不等式解决方案问题
- 格式:ppt
- 大小:308.00 KB
- 文档页数:17
不等式方案问题引言不等式方案问题是数学中的一个重要概念,常常涉及到解决实际问题中的不等式方程,如经济增长模型、最优化问题等。
本文将介绍不等式方案问题的定义、解法以及应用。
一、不等式方案问题的定义不等式方案问题是指在满足一定条件下,求解不等式方程的解集合。
通常以形如 $f(x) \\geq 0$ 或 $f(x) \\leq 0$ 的形式存在,其中f(x)可以是一个复杂的数学表达式。
不等式方程的解集合往往表示了满足某种条件的变量的取值范围。
二、不等式方案问题的解法解决不等式方程的关键是确定变量的取值范围。
常用的解法包括如下几种:1. 图像法可以通过绘制函数的图像来直观地找出不等式的解集合。
只需将不等式转化为f(x)=0的形式,然后绘制f(x)的图像,通过观察图像的上升和下降趋势以及零点的位置,可以快速确定不等式的解集合。
2. 代数法代数法是通过代数运算来求解不等式方程。
可以利用常用的不等式性质和数学运算法则,对不等式进行变形,从而得到使不等式成立的取值范围。
3. 数学推导法数学推导法是通过对不等式的推理与证明来解决问题。
利用数学推导的方法,可以得到不等式解集的精确形式,更准确地描述变量的取值范围。
三、不等式方案问题的应用不等式方程是数学建模和应用题中常见的问题形式。
在实际应用中,不等式方程的解集合往往表示了变量的可行解范围,对于解决一些实际问题具有重要意义。
1. 经济增长模型经济增长模型是一个涉及到不等式方程的经济学模型。
通过研究经济增长过程中的供需关系、生产要素的合理配置等问题,可以建立相应的不等式方程来描述经济增长的可行解范围。
2. 最优化问题最优化问题是指在满足一定约束条件下,寻找使目标函数取得最大或最小值的变量取值。
在解决最优化问题时,往往需要建立约束条件的不等式方程,并通过求解不等式方程的解集合来确定问题的最优解。
3. 工程设计工程设计中,不等式方程常常用于描述资源的分配、系统约束等问题。
七年级下册不等式组《方案选择》专题1、为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 和B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元。
(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担。
规定若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的改扩建资金分别为每所300万元和500万元。
请问共有哪几种改扩建方案?解:(1)设改扩建1所A 类学校需资金x 万元,改扩建1所B 类学校需资金y 万元则依题意可得⎩⎨⎧=+=+54003780032y x y x∴⎩⎨⎧==18001200y x ∴改扩建1所A 类学校需资金1200万元,改扩建1所B 类学校需资金1800万元 (2)设改扩建A 类学校m 所,则改扩建B 类学校(10-m )所依题意可得:()()()()⎩⎨⎧≥-+≤--+-400010500300118001050018003001200m m m m∴⎩⎨⎧≥-+≤-+4000500500030011800130013000900m m m m ∴⎩⎨⎧≤≥53m m∴53≤≤m ∵m 是正整数 ∴m=3或4或5 即共有3种方案方案一:改扩建A 类学校3所,B 类学校7所 方案二:改扩建A 类学校4所,B 类学校6所 方案三:改扩建A 类学校5所,B 类学校5所2、某房地产开发公司计划建A、B两种户型的住房共80套。
该公司所筹资金不少于2090万元,但不超过2096万元。
且所筹资金全部用于建房,两种户型的建房成本和售价如下表(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a 万元(a>0),且所建的两种住房可全部售出,该公司如何建房获得利润最大?解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套根据题意,得()()⎩⎨⎧≤-+≥-+20968028252090802825xxxx,解得48≤x≤50∵x取非负整数,∴x为48,49,50(2由题意知:W=5x+6(80-x)=480-x∵k=-1,W随x的增大而减小∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套当a=l时,a-1=0,三种建房方案获得利润相等当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套3、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册。
10道一元一次不等式应用题和答案过程1.某水产品市场管理部门计划建造2400平方米的大棚,内设有A种和B种店面各80间。
A种店面的平均面积为28平方米,月租费为400元;B种店面的平均面积为20平方米,月租费为360元。
全部店面的建造面积不低于大棚总面积的85%。
现在要确定A种店面的数量。
解:设A种店面为a间,B种店面为80-a间。
