感应电流的方向
- 格式:ppt
- 大小:248.50 KB
- 文档页数:14
感应电流的方向判定——右手定则及楞次定律应用【复习目标】会运用楞次定律和右手定则判断感应电流的方向.【教学重点、难点】楞次定律的推广含义需通过训练来达到深刻理解、熟练掌握的要求【教学过程】一、知识要点回顾(一)感应电动势方向的判定感应电流的方向就是感应电动势的方向。
在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路的电流方向一致。
产生感应电动势的那部分电路就是电源,感应电流的方向就是电源内部的电流方向。
所以感应电流的方向就感应电动势的方向。
(二)右手定则1.判定方法:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动的方向,其余四指所指的方向就是感应电流的方向。
2.适用范围:适用于闭合电路一部分导线切割磁感线产生感应电流的情况。
(三)楞次定律1.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
适用于由磁通量变化引起感应电流的各种情况。
2.楞次定律的推广含意:感应电流的效果总要阻碍产生感应电流的原因。
◆阻碍原磁通的变化◆阻碍相对运动——“来拒去留”;或者致使回路面积变化——“增缩减扩”◆阻碍原电流的变化(自感)适用于定性判明感应电流所引起的机械效果。
二、重点·难点·疑点解释(一)怎样正确理解楞次定律?1.围绕“两个磁场”来理解楞次定律。
所谓“两个磁场”是指原磁场(引起感应电流的磁场)和感应磁场(由感应电流产生的磁场)楞次定律直接反映了两磁场之间关系,即感应电流产生的磁场总要阻碍原磁场的磁通量的变化。
并没有直接指明感应电流的方向,再用安培定则进一步判断感应电流的方向2.准确把握定律中阻碍的含义。
(1)“阻碍”不同于阻止。
阻碍——使不能顺利通过或发展;阻止——使不能前进,使停止运动。
比较两词的含义,可以发现阻碍只是起到推迟原磁磁通量的变化的作用,即原磁场的磁通量变化时间延长了,但最终原磁场的磁通量还是按自己的变化趋势进行,感应磁场无法阻止原磁场的磁通量变化。
感应电流方向的判定(一)对楞次定律的理解1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。
楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。
所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。
楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:(1)阻碍原磁通的变化(原始表述);用“增反减同”(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过回路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;(3)使线圈面积有扩大或缩小的趋势;(4)阻碍原电流的变化(自感现象)。
利用上述规律分析问题可独辟蹊径,达到快速准确的效果。
3. 当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。
运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。
用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。
反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。
如图所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。
要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而动”用左手,“因动而电”用右手,因果关系不可混淆。
针对训练1、2005年全国卷Ⅲ16.如图,闭合线圈上方有一竖直放置的条形磁铁,磁铁的N 极朝下。
一、 感应电流产生的条件:1.电磁感应现象:能产生感应电流的现象称电磁感应现象。
2.产生感应电流的条件: 电路闭合;回路中磁通量发生变化;S B ∆=Φ-Φ=∆Φ12BS ∆=S B ∆∆=二、 感应电流方向的判定:1.右手定则:让磁力线穿过手心,大拇指指向导体的运动方向,四指所指的方向就是感应电流的方向。
例:在一个匀强磁场中有一个金属框MNOP ,且MN 杆可沿轨道滑动。
(1) 当MN 杆以速度v 向右运动时,金属框内有没有感应电流?(2) 若MN 杆静止不动而突然增大电流强度I ,金属框内有无感应电流?方向如何?2.楞次定律:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(1) 阻碍的理解: 阻碍变化—— 增反减同阻碍不等于阻止,阻碍的是磁通量变化的快慢 阻碍相对运动(敌进我退,敌退我扰)O N MP(2) 应用楞次定律判断感应电流的方法:① 明确原磁场(B 原)方向;② 分析磁通量(ф)的变化;③ 确定感应电流的磁场(B 感)方向,④ 用右手螺旋法则判定感应电流(I 感)的方向。
例:磁通量的变化引起感应电流。
三、 法拉第电磁感应定律:1.在电磁感应现象中产生的电动势叫感应电动势,不管电路闭合与否,只要穿过电路的磁通量发生变化,电路中就有感应电动势。
闭合 感应电动势 有电流断开 感应电动势 无电流(1)tn ∆∆Φ=ε (感应电动势与磁通量的变化律成正比)——平均电动势 (2) (3) 自感电动势:tI L ∆∆=ε L 为自感系数(①线圈面积;②匝数;③铁芯。
)电流强度增大时,感应电动势的方向与电流方向相反;电流强度减小时,感应电动势的方向与电流方向相同;阻碍的是电流的变化,电流将继续增大到应该达到的值。
注:自感现象是楞次定律“阻碍”含义的另一体现。
(4) 电磁感应现象中的能量守恒:① 向上平动、向下平动;② 向左平动、向右平动;③ 以AB 为轴向外转动;④ 以BC 为轴向外转动; ⑤ 以导线为轴转动;判断上列情况下的感应电流方向,若两导线呢?I P O M N MN 杆匀速向右运动: BLv t tL v B t S B t =∆∆=∆∆=∆∆Φ=ε (使用于B 、L 、v 相互垂直)(L 为有效长度) v BL =ε 即即=BLv εa b大家再看这个图,ab 杆以速度v 向右运动切割磁力线,ab 杆上产生的感应电流方向是b →a ,在产生感应电流的同时,就会受到磁场对它的力的作用,安培力的方向是垂直于导线向左,为保证ab 向右匀速做切割磁力线运动就必须对ab 施加一个与安培力大小相等,方向相反的外力F 的作用,这样外力F 就要克服安培力做功,维持导体ab 匀速运动。