物理图像复习
- 格式:ppt
- 大小:341.00 KB
- 文档页数:33
高三物理图像知识点归纳高三学生们即将面临物理高考,图像知识作为物理学习的重要组成部分,对于解题能力和应试能力的提升有着重要的作用。
在这篇文章中,我将对高三物理图像知识点进行归纳和总结,希望能够帮助同学们更好地掌握这一部分内容。
一、光的传播与成像1.光的传播方式光的传播方式主要有直线传播和反射传播两种。
直线传播是指光在均匀介质中以直线方式传播,反射传播是指光遇到边界面时发生反射并改变传播方向。
2.平面镜成像原理平面镜成像原理是指光线在平面镜上发生反射后形成的像。
根据平面镜成像原理,我们可以得出以下规律:(1)入射光线与镜面法线的夹角等于反射光线与镜面法线的夹角;(2)入射光线、反射光线和法线所在的平面共面;(3)入射光线、反射光线和法线三者的夹角都相等。
3.球面镜成像原理球面镜成像原理是指光线在球面镜上发生折射或反射后产生的像。
根据球面镜成像原理,我们可以得出以下规律:(1)凸透镜:物体在焦距外,成倒立、缩小的实像;物体在焦距内,成倒立、放大的虚像。
(2)凹透镜:无论物体在焦距内外,都成倒立、缩小的虚像。
二、透镜成像1.薄透镜成像规律薄透镜成像规律是指光线通过薄透镜后成像的规律。
根据薄透镜成像规律,我们可以得出以下规律:(1)物距p、像距q和焦距f之间的关系:1/p + 1/q = 1/f;(2)物体与像的关系:当物距p大于焦距f时,成倒立、缩小的实像;当物距p小于焦距f时,成倒立、放大的虚像。
2.透镜的光焦度透镜的光焦度是指使通过该透镜的平行光线汇聚到一点的透镜。
光焦度的单位是“度”,符号为“f”。
焦距f与光焦度f之间的关系为:f = 1/f。
三、光的衍射和干涉1.光的衍射现象光的衍射是指光通过一个光阑或物体边缘时发生弯曲和扩散的现象。
光的衍射现象证明了光也具有波动性。
2.光的干涉现象光的干涉是指两个或多个波源发出的光波相互叠加形成互相影响的现象。
光的干涉现象证明了光具有波动性。
四、光的色散和偏振1.光的色散现象光的色散是指光通过光学介质时,不同色光由于折射率不同而发生偏折的现象。
物理解题方法:图像法习题专项复习附答案一、题方法:图像法1.甲乙两车在一平直道路上同向运动,其v﹣t图象如图所示,图中△OPQ和△OQT的面积分别为s1和s2(s1<s2).初始时,甲车在乙车前方s0处.下列判断错误的是()A.若s0=s1+s2,两车不会相遇B.若s0<s1,两车相遇2次C.若s0=s1,两车相遇1次D.若s0=s2,两车相遇1次【答案】D【解析】【分析】【详解】由图线可知:在T时间内,甲车前进了s2,乙车前进了s1+s2;在t=T时,两车速度相同,若s0=s1+s2,则s0>s1,两车不会相遇,故A正确;若s0+s2<s1+s2,即s0<s1,在T时刻之前,乙车会超过甲车,但甲车速度增加的快,所以甲车还会超过乙车,则两车会相遇2次,故B正确;若s0=s1,则s0+s2=s1+s2,即两车只能相遇一次,故C正确.若s0=s2,由于s1<s2,则s1<s0,两车不会相遇,故D错误;本题选错误的,故选D.2.甲、乙两车在同一平直公路上同地同时同向出发,甲、乙的速度v随时间t的变化如图所示,设0时刻出发,t1时刻二者速度相等,t2时刻二者相遇且速度相等。
下列关于甲、乙运动的说法正确的是()A.在0〜t2时间内二者的平均速度相等B.t1〜t2在时间内二者的平均速度相等C.t1〜t2在时间内乙在甲的前面D.在t1时刻甲和乙的加速度相等【答案】A【解析】【详解】A.甲、乙两车在同一平直公路上同地同时同向出发,0时刻出发,t2时刻二者相遇,则0〜t2时间内二者的位移相同,0〜t2时间内二者的平均速度相等。
故A项正确;B.v-t图象与时间轴围成面积表对应时间内的位移,则t1〜t2时间内乙的位移大于甲的位移,t1〜t2时间内乙的平均速度大于甲的平均速度。
故B项错误;C.甲、乙两车在同一平直公路上同地同时同向出发,0时刻出发,0〜t1时间内甲的速度大于乙的速度,则t1时刻甲在乙的前面;t2时刻二者相遇,则在t1〜t2时间内甲在乙的前面,两者间距逐渐变小。