根据题意,28a+20(80-a)≥2400×85%,化简得8a≥440,即a≥55.因此,A种店面至少应有55间。
为使店面的月租费最高,设月租费为y元,根据题意可得y=75%a×400+90%(80-a)×360=300a+-24a=-24a。
因为a≥55,所以当a=55时,y取最大值,即月租费最高为元。
2.水产养殖户XXX计划进行大闸蟹与河虾的混合养殖。
每亩地水面租金为500元,每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗。
每公斤蟹苗的价格为75元,饲养费用为525元,当年可获得1400元收益;每公斤虾苗的价格为15元,饲养费用为85元,当年可获得160元收益。
现在要求出每亩水面虾蟹混合养殖的年利润,并确定XXX应租多少亩水面,向银行贷款多少元,才能使年利润达到元。
解:每亩水面的成本包括水面年租金、苗种费用和饲养费用,即成本=500+75×4+15×20+525×4+85×20=4900元。
每亩水面的收益为1400×4+160×20=8800元。
因此,每亩水面的年利润为8800-4900=3900元。
设租a亩水面,贷款为4900a-元。
根据题意,收益为8800a,成本不超过元,即4900a≤,解得a≤10.2亩。
为使年利润达到元,可列出方程3900a+0.1(4900a-)=,解得a≈13.08亩,即XXX应租13亩水面,向银行贷款约为元。
某手机生产厂家决定对一款原售价为2000元的彩屏手机进行调价,按新单价的八折优惠出售。
利用基本不等式解决实际问题的步骤利用基本不等式解决实际问题的步骤基本不等式是解决实际问题中经常用到的不等式之一,它可以帮助我们求解关于不等式的最大值和最小值,从而为实际问题提供有效的解决方案。
下面将详细介绍利用基本不等式解决实际问题的步骤。
第一步:理解问题在利用基本不等式解决实际问题之前,我们需要先清楚地理解问题的背景和要求。
阅读问题时,我们应该注意问题中所涉及的不等式以及所需要求解的目标。
了解问题的意义和限制条件,这将有助于我们找到正确的解决方案。
第二步:确定变量和建立不等式一旦理解了问题,我们需要确定适当的变量和建立相应的不等式。
通过定义合适的变量,可以将问题转化为数学形式,并使其更易于处理。
在建立不等式时,我们应该根据问题的条件和要求,确定不等式的方向和形式。
这需要我们对不等式性质的熟悉和理解。
第三步:应用基本不等式基本不等式的形式是一个比较常见的形式,如AM-GM不等式、Cauchy-Schwarz不等式、柯西–布尼亚可夫斯基不等式等。
在应用基本不等式时,我们需要根据问题的具体要求选择合适的不等式。
注意不等式的形式和条件,以及需要满足的限制条件。
根据基本不等式的性质,我们可以对不等式进行变形和运算。
第四步:解决不等式在应用基本不等式后,我们将得到一个或多个不等式。
为了解决这些不等式,我们可以采用求解方法,如取等条件、符号组合方法等。
取等条件是指当不等号取等时,不等式的取等条件和最优解。
应用符号组合方法可以得到不等式的解集,并找到满足问题要求的特定解。
第五步:验证解的有效性在求解不等式之后,我们需要验证解的有效性。
这可以通过代入验证法来实现。
将解代入原始问题中,并验证所得到的结果是否满足问题的条件和要求。
如果解满足问题的条件和要求,则我们可以得出结论,否则需要重新检查求解过程。
第六步:给出结论在验证解的有效性之后,我们可以得出结论。
结论应该与问题的要求一致,并明确地给出答案。
在给出结论时,我们还应该说明所使用的基本不等式和求解方法,以便于读者理解我们的解题过程。
列不等式解方案设计问题山东 王芳列不等式解决实际问题是数学中的一个难点,在解决问题式,需要认真审题,找到题目中的不等式关系,然后设出相应的未知数,列出不等式.请看几例.例1 (河南)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?解析:(1)设购买甲种机器x 台,则购买乙种机器(6-x )台.由题意,得75(6)34x x +-≤,解这个不等式,得2x ≤,即x 可以取0、1、2三个值,所以,该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台;方案二:购买甲种机器1台,购买乙种机器5台;方案三:购买甲种机器2台,购买乙种机器4台;(2)按方案一购买机器,所耗资金为30万元,新购买机器日生产量为360个;按方案二购买机器,所耗资金为1×7+5×5=32万元;,新购买机器日生产量为1×100+5×60=400个;按方案三购买机器,所耗资金为2×7+4×5=34万元;新购买机器日生产量为2×100+4×60=440个.因此,选择方案二既能达到生产能力不低于380个的要求,又比方案三节约2万元资金,故应选择方案二.例2 (广元)为了保护环境,某企业决定购买10台污水处理设备.现有A 、B 两种型号设备,且A 、B 两种型号设备的价格分别为每台15万元、12万元.经预算,该企业购买设备的资金不超过...130万元.(1)请你设计,该企业有几种购买方案;(2)A 、B 两种型号设备每台一个月处理污水量分别为250吨、220吨.