高考物理一轮复习同步要点:圆周运动定义
- 格式:ppt
- 大小:609.50 KB
- 文档页数:41
高考圆周运动知识点在物理学中,我们学习了许多与运动相关的知识,而圆周运动是其中一个重要的概念。
圆周运动是指物体围绕固定点以匀速运动,形成一个圆形轨迹的运动。
在高考中,圆周运动也是一个常见的考点。
本文将介绍高考圆周运动的一些重要知识点和相关应用。
1. 圆周运动的基本概念圆周运动由物体的半径和角速度决定。
半径是指物体到固定点的距离,而角速度则是指物体单位时间内绕固定点转过的角度。
在圆周运动中,物体的速度大小是恒定的,但方向却不断改变。
这是因为物体在不断改变方向的同时,它的速度向心向外的分量也在不断改变。
2. 圆周运动的速度和加速度在圆周运动中,物体沿圆周方向的速度称为切向速度,而向心加速度则是指物体向圆心方向加速的大小。
这两者之间存在着一种关系,即向心加速度等于切向速度平方除以半径。
这也是为什么当我们在转弯时,速度越快,半径越小,感觉向心加速度越大的原因。
3. 圆周运动的力学原理圆周运动的力学原理可以由牛顿第二定律推导得出。
根据牛顿第二定律,物体的向心加速度等于合外力点对物体的向心力除以物体的质量。
在圆周运动中,合外力通常指向圆心方向的力,如重力或绳索的拉力。
根据这个原理,我们可以推导出与圆周运动相关的各种物理公式。
4. 圆周运动的应用圆周运动在现实生活中有着广泛的应用。
一个常见的例子是地球绕太阳的公转运动,这是地球四季变化的原因之一。
此外,圆周运动在机械工程、航天工程等领域也有重要的应用。
例如,卫星绕地球运动的轨道就是一个圆周运动。
5. 圆周运动的衍生知识点除了基本的圆周运动概念之外,还有一些与之相关的衍生知识点也是高考的考点之一。
例如,转动惯量和角动量等概念与圆周运动密切相关。
转动惯量是指物体对角加速度产生抵抗的能力,而角动量是物体绕固定轴旋转时的物理量。
这些概念在解题中会经常出现。
总结起来,高考圆周运动是一个重要的物理知识点,掌握其基本概念和相关公式对于解题和理解其他物理现象都有重要帮助。
理解圆周运动的力学原理、应用以及衍生知识点,可以帮助我们更好地应对考试,同时也能扩展我们对物理学的认识。
高一物理圆周运动知识点高一物理圆周运动知识点详解圆周运动是高中物理中的重要内容之一,它是描述物体在圆周轨道上运动的一种运动形式。
了解圆周运动的基本原理,对于解决相关物理问题具有重要的意义。
接下来,我们将分别从圆周运动的定义、力学分析和自由落体问题等方面,进行详细的论述。
1. 圆周运动的定义圆周运动是指物体沿着圆周轨道运动的过程。
在圆周运动中,物体的速度大小保持不变,而速度的方向则随着时间不断改变,指向圆心。
由此可知,圆周运动是一种变速运动。
2. 圆周运动的力学分析在进行圆周运动的物体上,必然存在向圆心指向的向心力。
向心力是维持物体做圆周运动的力。
根据牛顿第二定律,向心力与物体的质量和加速度有关。
所以,物体的向心加速度可以通过向心力与物体质量之间的关系来确定。
3. 向心力与圆周运动的关系向心力与圆周运动的关系可以用向心加速度的表达式来描述。
根据牛顿第二定律和向心加速度的定义,我们可以得到向心力与圆周运动半径和物体质量的关系公式:F = m·a_c = m·v^2/ r其中,F表示向心力,m表示物体的质量,v表示物体的速度,r表示圆周运动的半径,a_c表示向心加速度。
4. 圆周运动与自由落体问题在圆周运动中,物体绕圆心做匀速圆周运动时,当它与其他物体处于同一圆周轨道时,这两个物体之间的相互作用力可以使它们保持匀速运动。
这里与圆周运动相关的自由落体问题是指当物体在竖直方向上做圆周运动时,其重力与向心力之间的平衡问题。
