圆周率的历史
- 格式:doc
- 大小:29.50 KB
- 文档页数:2
圆周率的介绍和历史圆周率,又称圆周率数值,是一个重要的数学概念。
圆周率的定义是一个圆的周长与直径之比,用希腊字母π表示。
它大约等于3.1815926...,这个数值在各个领域都有广泛应用,因此被称为“圆周率”。
圆周率的历史渊源可以追溯到古代巴比伦和印度的数学家,他们用印度数字(十进位制)计算圆周率。
最早的记载见于《周髀算经》和《春秋五经》等书,但这些文献的成书时间都比西元前1世纪晚了很多。
实际上,历史学家认为圆周率的数值在古希腊时期就已经大致确定。
公元前1世纪,古希腊的数学家埃拉托斯特尼斯(Eratosthenes)发现了圆周率的实际值。
他在埃及的亚历山大港担任工程师时,利用几何图形计算出圆周率的数值。
传说中,他使用了一个巨大的天文观测仪器,称为“圆规”。
根据历史记载,这个仪器实际上是一个水银柱。
在古希腊,数学家们对圆周率的数值研究非常深入。
他们不仅研究了圆周率的实际值,还研究了它的一些特性。
例如,阿基米德(Alexander Aphrodisias)发现了圆周率与勾股定理的联系,并由此得出了圆柱的体积公式。
另外,欧几里得(Euclid)也研究了圆周率,并给出了一个用于计算圆周率的简单算法。
除了研究圆周率的实际值,古希腊的数学家还研究了它的几何意义。
他们发现,圆周率的值可以用来计算圆的面积、周长以及直径等概念,从而得出了许多几何定理。
例如,阿基米德曾利用圆周率计算了一个圆的面积,从而得出了著名的“阿基米德原理”。
在我国,圆周率的研究也有着悠久的历史。
古代的数学家们利用木筹和算筹等工具,计算圆周率的值。
到了公元1世纪,东汉的数学家朱蒙(ZhūMeng)利用并理解了周髀算经的圆周率数值。
之后,圆周率的值逐渐传入各个领域,为我国的数学研究、天文学、工程学以及科学研究提供了重要的理论依据。
圆周率的实际应用价值非常广泛,几乎贯穿于所有科学领域。
例如,它可以用于计算几何图形、机械和建筑结构的尺寸,计算飞机和船只的升力,以及计算天体的周期等。
圆周率的历史圆周率是指一个圆的周长与其直径之比,通常表示为希腊字母π。
圆周率的值是一个无限不循环小数,常用小数表示法是3.1415926……。
圆周率是数学中非常重要的常数,被广泛应用于几何、物理、工程学、计算机科学等领域。
圆周率的历史可以追溯到古代,最早的记录来自于古代印度和巴比伦。
在印度,人们使用的是一种近似值,他们认为圆周与直径的比值是62832/20000,即3.1416;在巴比伦,人们使用的是一种一步一步逼近的方法,他们将圆分成多个部分,然后将这些部分组合在一起,得到一个近似值。
在古代中国,圆周率的计算方法也非常出名。
唐代大数学家祖冲之使用圆与正六边形的关系,使用正多边形逐一逼近圆,并计算其周长与直径之比。
他得到了圆周率的高精度近似值3.1415926。
在欧洲,圆周率的计算方法是公元14世纪前后由意大利数学家朱利亚诺·德·沙维诺和德国数学家约翰·尼泊姆斯开发出来的。
这些方法使用了类似于古代中国的方法,通过逐渐增加正多边形的边数来逼近圆的周长。
这些方法在16世纪时被约翰·凯梅齐斯进一步推广,并且他发现一个关于π的公式。
到了18世纪,数学家莱布尼兹和伯努利发现了使用级数逼近圆周率的方法,即莱布尼兹公式和伯努利数。
这种方法在以后的研究中得到了广泛的应用,成为现代计算圆周率的重要方法之一。
随着科技的发展,圆周率的计算精度也逐渐提高。
在20世纪初,计算机的发明大大加快了圆周率的计算速度和精度。
1950年代,法国天文学家雅克·迪金使用计算机计算出了十万位的圆周率;1989年,美国数学家基特·阿曼德使用计算机计算出了2.7亿位的圆周率,这一纪录一直保持到了2010年。
目前,计算圆周率的方法已经非常多样化,除了前述的数学方法和计算机方法外,还有使用光学、电磁波等物理方法计算圆周率的尝试。
此外,圆周率在现代科技中应用广泛,比如在计算机图形学中用于绘制圆形、曲线等形状,还用于计算机密码学中的加密解密等方面。
圆周率的来历