若企业每月产生的污水量为2260吨,为了尽可能节省资金.......,应选择哪种购买方案? 解析:(1)设购买A 种型号设备x 台,则购买B 种(10-x )台.据题意得 15x+12(10-x)≤130,解之得 x ≤310, 因为x 为非负整数,所以取1或2或3或0,所以该企业可有四种购买方案:方案一:购买A 种设备1台,B 种设备9台;方案二:购买A 设备2台,B 种设备8台;方案三:购买A 种设备3台,B 种设备7台;方案四:只购买B 种设备10台.(2)设购买A 种型号设备x 台,则购买B 种(10-x)台,据题意得:250x+220(10-x)≥2260,解得x ≥2,所以 x 为2或3.当x=2时,购买资金为:15×2+12×8=126(万元)当x=3时,购买资金为:15×3+12×7=129(万元)所以选择方案二即购买A 种设备2台,B 种设备8台节省资金.例3 (黑龙江)某房地产开发公司计划建A 、B 两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?解析:(1)设A 种户型的住房建x 套,则B 种户型的住房建(80-x)套.由题意知2090≤25x+28(80-x)≤2096,解得48≤x≤50,因为 x 取非负整数, 所以 x 为48,49,50.所以有三种建房方案:①A 型48套,B 型32套;②A 型49套,B 型31套;③A 型50套,B 型30套.(2)第①种方案的利润为:5×48+6×32=432(万元)第②种方案的利润为:5×49+6×31=431(万元).第③种方案的利润为5×50+6×30=430(万元).所以A 型住房48套,B 型住房32套获得利润最大.。
一元一次不等式的方案问题解题思路在数学学习中,不等式是一个重要的知识点。
而在不等式中,一元一次不等式也占有着举足轻重的地位,因为它不但对于初学者来说比较容易掌握,而且在实际生活中也有着广泛的应用。
本文将介绍如何解决一元一次不等式的方案问题,希望能够帮助大家更好地理解和应用这一知识点。
一、什么是一元一次不等式的方案问题在学习一元一次不等式时,我们会遇到方案问题,这是指询问满足某个不等式的变量范围。
例如,我们需要确定不等式 $3x+5>7$ 的解集,即 $x$ 的取值范围。
解决这类问题需要掌握一些基本的解题方法。
二、简单不等式的解法对于一元一次不等式,我们可以通过移项的方式将其转化为简单的形式,进而得到解的范围。
例如:$$3x+5>7$$将等式两边减去 $5$,得到:$$3x>2$$再将等式两边除以 $3$,得到:$$x>\frac{2}{3}$$因此,不等式 $3x+5>7$ 的解集为 $x>\frac{2}{3}$。
三、变式不等式的解法对于一些变式不等式,我们可以通过构造等价不等式的方法,将其转化为简单的形式。
例如:$$\frac{2x-3}{5-x}>0$$我们将其改写为$$(2x-3)(5-x)>0$$根据零点定理,不等式 $(2x-3)(5-x)>0$ 的解集为 $x<\frac{3}{2}$ 或 $x>5$。
注意到原不等式中的分母为$5-x$,而$x=5$ 会使$5-x=0$,从而分母无意义。
因此,不等式 $\frac{2x-3}{5-x}>0$ 的解集为 $x<\frac{3}{2}$ 或 $x>5$,即 $x$ 属于区间$(-\infty,\frac{3}{2})\cup(5,\infty)$。
四、绝对值不等式的解法对于绝对值不等式,我们可以将其变形为复合不等式,然后利用复合不等式的求解方法得到其解集。
不等式应用 题1、去年某市空气质量良好的天数与全年的天数(365)之比达到60%,如果明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数要比去年至少增加多少?解:设明年空气质量良好的天数比去年增加了x6036570100365100x +⨯>则: 36.5x >解得:37x x ≥依题意,应为整数,所以:答:明年空气质量良好的天数要比去年至少增加37,才能使这一年空气质量良好的天数超过全年天数的70%。
2、甲、乙两商场以同样价格出售同样商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费;顾客到哪家商场购物花费少?解: (1)当累计购物不超过50元时,到两商场购物花费一样。
(2)当累计购物超过50元时而不超过100元时,到乙商场购物花费少。
(3)当累计购物超过100元时,设累计购物(100)x x >元。
①500.95(50)1000.9(100)150x x x +->+->由:解得:所以,累计购物超过150元时,到甲商场购物花费少②500.95(50)1000.9(100)150x x x +-+-由:<解得:<所以,累计购物超过100元而不超过150元时,到乙商场购物花费少③500.95(50)1000.9(100)150x x x +-+-由:=解得:=所以,累计购物超为150元时,到两商场购物花费一样。
3、某工程队计划在10天内修路6km ,施工前两天修完1.2 km 以后,计划发生变化,准备提前2天完成修路任务,以后几天内平均每天至少要修路多少?解:设以后几天内平均每天至少要修路x km 。