2024年中考物理专题复习—电学U-I 或I-U 图像分析与计算类型定值电阻U -I 或I -U图像滑动变阻器U -I 或I -U图像小灯泡U -I 或I -U 图像电路图像考点一:定值电阻U -I 图像或I -U 图像1.定值电阻I -U 图像(1)定值电阻的阻值:01V 2V 3V ===100.1A 0.2A 0.3AU R I ==Ω定(任意对应点)(2)U 电源=I max R 0定=0.3A ×10Ω=3V ①R =0—→I max —→U 电源=U 0(3)max max min 3V 1V=200.1AU R I ==Ω滑滑-②U 滑max =U 电源-U 定min2.定值电阻U -I 图像(1)定值电阻的阻值:03V 9V ==60.5A 1.5AU R I ==Ω定(任意对应点)(2)U 电源=I max R 0定=1.5A ×6Ω=9V ①R =0—→I max —→U 电源=U 0(3)max max min 9V V =120.5AU R I ==Ω滑滑-3②U 滑max =U 电源-U 定min典例引领例1.如图所示电路图,则电源电压是________V ,滑动变阻器的最大阻值是________Ω。
(1)定值电阻的阻值:13V==100.3AU R I =Ω(2)U 电源=I max R 1=0.3A ×10Ω=3V (R =0—→I max —→U 电源=U 0)(3)1min 2max 2max min min 3V 1V=200.1AU U U R I I -===Ω电源-答案:3V ;20Ω。
变式1.如图甲所示电路,电源电压不变,闭合开关后,滑片P 由b 端滑到a 端,电压表示数U 与电流表示数I 的变化如图乙所示。
则可判断电源电压是________V ,变阻器的最大阻值是________Ω。
甲乙答案:12V ;min max max min min 12V V=160.5AR P P U U U R I I -===Ω电源-4变式2.如图甲所示,电源电压不变,闭合开关时,滑动变阻器的滑片P 由b 端滑到a 端,电压表示数U 与电流表示数I 的变化如图乙所示,下列说法不正确的是()甲乙A.电源电压是9VB.定值电阻R 的阻值是6ΩC.滑动变阻器的阻值范围是0~18ΩD.若定值电阻R 出现接触不良时,电流表示数为0,电压表示数为9V 解析:(1)定值电阻的阻值:3V==60.5AU R I =Ω(2)U 电源=I max R 1=1.5A ×6Ω=9V (3)min max max min min 9V V=120.5AR P P U U UR I I -===Ω电源-3答案:C 。
高中物理图像知识点在高中物理的学习中,图像是一种非常重要的工具和表达方式。
它能够直观地展现物理量之间的关系,帮助我们更好地理解和解决物理问题。
接下来,让我们一起深入探讨高中物理中常见的图像知识点。
一、位移时间图像(x t 图像)位移时间图像描述的是物体在直线运动中位移随时间的变化关系。
在 x t 图像中,横坐标表示时间 t,纵坐标表示位移 x 。
图像的斜率代表物体的速度。
如果图像是一条倾斜的直线,说明物体做匀速直线运动,其速度等于斜率的大小。
斜率为正,表示速度方向与规定的正方向相同;斜率为负,表示速度方向与规定的正方向相反。
如果图像是一条平行于时间轴的直线,表示物体处于静止状态,位移不随时间变化。
通过分析位移时间图像,我们可以轻松判断物体的运动状态、位移大小和方向,以及速度的变化情况。
二、速度时间图像(v t 图像)速度时间图像反映的是物体在直线运动中速度随时间的变化规律。
横坐标为时间 t,纵坐标为速度 v 。
图像与时间轴所围成的面积表示位移的大小。
如果图像在时间轴上方,面积为正,代表位移方向与规定的正方向相同;如果图像在时间轴下方,面积为负,代表位移方向与规定的正方向相反。
图像的斜率表示加速度。
斜率为正,加速度方向与速度方向相同,物体做加速运动;斜率为负,加速度方向与速度方向相反,物体做减速运动。