圆周率是数学中最有名的常数,它被用来表示圆的周长与直径的比值,即π=C/D,其中C是圆的周长,D是圆的直径,π的值大约为3.14159。
圆周率的发现和推广在历史上深深影响了几个世纪,它仍然让学习数学的人们有无穷的兴趣。
圆周率的发现是古希腊数学家托勒密二世在公元前287年完成的。
托勒密二世发现圆形的周长比它的直径的比值是一个定值,它不管所选取的圆的直径有多大,其周长的比值都是一样的。
这个定值非同寻常,他称之为圆周率。
托勒密二世在公元前250年的《沃里基伽罗斯经》中将其推导的结果写入,这一结果以后成为数学界的基础,随着推广而普及。
之后,罗马数学家凯撒在公元前230年提出了一种简单的方法,用来测量圆形的边长,他并认为圆形的周长与它的直径比值是一个定值。
随着数学的发展,圆周率的应用越来越广泛,计算圆形的周长,求圆形的面积,甚至作为无穷级数的一部分,已经成为了数学教学和研究的基础。
历史学家认为,圆周率和数学的发展有着密切的联系,其发现和推广在历史上极具影响力。
圆周率的研究与运用在不断发展,一些古老的定理、方法也在得到更新改造。
在现代,数学家们利用电脑对圆周率进行更精确的计算,使之已经超越人类辩证思维的能力。
随着科学发展,有关圆周率的研究也将获得更多的成果。
圆周率的发现和推广的历史史令数学界以及社会上的所有其他
领域都有了巨大的改变。
它使得数学家们可以更好地理解计算,由此开启了数学的新篇章,有效地拓宽了科学界的研究领域,使各科学领域的发展有了前所未有的助力。
圆周率是一个神奇的数字,它把不同科学领域的研究联系起来,更好地为未来的发展提供了基础。
圆周率(π)是一个数学常数,表示圆的周长与直径的比例。
从古至今,圆周率一直吸引着无数数学家的关注,他们努力计算它的数值并探索其性质。
以下是一些与圆周率相关的历史故事:1. 古埃及:早在公元前2000年左右,古埃及人就开始使用圆周率的概念。
他们通过测量圆的周长和直径,得出了一个近似的圆周率值。
古埃及数学家阿莫斯(Ahmes)在他的《莱茵德纸草书》中,记录了圆周率的近似值为3.16。
2. 古希腊:古希腊数学家阿基米德(Archimedes)对圆周率的研究做出了重要贡献。
他使用多边形逼近圆的方法,得出了一个介于3.1408和3.1429之间的圆周率近似值。
阿基米德是第一个使用无穷小分割法来研究圆周率的数学家。
3. 印度:公元5世纪,印度数学家阿耶波多(Aryabhata)在《阿耶波多历书》中,给出了圆周率的近似值为3.1416。
他还提出了一个计算圆周率的公式,是第一个将圆周率计算到小数点后几位的人。
4. 伊斯兰世界:在公元8世纪,阿拉伯数学家阿尔·花拉子米(Al-Khwarizmi)通过改进阿基米德的方法,计算出了圆周率的近似值为3.141592653。
他将这个值精确到小数点后9位,这是当时世界上最精确的圆周率计算结果。
5. 欧洲:15世纪,欧洲文艺复兴时期,数学家列奥纳多·达·芬奇(Leonardo da Vinci)和尼科洛·科波尼库斯(Nikolaus Kopernikus)等人对圆周率进行了深入研究。
16世纪,英国数学家约翰·迪伊(John Dee)将圆周率计算到小数点后23位。
6. 电脑时代:20世纪,随着计算机技术的发展,圆周率的计算取得了突破性进展。
1980年,日本数学家金田康正(Kanada Kazushige)使用计算机计算出了圆周率的数值,精确到小数点后100万位。
此后,随着计算机技术的不断发展,圆周率的计算精度不断刷新纪录。
总之,从古至今,圆周率一直吸引着无数数学家的关注。
圆周率π的历史及近似计算的发展过程圆周率的历史可以追溯到古代文明时期。
古代埃及人、巴比伦人、印度人和中国人都有对圆周率的认识。
最早对圆周率的近似计算是来自埃及几何,他们使用了一个近似于3.1605的值。
巴比伦人在公元前1900年左右采用了π=3.125的近似值。
在公元前5世纪,希腊的数学家斐波那契给出了一个较为精确的近似值3.1418、然而,真正改变圆周率计算的是公元3世纪的古希腊数学家阿基米德。