则6 1.26x +≥ 解得:0.8x ≥答:以后几天内平均每天至少要修路0.8 km.4、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少分?解:设小明至少要答对x 道题。
一元一次不等式组应用题类型及解答1.分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人;3、把若干颗花生分给若干只猴子;如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗;问猴子有多少只,有多少颗4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本;问这些书有多少本学生有多少人5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数;6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只;问有笼多少个有鸡多少只7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空;请问:有多少辆汽车8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满;1如果有x间宿舍,那么可以列出关于x的不等式组:2可能有多少间宿舍、多少名学生你得到几个解它符合题意吗二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游;甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠按全票价的60%收费,且全票价为1200元①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费写出表达式②当学生数是多少时,两家旅行社的收费一样③就学生数x讨论哪家旅行社更优惠;③就学生数x讨论哪家旅行社更优惠;2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款;3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费;假设这两位家长至带领多少名学生去旅游,他们应该选择甲旅行社三、行程问题1、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到2、爆破施工时,导火索燃烧的速度是s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长3、王凯家到学校千米,现在需要在18分钟内走完这段路;已知王凯步行速度为90米/分,跑步速度为210米/分,问王凯至少需要跑几分钟四、车费问题1、出租汽车起价是10元即行驶路程在5km以内需付10元车费,达到或超过5km后,每增加1km加价元不足1km部分按1km计,现在某人乘这种出租,汽车从甲地到乙地支付车费元,从甲地到乙地的路程超过多少km2、某种出租车的收费标准是:起步价7元即行驶距离不超过3km都需要7元车费,超过3km,每增加1km,加收元不足1km按1km计;某人乘这种出租车从A地到B地共支付车费19元;设此人从A地到B地经过的路程最多是多少km五、积分问题1、某次数学测验共20道题满分100分;评分办法是:答对1道给5分,答错1道扣2分,不答不给分;某学生有1道未答;那么他至少答对几道题才能及格2、在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不底于60分,至少要答对多少道题目3、一次知识竞赛共有15道题;竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分;结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题4、在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次5.有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个六、销售问题1、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%;1试求该商品的进价和第一次的售价;2为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元2.水果店进了某中水果1t,进价是7元/kg;售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售;如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本4、某电影院暑假向学生优惠开放,每张票2元;另外,每场次还可以售出每张5元的普通票300张,如果要保持每场次票房收入不低于2000元,那么平均每场次至少应出售学生优惠票多少张5、某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元包括空白光盘费;若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元包括空白光盘费;问刻录这批电脑光盘,该校如何选择,才能使费用较少6.