5. 圆周运动的应用圆周运动在生活和科学研究中有着广泛的应用。
例如,在机械运动中,很多机器的旋转部分都是通过圆周运动来实现的;在天文学中,行星绕着太阳做圆周运动,卫星绕地球做圆周运动。
综上所述,圆周运动是高一物理中一个重要的知识点。
通过深入理解圆周运动的定义、力学分析、与自由落体问题的关系以及应用等方面,我们可以更好地解决和应用这一知识点。
深入学习圆周运动,不仅有助于提高物理学习的能力,也能拓宽我们对物理学的认识。
高一圆周运动的知识点圆周运动是物体在圆周轨道上做的运动,它是我们学习物理和数学中的一个重要概念。
下面,我们将详细介绍高一圆周运动的知识点。
一、基本概念1. 圆周运动:物体沿着圆的轨迹做匀速运动,称为圆周运动。
在圆周运动中,有两个重要的线量,即角速度和角加速度。
2. 角速度:角速度是单位时间内物体在圆周轨道上转过的角度。
通常用字母ω表示,单位是弧度/秒。
3. 角加速度:角加速度是角速度的变化率,表示单位时间内角速度的改变量。
通常用字母α表示,单位是弧度/秒²。
二、运动特性1. 匀速圆周运动:物体在圆周运动过程中角速度保持恒定,即物体在圆周轨道上的速度大小保持不变。
2. 加速度与速度的关系:在圆周运动中,物体的速度方向始终垂直于轨道的切线方向,因此物体的加速度方向与速度方向垂直,且大小与速度的平方和半径的乘积成正比。
三、圆周运动的公式1. 周期公式:圆周运动的周期T是单位时间内物体转过一个完整圆周的时间。
计算公式为T = 2π/ω,其中π是圆周率。
2. 向心加速度公式:在圆周运动中,向心加速度aᵥ表示物体向圆心的加速度。
根据公式aᵥ = ω²r,其中r是物体与圆心的距离。
3. 速度公式:在圆周运动中,物体的线速度v与角速度ω和半径r之间的关系为v = ωr。
四、应用示例1. 行星公转:行星绕太阳做圆周运动,行星和太阳之间的吸引力提供了向心力,使得行星能够保持在固定的轨道上。
2. 交通工具的弯道行驶:汽车、自行车等交通工具在弯道行驶时需要通过调整转向来改变向心力的方向和大小,以保持平衡和稳定。
3. 儿童游乐园旋转设备:旋转木马、过山车等游乐设施都是基于圆周运动的原理设计而成,具有很高的娱乐性和刺激性。
五、思考与拓展1. 圆周运动的速度与半径之间的关系是什么?请说明理由。
2. 圆周运动的向心加速度与角速度之间的关系是什么?有何实际应用?3. 如何通过改变角速度来调整圆周运动的特性?六、总结通过本文介绍,我们了解了高一圆周运动的基本概念、运动特性和公式,并了解了圆周运动在生活中的一些应用示例。
高一物理圆周运动知识点总结圆周运动是物理学中的一个重要概念,它涉及到很多物理量和公式。
在高一物理学习中,圆周运动是一个重要的知识点,本文将对圆周运动的相关知识进行总结。
一、圆周运动的基本概念圆周运动是指物体在一个圆形轨道上做匀速运动的现象。
在圆周运动中,物体的速度大小不变,但方向不断改变,因此物体会不断改变运动方向,产生向心加速度。
二、圆周运动的物理量1. 角速度角速度是指物体在圆周运动中单位时间内转过的角度。
它的单位是弧度/秒,用符号ω表示。
角速度与线速度之间有一个重要的关系:线速度等于半径乘以角速度,即v=rω。
2. 向心加速度向心加速度是指物体在圆周运动中受到的向心的加速度。
它的大小等于速度的平方除以半径,即a=v²/r。
向心加速度的方向指向圆心,与速度方向垂直。
3. 周期和频率周期是指物体在圆周运动中完成一次运动所需的时间。
它的单位是秒,用符号T表示。
频率是指物体在圆周运动中单位时间内完成的运动次数。
它的单位是赫兹,用符号f表示。
周期和频率之间有一个重要的关系:频率等于周期的倒数,即f=1/T。
4. 线速度线速度是指物体在圆周运动中沿着圆周轨道运动的速度。