他运用了类似于现代数学中的极限概念来计算圆周率,找到了一个范围为3.1408和3.1429之间的修正值。
在中国,数学家刘徽在公元3世纪提出了著名的辗转相除法,用于计算圆周率。
这种方法将圆的周长与一个正方形的周长相比较,通过不断迭代,得出了一个非常接近π的值。
刘徽的方法在中国数学史上有着重要的地位。
到了16世纪,圆周率的计算成为了一个热门话题。
德国数学家乌尔斯·弗恩于1596年创造出一个新的无穷级数来计算圆周率,这个级数称为莱布尼茨级数。
通过不断累加级数的项,可以逐渐逼近π的值。
然而,这种方法收敛很慢,需要相当多的计算。
在近代,圆周率的计算进一步发展。
英国数学家威廉·琼斯于1706年提出了一种较为精确的近似计算方法,利用圆周率与椭圆的关系。
然而,真正改变圆周率计算的是18世纪的英国计算家约翰·马奎因提出的马奎因公式。
这个公式利用无穷乘积和复数的概念,可以计算圆周率的十进制位。
20世纪初,计算机的发明结局改变了圆周率的计算。
因为圆周率是一个无理数,计算其各个位数的值需要大量的计算工作。
美国数学家费莱(Felix von Fehler)于1947年利用电子计算机计算了π的4000个十进制位。
如今,通过不断改进和发展,我们可以计算出非常精确的π值。
截至2024年,有人利用超级计算机计算出π的小数点后30万亿位。
还有人使用数学方法和技术,已经计算出π的小数点后数千万位。
总之,圆周率π的计算经历了几千年的演变。
圆周率的演变史1. 早期发现圆周率的历史可以追溯到古代数学家们的探索。
在古埃及、古希腊和古罗马时期,数学家们已经开始了对圆的研究。
他们发现,圆的周长与直径的比值是一个恒定的数,这个数被称为圆周率。
在公元前1500年左右,古希腊数学家毕达哥拉斯首次发现了这个规律,并使用π来表示这个比率。
他发现,这个比率约为3.16,这个数字后来被称作毕达哥拉斯数(Pythagoras' constant)。
2. 印度数学家贡献印度数学家在圆周率的研究方面做出了重要贡献。
公元499年,印度数学家阿叶彼海特发明了一种计算圆周率的方法,称为“阿叶彼海特方法”。
这种方法基于无穷级数展开,通过计算正方形的面积逼近圆形的面积,从而计算出圆周率的近似值。
此外,印度数学家马哈维拉在公元5世纪提出了用几何方法计算圆周率的方法。
他的方法与后来的蒙特卡罗方法类似,通过随机选取点来逼近圆形的周长和面积。
3. 中国数学家研究中国古代数学家对圆周率的研究有着悠久的历史。
最早的记录可以追溯到公元前的《周髀算经》。
在三国时期,魏国数学家刘徽首次提出了“割圆术”,通过计算正多边形的面积来逼近圆形的面积,进而计算出圆周率的近似值。
南北朝时期的数学家祖冲之在圆周率的研究方面做出了重要贡献。
他首次将圆周率精确到小数点后七位数字(3.1415926-3.1415927之间),这一成果领先世界达千年之久。
他还提出了“祖率”,即关于圆周率的更精确的表达式,这个公式至今仍在使用。
4. 精确计算的发展随着数学的发展和计算技术的进步,对圆周率的精确计算也不断取得新的突破。
16世纪,阿拉伯数学家阿尔·卡西发明了一种快速计算圆周率的方法,他的方法基于连分数展开,可以有效地计算出圆周率的近似值。
进入20世纪以来,计算机技术的发展为圆周率的计算提供了新的机会。
1949年,英国数学家科利瓦伊夫斯基于连分数的算法首次将圆周率精确到小数点后一百位。
随着计算机技术的不断进步,圆周率的精确度已经达到了小数点后数百万位甚至更高。
圆周率的历史xx年xx月xx日•圆周率的起源•圆周率的发展•圆周率的计算•圆周率的应用目•圆周率的未来录01圆周率的起源1早期记录23圆周率最早可追溯至古巴比伦时期,当时使用的圆周率为31/2^{6} = 3.125。
古埃及人知道圆周率近似值为3.160。
古希腊数学家安提芬尼最早提出圆周率为22/7,后被改进为339/106。
03阿拉伯数学家卡西在15世纪初提出了一种基于无穷级数的方法,用于计算圆周率。
古代数学家的贡献01印度数学家阿叶彼海特发明了一种计算圆周率的方法,使用无穷级数来近似计算。