当图像是一条平行于时间轴的直线时,物体做匀速直线运动,加速度为零。
利用速度时间图像,我们能够清晰地了解物体的速度变化、加速度大小和方向,以及位移的情况。
三、加速度时间图像(a t 图像)加速度时间图像展示了物体加速度随时间的变化情况。
同样,横坐标是时间 t,纵坐标是加速度 a 。
通过加速度时间图像,我们可以直观地看到加速度的变化规律。
如果加速度不变,说明物体做匀变速运动;如果加速度变化,则物体做非匀变速运动。
要计算物体在某段时间内的速度变化量,可以通过加速度时间图像与时间轴所围成的面积来计算。
四、力位移图像(F x 图像)在涉及到力学问题时,力位移图像常常会出现。
2024年中考物理专题复习—用“图像法”突破凸透镜成像规律问题一、图像法适合记背困难的同学!①画出坐标轴:纵轴为u,横轴为υ(可颠倒);②在坐标轴上标出焦距和2倍焦距;③标出点(f,f);④若u>2f,在u轴找出大于2f的位置,连接(f,f)点,如图中红线,与υ轴的交点在f与2f 之间,说明f<υ<2f,成倒立缩小的实像。
向下画线为倒立,向上画线为正立,υ轴正方向为同侧实像,υ轴负方向为异侧虚像,放大缩小看交点。
下表用于对照检查:u与f关系υ与f关系υ与u关系正倒大小虚实同异侧应用u>2f f<υ<2fυ>u倒立缩小实像异侧照相机u=2fυ=2fυ=u倒立等大实像异侧二倍法测焦距f<u<2fυ>2fυ<u倒立放大实像异侧投影仪u=f不成像,获得平行光测焦距u<fυ>|u|正立放大虚像同侧放大镜二、典例引领1.在“探究凸透镜成像规律”的实验中,蜡烛、凸透镜和光屏的位置如图所示,烛焰在光屏上恰好成清晰的像。
下列说法正确的是()A.照相机应用了这一成像规律B.所成的像是倒立,放大的实像C.在蜡烛燃烧的过程中,光屏上的像会向下移动D.保持透镜不动,蜡烛向左移动一段距离,它成的像将变大解析:①看图:物距u=15cm,像距υ=30cm,蜡烛燃烧变短→像变矮→上移;②画坐标图,虚线大括号可代表物的大小和像的大小。
2.已知凸透镜的焦距为15cm,下列说法正确的是()A.当物距为10cm时,成正立、放大的实像B.当物距为10cm时,成倒立、缩小的实像C.当物体从距凸透镜20cm处远离凸透镜时,像逐渐变大D.当物体从距凸透镜20cm处远离凸透镜时,像逐渐变小解析:3.如图所示,烛焰在光屏上刚好成清晰的像。
透镜不动,将蜡烛移至40cm刻度处,移动光屏,在光屏上能观察到()A.倒立、缩小的实像B.倒立、放大的实像C.正立、放大的虚像D.光屏上不能呈现像解析:看图:物距u=50cm-20cm=30cm,像距υ=80cm-50cm=30cm,则u=υ=2f=30cm,得f=15cm;将蜡烛移至40cm刻度处,有u=10cm<f,成正立、放大的虚像,虚像不能被光屏承接。
高中物理图像知识点高中物理里的图像知识点,那可真是让同学们又爱又恨!就像一场刺激的冒险,充满了挑战和惊喜。
先来说说位移时间图像(xt 图像)。
这就好比是一个人的运动轨迹记录。
想象一下,你在操场上跑步,老师拿着秒表和尺子在旁边记录你的位置变化。
在 xt 图像中,横坐标表示时间,纵坐标表示位移。
如果图像是一条倾斜的直线,那就说明你在做匀速直线运动,直线的斜率就代表着你的速度。
要是图像是一条曲线,那可就复杂啦,说明你的运动速度在不断变化。
再讲讲速度时间图像(vt 图像)。
这就像汽车仪表盘上的速度显示。
假如你开着车在路上,vt 图像能清楚地告诉你速度是怎么变化的。
图像在纵坐标上的截距,就是初始速度。
图像与横坐标围成的面积,就是位移的大小。
比如说,有一段时间速度是恒定的,那图像就是一段水平的线段;要是在加速,图像就是向上倾斜的;减速呢,就是向下倾斜的。
还有一个很重要的图像——加速度时间图像(at 图像)。
这个图像能反映出物体加速度的变化情况。
想象一下坐过山车,那种忽快忽慢、忽上忽下的感觉,其实就是加速度在不断变化。
在 at 图像中,曲线的斜率表示加速度的变化率。
我记得有一次给学生们讲这些图像的时候,有个学生一脸困惑地问我:“老师,这些图像到底有啥用啊?”我笑了笑,给他举了个例子。