它的大小等于半径乘以角速度,即v=rω。
线速度的方向与切线方向相同。
三、圆周运动的公式1. 向心加速度公式向心加速度的大小等于速度的平方除以半径,即a=v²/r。
2. 角速度公式角速度是指物体在圆周运动中单位时间内转过的角度。
它的单位是弧度/秒,用符号ω表示。
角速度与线速度之间有一个重要的关系:线速度等于半径乘以角速度,即v=rω。
3. 周期和频率公式周期是指物体在圆周运动中完成一次运动所需的时间。
它的单位是秒,用符号T表示。
频率是指物体在圆周运动中单位时间内完成的运动次数。
它的单位是赫兹,用符号f表示。
周期和频率之间有一个重要的关系:频率等于周期的倒数,即f=1/T。
四、圆周运动的应用圆周运动在生活中有很多应用,例如:1. 汽车在转弯时会产生向心加速度,这是因为汽车在转弯时受到了向心力的作用。
圆周运动高三知识点总结圆周运动是物理学中重要的概念之一,涉及到旋转和周期性运动的原理。
在高三物理学习过程中,我们学习了很多与圆周运动相关的知识点。
本文将对圆周运动的相关概念、公式和应用进行总结。
一、圆周运动的基本概念圆周运动是指物体在一个固定的圆周轨道上进行的运动。
在圆周运动中,物体绕着一个中心点转动,具有周期性和旋转性质。
圆周运动常见的实例包括地球围绕太阳的公转、卫星绕地球的运动等。
二、圆周运动的基本描述1. 角度与弧度关系:圆周运动中,我们通常用角度或弧度来描述物体转动的角度。
角度用度数表示,弧度用弧长与半径的比值表示。
弧度与角度的关系为:1弧度= 180° / π。
2. 角速度与角位移:角速度是指物体单位时间内绕中心点转过的角度或弧度。
角速度常用符号ω表示,单位是弧度/秒。
角位移是指物体从初始位置到最终位置所转过的角度或弧度。
3. 周期与频率:周期是指物体完成一次完整运动所需要的时间。
频率是指单位时间内完成的运动次数。
周期T与频率f的关系为:f = 1/T。
三、圆周运动的物理公式1. 周期与角速度的关系:周期T与角速度ω的关系为:T =2π/ω。
2. 物体的线速度与角速度的关系:物体的线速度v是指单位时间内物体在轨道上的位移长度。
物体的线速度v与角速度ω的关系为:v = rω,其中r是物体到轨道中心的距离。
3. 物体的线速度与周期的关系:物体的线速度v与周期T的关系为:v = 2πr/T。
四、圆周运动的应用1. 行星运动:行星绕太阳的运动是一种圆周运动。
根据开普勒定律,行星与太阳之间的距离和行星的周期存在一定的关系。
2. 卫星运动:卫星绕地球的运动也是一种圆周运动。
根据卫星的高度和卫星运行的速度,可以计算卫星的周期和轨道半径。
3. 离心力与向心力:在圆周运动中,存在着向心力和离心力。
向心力使物体向中心点运动,而离心力则使物体远离中心点。
总结:在高三物理学习中,圆周运动是一个重要的知识点。
高一物理圆周运动知识点引言:高中物理学习中,圆周运动是一个重要的知识点,它在日常生活和科学研究中都有广泛应用。
了解圆周运动的基本概念和相关定律,对于理解物体运动的规律以及解决实际问题具有重要意义。
本文将围绕圆周运动的概念、公式、应用和实验等方面展开讨论。
一、圆周运动的概念圆周运动是指物体在圆形轨迹上做匀速或变速运动。
圆周运动的基本特征有两个方面,一是物体在圆周运动中改变速度和方向,二是物体与圆心的距离保持不变。
二、圆周运动的基本公式圆周运动的基本公式包括角速度、角加速度、线速度和离心加速度等概念。
其中,角速度是指单位时间内物体绕圆心转过的角度,通常用符号ω表示;角加速度是指单位时间内角速度的变化率,通常用符号α表示;线速度是指物体在圆周上单位时间内移动的距离,通常用符号v表示;离心加速度是指物体在圆周运动中指向圆心的加速度,通常用符号a表示。