02中国数学家刘徽使用割圆法将圆周率计算到小数点后六位,祖冲之则将其进一步推算到小数点后七位。
欧几里得在其著作《几何原本》中使用了圆周率,并给出了π的定义。
欧几里得的π值为3.171,是当时最为精确的圆周率值。
欧几里得与π02圆周率的发展几何学背景阿基米德利用几何方法计算圆周率,通过内接和外切多边形的边长,估算出π的近似值。
方法局限性虽然这种方法具有一定的局限性,但它为后世的数学家提供了思路和启示。
阿基米德与π印度数学家印度数学家阿叶彼海特发明了一种基于无穷级数的方法,计算圆周率的近似值。
方法特点该方法利用无穷级数展开式计算π的近似值,精度较高,但计算过程较为复杂。
印度数学家的贡献欧洲数学家开始研究圆周率的近似值,如德国数学家奥托和荷兰数学家鲁道夫。
欧洲数学家他们利用无穷级数展开式和连分数等方法,不断刷新圆周率近似值的精度。
计算方法文艺复兴时期的进展03圆周率的计算莱布尼茨的无穷级数德国数学家莱布尼茨在17世纪末发明了一种计算圆周率π的无穷级数,这种方法可以将π近似到任意精度。
阿基米德方法阿基米德使用无穷级数方法计算圆周率π,虽然这种方法不如莱布尼茨的无穷级数方法精确,但具有一定的历史价值。
无穷级数连分数的定义连分数是一种表达分数的方式,通过不断将分子拆分为两个数的和,从而逼近于一个已知分数。
约翰·纳皮尔的贡献英国数学家约翰·纳皮尔在17世纪使用连分数方法计算圆周率π,这种方法可以近似到很高的精度。
圆周率的历史故事
圆周率是一个非常著名的数学常数,代表着圆的周长与直径的比例。
它的精确值是无限循环小数,从古至今一直困扰着数学家们的研究。
以下是一些圆周率的历史故事:
早在古希腊时期,数学家们就开始研究圆周率的数值。
最早的一个近似值是由古希腊的“比例哲学家”泰勒米德得到的。
他将一个圆周与一个正方形的周长作比较,通过绘制多边形来逐渐逼近圆周的周长与直径的比值。
这个方法在一定程度上提高了圆周率的精确度,但是还是无法得到完全准确的数字。
在中国,数学家祖冲之也曾经对圆周率进行研究,他采用的方法是利用正多边形的内接和外接圆来逐渐逼近圆的周长与直径的比值。
祖冲之分别得出了3.1415926和3.1415927两个近似值,这些数字在当时的中国一度被广泛使用。
在欧洲中世纪,圆周率的精确度一直受到限制。
数学家们使用的工具很有限,只能通过手算得到高精度的近似值。
最终,到了十七世纪,数学家莱布尼茨和瓦里斯独立地提出了一种无限级数的方法来计算圆周率,这个方法被称为莱布尼茨公式。
虽然这个公式收敛缓慢,但是它仍然是最早提出的用于计算圆周率的无限级数之一。
到了十九世纪,数学家林德曼发现可以将圆周率表示成连续分数的形式,这种表示方法在数学上具有很重要的意义。
而在二十世纪,随着计算机技术的发展,数学家们开始使用计算机来计算更高精度的圆周率。
目前,已经计算得到了超过十万亿位的圆周率。
尽管数学家们仍在努力研究圆周率的数值和性质,但是它已经成为了数学领域内的一个重要常数,被广泛应用于工程和科学中。
圆周率的计算历史引言:圆周率是数学中一个重要的常数,被广泛应用于几何、物理等领域。
本文将介绍圆周率的计算历史,从古代到现代,探究人类对圆周率的不断探索和计算方法的演进。
古代计算圆周率:古代的数学家们对圆周率的计算充满了好奇和挑战。
早在公元前2000年左右,古埃及人就开始尝试计算圆周率的近似值。
他们通过测量圆周和直径的关系,得到了一个近似值3.16。
古希腊数学家阿基米德在公元前3世纪提出了一种名为“阿基米德方法”的计算圆周率的方法。
他利用多边形逼近圆形,不断增加多边形的边数,从而得到了更精确的近似值,最终他计算出了3.14这个近似值。
这一方法被称为“阿基米德法”,成为古代计算圆周率的重要方法。
近代计算圆周率:随着数学的发展和计算工具的出现,人们对圆周率的计算也变得更加精确和高效。
17世纪的数学家莱布尼茨和牛顿独立地发现了微积分学,为圆周率的计算提供了新的工具。
他们利用无穷级数的方法,得到了圆周率的一个无限小数表示形式,即π=4/1-4/3+4/5-4/7+4/9-4/11+...,这个级数可以无限延伸下去,通过不断计算级数的和,可以得到越来越精确的圆周率近似值。