我说:“假如你知道一辆车的 vt 图像,就能算出在某段时间内它跑了多远,还能知道什么时候速度最快,什么时候在减速,这对于判断交通状况是不是很有用?”那学生恍然大悟地点点头。
总之,高中物理的图像知识点就像是一把神奇的钥匙,能帮助我们解开很多物理现象的谜团。
但要掌握好它们,可得下一番功夫。
多做些题目,多观察生活中的物理现象,慢慢地,你就会发现这些图像不再那么可怕,而是变成了你的好帮手,让你在物理的世界里畅游无阻!在学习物理图像的过程中,同学们要特别注意图像中的细节。
比如坐标轴的单位、刻度,图像的起点、终点,还有图像的走势。
有时候,一个小小的细节就能决定你能不能正确理解和运用图像。
高一物理v-t与x-t图像专题复习位移和速度都是时间的函数,因此描述物体运动的规律常用位移-时间图象(x-t图象)和速度-时间图象(v-t图象)一、x-t 图象与图象的比较:图3和下表是形状一样的图线在x-图象与图象中的比较。
x-t图象图象图象上的点表示某时刻的位置图象上的点表示某时刻的瞬时速度①表示物体做匀速直线运动(斜率表示速度)。
①表示物体做匀加速直线运动(斜率表示加速度)。
②表示物体静止。
②表示物体做匀速直线运动。
③表示物体静止。
③表示物体静止。
④表示物体向反方向做匀速直线运动;初位移为x0。
④表示物体做匀减速直线运动;初速度为v0。
⑤交点的纵坐标表示三个运动质点相遇时的位置。
⑤交点的纵坐标表示三个运动质点的共同速度。
⑥0~t1时间内物体位移为x1。
ﻩ⑥t1时刻物体速度为v1(图中阴影部分面积表示质点在0~t1时间内的位移)。
⑴如右图为v t-图象,A描述的是运动;B描述的是运动;C描述的是运动。
图中A、B的斜率为(“正”或“负”),表示物体作运动;t轴上方,C的斜率为(“正”或“负”),表示C作运动;t轴下方,C物体作运动。
A的加速度(“大于”、“等于”或“小于”)B的加速度。
图线与横轴t所围的面积表示物体运动的。
⑵如右图为x-t图象, A描述的是运动;B描述的是运动;C描述的是运动(t轴上方)。
图中A、B的斜率为(“正”或“负”),表示物体向运动;C的斜率为(“正”或“负”),表示C向运0 1 2 3 4x/mtABC动。
A 的速度 (“大于”、“等于”或“小于”)B 的速度。
A 、C 两图象与t 轴交点示: , A 、B 两图象交点P表示: 五、1. 下图中表示三个物体运动位置和时间的函数关系图象,下列说法正确的是: ( )A . 运动速率相同,3秒内经过路程相同,起点位置相同. B. 运动速率相同,3秒内经过路程相同,起点位置不同. C. 运动速率不同,3秒内经过路程不同,但起点位置相同. D . 均无共同点.2.如图所示,a、b 两条直线分别描述P 、Q两个物体的位移-时间图象,下列说法中,正确的是( )A . 两物体均做匀速直线运动B . M 点表示两物体在时间t 内有相同的位移C . t时间内P的位移较小D . 0~t,P 比Q 的速度大,t 以后P 比Q 的速度小3、.某物体沿直线运动的v-t 图象如图所示,由图可以看出物体 ( )A . 沿直线向一个方向运动B . 沿直线做往复运动 1 2 3 45 6 t/sC . 加速度大小不变D . 做匀速直线运动4、如图所示为一物体做直线运动的v-t 图象,根据图象做出的以下判断中,正确的是( ) A.物体始终沿正方向运动B.物体先沿负方向运动,在t =2 s 后开始沿正方向运动C.在t = 2 s前物体位于出发点负方向上,在t = 2 x 后位于出发点正方向上D.在t = 2 s 时,物体距出发点最远5.一台先进的升降机被安装在某建筑工地上,升降机 的运动情况由电脑控制,一次竖直向上运送重物时, 电脑屏幕上显示出重物运动的v —t 图线如图所示, 则由图线可知( )A.重物先向上运动而后又向下运动 B.重物的加速度先增大后减小 C . 重物的速度先增大后减小 D .重物的位移先增大后减小6、【B 级】依据v-t 图像描述物体的运动性质甲乙两辆汽车在平直的公路上沿同一方向作直线运动,t=0时刻同时经过公路旁的同一路标。