这些公式中,角速度和角加速度之间的关系可以由牛顿第二定律推导得到。
三、圆周运动的重要应用圆周运动在现实生活和科学研究中有许多重要应用。
例如,行星围绕太阳的运动、车辆在弯道上的行驶、卫星绕地球运行等都属于圆周运动。
除此之外,一些仪器和设备也利用了圆周运动的原理,如电风扇、离心机、飞盘和电动扭矩扳手等。
掌握圆周运动的知识,可以帮助我们深入理解这些现象和设备的工作原理。
四、圆周运动的实验验证为了验证和研究圆周运动的规律,我们可以进行一些简单的实验。
例如,可以通过旋转一个小球,观察其在圆周运动中的线速度和角速度的关系;又或者,可以通过利用一根细线将小球与一个固定点相连,让小球在圆周轨迹上运动,观察离心加速度对物体运动的影响。
这些实验可以帮助我们直观地理解圆周运动的规律,并进一步验证公式和理论的正确性。
五、圆周运动的思考与进一步学习除了掌握圆周运动的基本概念和公式,我们还可以结合实际问题进行深入思考和学习。
例如,如何通过调节角速度来实现车辆在弯道上的平稳行驶?如何利用离心加速度来实现某些实际项目的加工和分离?这些问题需要我们进一步研究和探索,了解更多有关圆周运动的知识和应用。
高三物理圆周运动知识点物理学中的圆周运动是指物体在一个固定轴周围旋转的运动形式。
在高三物理学习中,圆周运动是一个重要的知识点。
本文将从圆周运动的定义和基本概念、圆周运动的速度和加速度、圆周运动的牛顿定律以及圆周运动的应用等方面进行阐述。
1. 圆周运动的定义和基本概念圆周运动指物体以固定轴为中心,绕该轴进行旋转运动。
在圆周运动中,存在两个重要的角度:弧度和角速度。
- 弧度:弧度是描述圆周上任意弧长与半径之间关系的单位。
1弧度等于圆的半径所对应的弧长。
- 角速度:角速度是描述物体在圆周上旋转速度的物理量。
角速度的单位是弧度每秒(rad/s)。
2. 圆周运动的速度和加速度圆周运动的速度是指物体在圆周运动过程中沿圆弧方向的变化率,由物体周围中心轴旋转所引起。
- 切线速度:切线速度是指物体在圆周运动中,沿圆弧切线方向的速度。
切线速度与圆周运动的半径和角速度有关。
- 角速度和角加速度:角速度是描述物体在圆周上旋转的速度,而角加速度是描述物体在圆周运动中的加速度。
3. 圆周运动的牛顿定律牛顿定律适用于描述圆周运动中物体的受力和加速度之间的关系。
- 牛顿第一定律:在没有外力作用下,物体将沿直线或圆周运动保持匀速度或静止状态。
- 牛顿第二定律:圆周运动的物体受到一个向心力,该力的大小等于物体的质量与向心加速度的乘积。
- 牛顿第三定律:物体之间的相互作用力具有相互作用、大小相等、方向相反的特点。
4. 圆周运动的应用圆周运动的知识在日常生活和工程领域中有着广泛的应用。
- 火车转弯:在列车的转弯过程中,列车会沿着一个半径较大的圆周路径运动,这时需要考虑列车的速度、半径和转弯的角度等因素。
- 环形公路车辆转弯:在环形公路上,车辆需要根据转弯半径和速度来调整转弯时所需的力度和方向。
- 高速旋转机械设备:高速旋转的机械设备,如风力发电机、离心机等,需要对其进行动力学和动力学分析,以确保其安全运行和性能优化。
综上所述,高三物理圆周运动是物理学中的重要知识点,掌握圆周运动的定义和基本概念、速度和加速度、牛顿定律以及应用等内容对于理解和解决相关问题具有重要意义。
物理高一圆周运动知识点圆周运动是物理学中重要的知识点之一,它涉及到物体绕着一个固定中心旋转的运动方式。
在高中物理课程中,学生需要掌握圆周运动的基本原理、公式和相关概念。
本文将介绍物理高一圆周运动的知识点,帮助学生更好地理解和应用这一概念。
一、圆周运动的定义和基本原理圆周运动是指物体沿着一个固定半径的圆形路径做匀速运动的现象。