在18世纪末和19世纪初,数学家们通过发现圆周率与椭圆函数的关系,提出了一种名为“椭圆函数法”的计算圆周率的方法。
这种方法通过计算椭圆函数的特定值,可以得到圆周率的近似值。
同时,随着计算机的发明和发展,数值计算圆周率的方法也逐渐成为主流。
利用计算机的高速运算能力,可以通过不断迭代和计算,得到非常精确的圆周率近似值。
现代计算圆周率:随着计算机技术的不断进步,人们对圆周率的计算越来越精确。
1980年代,数学家沃兹尼亚克利用计算机计算了圆周率的一万万位小数,创造了当时的世界纪录。
随后,人们通过不断优化算法和提高计算机性能,计算得到了更多位数的圆周率近似值。
2009年,日本数学家田村庆一通过使用超级计算机,计算得到了圆周率的2.5万亿位小数,创造了当时的世界纪录。
圆周率历史介绍圆周率的历史发展跨越了数千年,许多数学家都为它的精确计算做出了贡献。
1. 早期记录:一块产于公元前1900年的古巴比伦石匾清楚地记载了圆周率等于25/8,即3.125。
同一时期的古埃及文物也表明圆周率等于分数16/9的平方,约等于3.16。
2. 古希腊数学家:阿基米德(公元前287-212年)是首位通过数学算法计算圆周率近似值的人。
他求出圆周率的下界和上界分别为223/71和22/7,并取它们的平均值3.141851为圆周率的近似值。
3. 中国古算书:《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,意即圆周率等于3。
4. 刘徽与割圆术:公元263年,中国数学家刘徽使用“割圆术”计算圆周率。
他从圆内接正六边形开始,逐次分割,一直算到圆内接正192边形。
5. 祖冲之的贡献:南北朝时期的数学家祖冲之(公元480年左右)进一步得出精确到小数点后7位的圆周率值。
他的这一成果在之后的800年里都是最准确的。
6. 近现代发展:1665年,英国数学家约翰·沃利斯出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。
2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了与圆周率相关的公式。
近年来,随着计算机技术的发展,圆周率的计算精度不断提高。
例如,2019年3月14日,谷歌宣布圆周率已计算到小数点后31.4万亿位;2021年8月17日,瑞士研究人员使用超级计算机,将圆周率计算到小数点后62.8万亿位,创下了新的纪录。
圆周率(Pi)是圆的周长与直径的比值,用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。
它也是一个无理数,即无限不循环小数。
在日常生活中,通常使用3.14作为圆周率的近似值进行计算。
总之,圆周率的历史发展是一个不断追求精确的过程,许多数学家和科学家为此做出了杰出的贡献。
如今,随着计算机技术的不断进步,圆周率的计算精度仍在不断提高。
圆周率的历史
教学目标:
1、阅读圆周率的发展简史,感受数学知识的探索过程。
2、通过自主搜集圆周率的相关资料、交流体验,培养收集信息、整合信息,提高质疑、理解的能力。
3、通过阅读“圆周率的历史”,体验数学文化的魅力,激发研究数学的兴趣,在阅读祖冲之的相关成就时激发民族自豪感。
教学重难点:
重点:阅读圆周率的发展简史,感受数学知识的探索过程。
难点:通过自主搜集圆周率的相关资料、交流体验,培养收集信息、整合信息,提高质疑、理解的能力。
教学准备:多媒体课件
教学过程:
一、引入课题。
在计算圆的周长的时候,需要用到圆周率。
说到圆周率,我们知道它是圆的周长和直径之间固定的倍数关系,这是一个无限不循环小数,这么复杂的一个数,它是怎么来的呢?是一个人研究的结果吗?都有哪些研究方法呢?人们什么时候就发现了圆周率?圆周率发展的历史是怎么样的呢???许多同学早就阅读了课本上的关于圆周率的历史资料,昨天也回去搜集了关于圆周率历史的信息,拿出来,让我们来交流一下搜集到的信息吧!