某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少7.学校图书馆准备购买定价分别为8元和14元的杂志和小说共80本,计划用钱在750元到850元之间包括750元和850元,那么14元一本的小说最少可以买多少本七、数学问题1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于10且小于30,求这个两位数;八、方案设计题1.某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元,1设需用x千克甲种原料,写出x应满足的不等式组;2按上述的条件购买甲种原料应在什么范围之内2、红星公司要招聘A、B两个工种的工人150人,A、B工种的工人的月工资分别为600和1000元,现要求B工种的人数不少于A工种人数的2倍,那么招聘A工种工人多少时,可使每月所付的工资最少此时每月工资为多少元3、某工厂接受一项生产任务,需要用10米长的铁条作原料;现在需要截取3米长的铁条81根,4米长的铁条32根,请你帮助设计一下怎样安排截料方案,才能使用掉的10米长的铁条最少最少需几根4.某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又可获利%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的%作保管费,问:1当该批产品投入资金是多少元时,方案一和方案二的获利是一样的2按所需投入资金的多少讨论方案一和方案二哪个获利多;5.某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买年票”的方法;年票分为A、B、C三种:A年票每张120元,持票进入不用再买门票;B类每张60元,持票进入园林需要再买门票,每张2元,C类年票每张40元,持票进入园林时,购买每张3元的门票;1如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式;2求一年中进入该园林至少多少时,购买A类年票才比较合算;6.某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495员;如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少吨九、浓度问题1、在1千克含有40克食盐的海水中,再加入食盐,使他成为浓度不底于20%的食盐水,问:至少加入多少食盐十、增减问题1、某人点燃一根长度为25㎝的蜡烛,已知蜡烛每小时缩短5㎝,几个小时以后,蜡烛的长度不足10㎝部分答案一、分配问题1、解:小朋友的人数至少有x人,依题意可得1≤3x+4-4x-1≤3解得:5≤x≤7∵X取最小整数;∴x=5答:小朋友的人数至少有5人3、解:设猴子有X只,则花生有3x+8人,依题意可得1≤3x+8-5x-1<5解得:4<X≤6∵X取整数;∴x=5或6答:当x=5,猴子有5只;花生有3x+8=23颗当x=6,猴子有6只;花生有3x+8=26颗, 4、设学生有x人,这些书本有3x+8本,依题意可得1≤3x+8-5x-1<3解得:5≤x<6 ∵X取整数;∴x=6答“学生有6人,这些书本有3x+8=26本5、方法一:解:设有x间宿舍,则住宿男生有4x+20人依题意,得8x>4x+208x-1<4x+20解这个不等式组得解集为:5<x<7因为宿舍间数为整数,所以x=6,4x+20=44答:宿舍间数有6间,住宿男生有44人.方法二:设宿舍有x间,则人数为4x+20人1≤4x+20-8﹙x-1﹚<8解得:5<x≤∵X取整数;∴x=66、方法一解:设笼有x个.4x+1>5x-24x+1<5x-2+3解得:8<x<11x=9时,4×9+1=37x=10时,4×10+1=41舍去.故笼有9个,鸡有37只.方法二:6、设有笼x个,则有鸡﹙4x+1﹚只4x+1<40……①1≤4x+1-5﹙x-2﹚<3……②解①②得:8<x<∵X取整数;∴x=9故笼有9个,鸡有37只7、解:设有x辆车,则有4x+20吨货物.由题意,得0<4x+20-8x-1<8,解得5<x<7.∵x为正整数,∴x=6.∴4x+20=44.答:有6辆车,44吨货物8、解:设有x间宿舍.0<4x+19-6x-1<6,<x<∴x可取10、11或12,∴学生数为59或63或67人.答:有10间宿舍59名学生或11间宿舍,63名学生或12间宿舍,67名学生.