它包括一个物体绕着圆心旋转和沿圆周运动的两个方面。
圆周运动的基本原理可以用牛顿运动定律来解释。
根据牛顿第一定律,物体在无外力作用下会保持匀速直线运动,而圆周运动需要向心力的作用才能保持运动轨迹。
向心力是指指向圆心的力。
在圆周运动中,物体所受的向心力来自于它与固定中心之间的约束力。
根据牛顿第二定律,向心力的大小等于物体的质量乘以向心加速度。
二、圆周运动的相关概念1. 角度和弧度在圆周运动中,我们通常用角度和弧度来描述物体在圆周上的位置和角度的变化。
角度是一个常见的度量单位,以度(°)为标志。
一个圆一共有360度,而一个直角为90度。
我们可以用角度来表示物体在圆周上的位置,以及所旋转的角度。
弧度是角度的另一种度量方式,以弧长与半径之比来表示。
一个圆的周长等于2πr(r为半径),而一个圆的完整周长等于2π个圆心角,这个角的弧度为2π弧度。
2. 周期与频率在圆周运动中,周期和频率是描述物体运动速度的两个重要概念。
周期是指物体绕圆心一周所需的时间。
周期的单位可以是秒、分钟或小时等。
我们可以通过测量物体绕圆心旋转一周所需的时间来确定周期。
频率是指物体每秒绕圆心旋转的次数。
频率的单位是赫兹(Hz),代表每秒钟的周期数。
频率和周期之间存在一种倒数关系,即频率等于周期的倒数。
3. 角速度与线速度角速度是指物体单位时间内绕圆心旋转的角度,实际上就是角度的变化率。
角速度的单位可以是度/秒或弧度/秒,通常用符号ω表示。
线速度是指物体在圆周上运动的速率,即单位时间内物体沿圆周运动的路程。
线速度的大小与物体角速度和半径相关,可以用下式来表示:v = rω,其中v表示线速度,r表示半径,ω表示角速度。
圆周运动问题是高考考查的热点,物体在竖直面内的圆周运动中临界条件的考查在高考中多有出现圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本单元的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。
另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。
(一)匀速圆周运动1. 定义:做圆周运动的质点,若在相等的时间内通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
2. 运动学特征:v 大小不变,T 不变,ω不变,向a 大小不变;v 和向a 的方向时刻在变,匀速圆周运动是加速度不断改变的变速运动。
3. 动力学特征:合外力大小恒定,方向始终指向圆心。
(二)描述圆周运动的物理量 1. 线速度(1)物理意义:描述质点沿圆周运动的快慢。
(2)方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向。
(3)大小:(s 是t 时间内通过的弧长)。
2. 角速度 (1)物理意义:描述质点绕圆心转动的快慢。
(s /rad ),ϕ是连接质点(2)大小:和圆心的半径在t 时间内转过的角度。
3. 周期T ,频率f 做匀速圆周运动的物体运动一周所用的时间叫做周期。
做匀速圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速。
4. v 、ω、T 、f 的关系f 1T =f 2T 2π=π=ωω=π=r r T 2v5. 向心加速度(1)物理意义:描述线速度方向改变的快慢。
(2)大小:=a 0222222v r T 4r f 4r r v ω=π=π=ω=(3)方向:总是指向圆心(三)向心力向F1. 作用效果:产生向心加速度,不断改变质点的速度方向,维持质点做圆周运动,但不改变速度的大小。