学生分小组交流信息,教师板书:圆周率的历史
二、交流信息
我们收集到的资料可能各不相同,让我们来一同分享吧!
圆周率的研究历史经历的时间是很长的,我们搜集到的信息也是很丰富的,老师建议让我们这样来分享这些信息吧:把圆周率的历史分为三个时期——测量计算时期、推理计算时期、新方法时期,可以吗?
那大家先分小组商量一下怎么汇报,推荐代表,比一比,哪个小组汇报得清楚。
学生分小组商量,教师板书:实际测量时期、推理计算时期、新方法时期在汇报的时候请介绍清楚代表人物、基本方法、大约年代、主要结论。
1.测量计算时期
小组代表:人们很早就注意到了圆周率。
大约在2000多年前,中国的《周髀算经》就有介绍。
方法是通过轮子转一圈的长度,观察到圆的周长和直径之间有一定的联系,通过测量、计算出圆的周长总是直径的3倍多。
《周髀算经》中的记载是“周三径一”。
(教师板书:研究方法:观察、测量、计算,研究结论:周三径一)
2.推理计算时期
小组代表:我来汇报推理计算时期。
我们收集到的信息是几何法时期。
代表人物有古希腊的阿基米德、中国的刘徽、祖冲之。
阿基米德用的方法是利用圆内接正多边形和圆的外切正多边形进行研究;刘徽用的是“割圆术”;祖冲之用的方法已经不是很清楚了。
小组代表:我们小组可以介绍!阿基米德在《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:<π<,这是数学史上最早的,明确指出误差限度的π值;刘徽得到圆周率的近似值是3.14;祖冲之算出π
的值在3.1415926到3.1415927之间。
他们三个人对于圆周率的贡献是很大的,在数学的历史上书写了浓墨重彩的一笔,刘徽和祖冲之也是我们中国的骄傲,大家想一想,祖冲之把圆周率精确到小数点后7位,这一成就在世界上领先了约1000年!
让我们来看看书上对于他们的介绍吧。
学生阅读教材第12页至13页关于阿基米德、刘徽和祖冲之的介绍。
在分享知识的同时,有问题一起分享、一起思考。
学生理解“约率”应该是粗略的圆周率的意思吧,“密率”就是比较精确的圆周率。
教师展示多媒体课件:
阿基米德的方法:出示圆的内接六边形、外切正六边形图形;接着出示圆的内接正十二边形、外切正十二边形图形。
圆的周长处于内外两个正六边形之间,同样,也会处在内外两个正十二边形之间,这样,越来越接近圆的周长。
刘徽的方法:
他由圆内接正六边形算起,逐渐把边数加倍,算出正12边形、正24边形、正48边形、正96边形??的面积,这些面积会逐渐地接近圆面积。
这是一种非常重要的数学思想。
按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.14和 3.1416这两个近似数值。
祖冲之用什么方法得到那么精确的圆周率,已经很难知道了,但可以肯定刘徽的方法给了他很大的启发和影响。
3.新方法时期
刘徽和祖冲之的方法,是不是就可以这样一直推下去呢?学生有不同的观点。
由于计算工具的限制,可以说,祖冲之的成就已经把圆周率的精确程度推倒了极致,计算量太大了。
但是,随着电子计算机的出现,这个问题顺利解决了,π小数点后面的精确数字发展到成千上万、甚至几万亿位。
有些人还用圆周率来锻炼记忆能力呢。
三、分享感受
我们还有许多感受没有说出来,也还有许多信息没有听到,让我们再次分享各自获得的信息和感想吧!在这节课中,我们体会了民族精神,体会了中国的自豪感。
四、小结。
直径在变,圆的周长也在跟着变,但是,圆周长除以直径所得的商都不变,大约等于3.14。
这个商是一个不变的常数,叫做圆周率。
五、巩固应用,拓展提高。
通过收集信息、交流信息、分享信息,我们知道了圆周率的历史,有什么作用呢?瞧!(出示习题)
1、根据条件求出圆的周长。
①r=2.5l厘米②d=6分米③R=40厘米
引导学生计算,全班再进行订正交流。
六、总结全文。