二、比较问题优惠问题1、解:1学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费写出表达式y甲=1200+1200×50%×x=1200+600xy乙=x+1×1200×60%=720x+1=720x+72021200+600x=720x+720120x=480x=4答:当学生数为4人时,两家旅行社的收费一样3当学生人数少于4人时,乙旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠;当学生人数多于4人时,甲旅行社更优惠2、解:设x个月李明的存款超过王刚的存款600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=53、解:甲旅行社收费y=5002+50070%x=1000+350x乙旅行社收费y'=50080%2+x=800+400xy=y'1000+350x=800+400x解得x=4所以x<4时,乙旅行社便宜;x=4,甲乙旅行社一样便宜;x>4,甲旅行社便宜三、行程问题1、解:设后半小时的速度至少为x千米/小时50+1-1/2x≥12050+1/2x≥1201/2x≥70解得x≥140答:后半小时的速度至少是140千米/小时2、解:设至少XcmX/>100/5 X>16所以至少16CM3、解:设王凯至少要跑X分;可列不等式:9018-X+210X≥21001620-90X+210X≥2100120X≥2100-1620 120X≥480解得X≥4所以王凯至少要跑4分如果改为等号就是求那个时间点,也就是跑4分钟剩下用走,正好用18分钟;如果跑的大于四分钟,也就可以不用18分钟,更快的到达学校;所以等号表示正好到达的时间点,大于等于表达了题意至少的意思四、车费问题1、解:设甲地到乙地的路程大约是xkm,据题意,得解之,得10<x≤11即从甲地到乙地路程大于10km,小于或等于11km因为不足1km部分按1km计,元对应的最大路程是11千米,那么最小路程就要大于10千米,实质是减去了一个1千米的价钱2、解:方法一、3km后收费:19-7=12超过3km后的行驶距离:12/=5km从甲地到乙地所经过的路程最多是3+5=8km方法二、设从甲地到乙地所经过的路程最多是x,由题意,得x-3+7=19解得x=8五、积分问题1、解:设答对x题,则答错20-1-x=19-x题;5x-19-x1>=80解得x>=因为题数是整数,所以x=17答:至少要答对17题;2、解:设至少需要做对x道题x为自然数;4x-2×25-x≥604x-50+2x≥606x≥110解得X≥19答:至少需要做对19道题3、解:设神箭队答对x题;则答错15-2-x,即13-x题8x-413-x>90解得x>71/6所以至少答对12道题设飞艇队答对x题;则答错15-x题8x-415-x>90解得x>25/2所以至少答对13道题4、解:设命中X次,脱靶10-X次5x-10-x>=356x>=45因为X为整数,所以X=85、设红球x个,白球y个,由题意,得y<x<2y 2y+3x=60 x=60-2y/3则y<60-2y/3<2y解得<y<12又因为x为整数,则y应为3的倍数;y=9x=14所以,白球9个,红球14个;六、销售问题1、解:1设进价是x元一件商品1-10%×x+30=x+18解得:x=90第一次的售价x+30=90+30=120答:该商品的进价和第一次的售价分别是90元和120元2设剩余商品售价应不低于y元,90+30×m×65%+90+18×m×25%+y×m×1-65%-25%≥90×1+25%×m解得:y≥75答:剩余商品的售价应不低于75元2、解:方法一:设按原价的x折出售,所以:1000×1/2×10+1000×1/2×10×x/10>=7×1000+20005000+500x>=9000解得:5x>=40即x>=8所以至多打8折方法二:货款:1000=元已销售产生的利润:500-500=元剩余商品需要产生的利润:=元产生利润需要的单价:+500/500=8元需要在10元基础上打折:8/10=,也就是八折3、解:设这批苹果有a千克,商家把售价至少定为每千克x元则a1-6%×x≥a×解得:x≥4、解:设这批电脑光盘有x张,根据题意:到电脑公司刻录的费用为8x,学校自刻的费用为:120+4x1若8x=4x+120,解这个方程得x=30,当您刻录的光盘数等于30张光盘时花钱是一样的;2若8x>4x+120解得x>30;当您刻录的光盘数多于30张时,学校自刻合算38x<4x+120解得x<30;当您刻录的光盘数少于30张,到电脑公司刻录合算4、解:设平均每场次至少要出售学生优惠票x张列出不等式2x+5×300≥2000解得x≥250答:平均每场次至少应出售学生优惠票250张;6、解,根据题意,设甲种工人有x人,则乙种工种的人数为:150-x,由乙种工种的人数不少于甲种工种人数的2倍,可得关系式150-x≥2x,即x≤50x的取值范围是:0≤x≤50设每月所付的工资最少为y元y=600x+150-x1000=150000-400x因为此函数是随着x的增大而减小,所以当x=50时,y取最小值,最小值为y=150000-40050=130000元7、解:设14元一本的小说可以买x本,则8元一本的小说可以买80-x本;根据题意,有:750≤14x+880-x≤850解得:≤x≤21,取整数x=19、20、21则可得知:14元一本的小说最少可以买19本,最多可以买21本;七、数学问题解:设个位数为x,则十位数字为x-2,由题意,得这个两位数为10x-2+x10<10x-2+x<30解得:30/11<x<60/11因为x取整数,所以x=3或x=4当x=3时10x3-2+3=13当x=4时10x4-2+3=23答:这个两位数为13或23。