2. 大小:rm r mv F 22ω==向3. 来源:向心力是按效果命名的力,可以由某个力提供,也可以由几个力的合力提供或由某个力的分力提供,如同步卫星的向心力由万有引力提供,圆锥摆摆球所受向心力由重力和绳上的拉力的合力提供4. 匀速圆周运动中向心力就是合外力,而在非匀速圆周运动中,向心力是合外力沿半径方向的一个分力,合外力的另一个分力沿切线方向,用来改变线速度的大小。
高一物理《圆周运动》知识点总结一、线速度1.定义:物体做圆周运动,在一段很短的时间Δt 内,通过的弧长为Δs ,则Δs 与Δt 的比值叫作线速度的大小,公式:v =Δs Δt. 2.意义:描述做圆周运动的物体运动的快慢.3.方向:物体做圆周运动时该点的切线方向.4.匀速圆周运动(1)定义:物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动.(2)性质:匀速圆周运动的线速度方向是在时刻变化的,所以它是一种变速运动,这里的“匀速”是指速率不变.二、角速度1.定义:连接物体与圆心的半径转过的角Δθ与所用时间Δt 之比叫作角速度,公式:ω=ΔθΔt. 2.意义:描述做圆周运动的物体绕圆心转动的快慢.3.单位:弧度每秒,符号是rad/s ,在运算中角速度的单位可以写为s -1.4.匀速圆周运动是角速度不变的圆周运动.三、周期1.周期T :做匀速圆周运动的物体,运动一周所用的时间.单位:秒(s).2.转速n :物体转动的圈数与所用时间之比.单位:转每秒(r/s)或转每分(r/min).3.周期和转速的关系:T =1n(n 的单位为r/s 时). 四、线速度与角速度的关系1.在圆周运动中,线速度的大小等于角速度的大小与半径的乘积.2.公式:v =ωr .五、向心力的大小向心力的大小可以表示为F n =mω2r 或F n =m v 2r . 六、匀速圆周运动的加速度大小1.向心加速度公式a n =v 2r或a n =ω2r . 2.向心加速度的公式既适用于匀速圆周运动,也适用于非匀速圆周运动.七、变速圆周运动和一般曲线运动的受力特点1.变速圆周运动的合力:变速圆周运动的合力产生两个方向的效果,如图所示.(1)跟圆周相切的分力F t:改变线速度的大小.(2)指向圆心的分力F n:改变线速度的方向.2.一般的曲线运动的处理方法(1)一般的曲线运动:运动轨迹既不是直线也不是圆周的曲线运动.(2)处理方法:可以把曲线分割为许多很短的小段,质点在每小段的运动都可以看作圆周运动的一部分,分析质点经过曲线上某位置的运动时,可以采用圆周运动的分析方法来处理.。
高考物理一轮复习讲义 第2讲 圆周运动的基本规律及应用一、描述圆周运动的物理量物理量 物理意义定义、公式、单位线速度描述物体沿切向运动的快慢程度①物体沿圆周通过的弧长与时间的比值②v =Δl Δt③单位:m/s④方向:沿圆弧切线方向角速度描述物体绕圆心转动的快慢①连接运动质点和圆心的半径扫过的角度与时间的比值②ω=ΔθΔt③单位:rad/s周期和转速描述匀速圆周运动的快慢程度①周期T :物体沿圆周运动一周所用的时间,公式T =2πrv,单位:s②转速n :物体单位时间内所转过的圈数,单位:r/s 、r/min向心加速度描述速度方向变化快慢的物理量①大小:a n =v 2r=ω2·r②方向:总是沿半径指向圆心,方向时刻变化③单位:m/s 2v 、ω、T 、n 、a 的相互关系v =ωr =2πrTa =v 2r =ω2r =ω·v =⎝ ⎛⎭⎪⎫2πT 2·r 二、向心力1.定义:做圆周运动的物体受到的指向圆心方向的合外力,只改变线速度方向,不会改变线速度的大小.2.大小:F 向=ma 向=m v 2R=mRω2=mR ⎝ ⎛⎭⎪⎫2πT 2=mR (2πf )2.3.