运动图像归纳解析与实战演练运动图像题是中考必考的题型,运动学的图像问题是一个充满魔力的世界,其中υ-t图像、s-t图像让人眼花缭乱。
那么,这些图像到底在说什么呢?让我们一起探索吧!一、运动图像归纳解析1.路程与时间(s-t)图像图像状态静止(距离原点8m处)匀速直线运动(从原点开始运动)匀速直线运动(从距离原点4m处)匀速直线运动(2s后开始匀速运动)速度0 υ=2 m/s υ=1 m/s υ=2 m/s根据图像比较甲乙速度大小υ甲小于υ乙υ甲小于υ乙两种方法方法一:相同时间比较路程,乙路程大,速度大方法一:相同路程比较时间,乙用时短,速度大图像例题分析分析:甲:0~5s做匀速直线运动υ=2 m/s5~15s静止υ=0乙:做匀速直线运动υ=1 m/s10s时甲乙在距离原点10m处相遇分析:小明:做匀速直线运动,速度一定υ=5 m/s 小华:做变速直线运动,速度在变化0~8s小明与小华的平均速度相同,8s时相遇2.速度与时间(υ-t)图像图像运动状态甲:匀速直线运动υ=8 m/s乙:匀速直线运动υ=6 m/s加速运动减速运动图像例题分析分析:甲:匀速直线运动υ=15 m/s乙:加速直线运动第3s时,甲、乙速度相同s-t图像与υ-t图像对比①②③④静止匀速直线运动匀速直线运动变速直线运动二、巩固演练1.甲、乙两同学沿平直路面步行,他们运动的路程随时间变化的规律如图所示,下列说法中不正确的是()A.4s~8s内,甲乙同学都做匀速直线运动B.8s末甲、乙两同学速度相等C.0~8s内。
甲、乙两同学运动的路程相等D.甲同学比乙同学晚出发4s解析:A.4s~8s内,甲乙的图象都是一条倾斜的直线,表明他们的路程与时间成正比,都做匀速直线运动,故A正确;B.甲同学从4s开始行走,到8s末行走了5m,用时4s;乙同学从0s开始行走,到8s末行走了5m,用时8s,甲乙运动的路程相同时,所用的时间不同,由v=可知,两者的速度不同,故B错误;C.0s~8s内,甲乙通过的路程都是5m,则甲、乙两同学通过的路程相等,故C正确;D.由图可知,甲同学是在4s时才开始行走,他比乙同学晚出发4s,故D正确。
初中物理图像专题复习教案一、教学目标1. 理解物理图像的种类和特点,掌握常见物理图像的识别和分析方法。
2. 能够运用物理图像解决实际问题,提高学生的动手操作能力和思维能力。
3. 培养学生的观察能力、分析能力、归纳能力和创新能力。
二、教学内容1. 物理图像的种类:直线图、折线图、柱状图、饼图等。
2. 物理图像的特点:坐标轴的意义、图像的形状、趋势等。
3. 常见物理图像的识别和分析方法:速度-时间图、位移-时间图、力-位移图等。
4. 运用物理图像解决实际问题:速度的计算、位移的计算、功的计算等。
三、教学过程1. 导入:引导学生回顾已学过的物理图像,让学生分享自己在学习过程中遇到的有趣物理图像问题。
2. 讲解:介绍物理图像的种类和特点,讲解常见物理图像的识别和分析方法。
3. 实践:让学生动手绘制一些简单的物理图像,如速度-时间图、位移-时间图等。
4. 讨论:分组讨论如何运用物理图像解决实际问题,分享各自的解题思路和经验。
5. 总结:归纳总结本节课的主要内容,强调物理图像在物理学习中的重要性。
6. 作业:布置一些有关物理图像的练习题,让学生巩固所学知识。
四、教学策略1. 采用讲授法、实践法、讨论法等多种教学方法,激发学生的学习兴趣和积极性。
2. 利用多媒体课件、实物模型等教学资源,帮助学生直观地理解物理图像的概念和特点。
3. 注重培养学生的观察能力、分析能力、归纳能力和创新能力,鼓励学生主动探索和解决问题。
4. 创设生动活泼的课堂氛围,让学生在互动和合作中学习,提高学生的动手操作能力和思维能力。
五、教学评价1. 课堂参与度:观察学生在课堂上的发言和表现,了解学生的学习兴趣和积极性。
2. 作业完成情况:检查学生作业的完成质量,评估学生对物理图像知识的掌握程度。
3. 实践操作能力:评估学生在绘制物理图像和实践操作中的表现,检验学生的动手操作能力。
4. 创新能力:鼓励学生在解决问题时提出新的思路和方法,评价学生的创新能力。