合以光敏感物核黄素(即V B2)作为催化剂,在痕量氧存在下,核黄素经光解形成无色基,无色基被氧再氧化成自由基,从而引起聚合作用。
sds凝胶电泳原理
SDS凝胶电泳是一种常用的蛋白质分离和分析方法。
其基本
原理是利用表面活性剂SDS(十二烷基硫酸钠)将蛋白质分
子进行线性化,并给予负电荷,使其蛋白质的迁移速率仅与其相对分子质量成正比。
通过电场作用下,蛋白质在凝胶中移动,从而实现对蛋白质分子的分离。
具体操作步骤如下:
1. 准备凝胶:常用的凝胶有聚丙烯酰胺凝胶和聚丙烯醛凝胶。
凝胶制备时需加入电泳缓冲液,以提供离子导电。
2. 准备样品:将待分析的蛋白质样品加入SDS-PAGE凝胶样
品缓冲液,并进行蛋白质样品的热变性处理,使蛋白质线性化并降解二级结构。
3. 加载样品:将处理后的蛋白质样品加入凝胶孔穴中。
4. 进行电泳:在电泳槽中加入适量的电泳缓冲液,将凝胶放入电泳槽,并施加正向电场。
电场作用下,蛋白质样品会向阳极迁移。
5. 可选-分子量标记:可以在凝胶中加入分子量标记蛋白质,
用于对照和分子量测定。
6. 凝胶染色:电泳结束后,可使用蛋白质染色剂如Coomassie
蓝染色,观察和分析分离的蛋白质带。
通过SDS凝胶电泳,可以实现对复杂蛋白质混合物的分离和
初步定性分析。
此方法广泛应用于生物医学、生物化学等领域的蛋白质研究中。