方向:总指向圆心,时刻变化,是变力.4.向心力的向心力是按效果来命名的,对各种情况下向心力的来源要明确. 三、匀速圆周运动和非匀速圆周运动 1.匀速圆周运动(1)运动特点:线速度的大小恒定,角速度、周期和频率都恒定不变的圆周运动.(2)受力特点:合外力完全用来充当向心力.向心力(向心加速度)大小不变、方向时刻指向圆心(始终与速度方向垂直),是变力.(3)运动性质:变加速曲线运动(加速度大小不变、方向时刻变化). 2.变速圆周运动(非匀速圆周运动)(1)运动特点:线速度大小、方向时刻在改变的圆周运动.(2)受力特点:变速圆周运动的合外力不指向圆心,合外力产生两个效果(如图所示).①沿半径方向的分力F n :此分力即向心力,产生向心加速度而改变速度方向. ②沿切线方向的分力F τ:产生切线方向加速度而改变速度大小. (3)运动性质:变加速曲线运动(加速度大小、方向都时刻变化). 四、离心运动1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向. 3.受力特点:(1)当F =m rω2时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出;(3)当F <m rω3时,物体逐渐远离圆心,F 为实际提供的向心力,如图所示.1.关于运动和力的关系,下列说法正确的是( ) A .物体在恒力作用下不可能做直线运动 B .物体在恒力作用下不可能做曲线运动 C .物体在恒力作用下不可能做圆周运动 D .物体在恒力作用下不可能做平抛运动解析:物体在恒力作用下不可能做圆周运动,选项C 正确. 答案: C2.关于向心力,下列说法中正确的是( ) A .向心力不改变做圆周运动物体速度的大小 B .做匀速圆周运动的物体,其向心力是不变的 C .做圆周运动的物体,所受合力一定等于向心力D .做匀速圆周运动的物体,一定是所受的合外力充当向心力解析:向心力始终指向圆心,所以方向是时刻变化的;做匀速圆周运动的物体,所受合力才等于向心力.答案:AD 3.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm ,当该型号的轿车在高速公路上行驶时,驾驶员面前速率计的指针指在“120 km/h”上,可估算出该车轮的转速约为( )A .1000 r/sB .1 000 r/minC .1 000 r/hD .2 000 r/s解析: 由公式ω=2πn ,v =ωr =2πrn ,其中r =30 cm =0.3 m ,v =120 km/h =1003m/s ,代入公式得n =1 00018πr /s ,约为1 000 r/min.答案: B4.(2013·山西高三月考)荡秋千是儿童喜爱的运动,当秋千荡到最高点时小孩的加速度方向可能是( )A .1方向B .2方向C .3方向D .4方向解析:小孩在最高点时速度为零,由a =v 2R可知,此时的向心加速度为零,小球只沿切线方向加速,切向加速度不为零,所以在最高点时小孩的加速度方向为2方向,B 选项正确.答案: B5.一种新型高速列车转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列车以360 km/h 的速度在水平面内转弯,弯道半径为1.5 km ,则质量为75 kg 的乘客在列车转弯过程中所受到的合力为( )A .500 NB .1 000 NC .500 2 ND .0 答案: A圆周运动的运动学问题对公式v =rω和a n =v 2r=rω2的理解(1)由v =rω知,r 一定时,v 与ω成正比;ω一定时,v 与r 成正比;v 一定时,ω与r 成反比.(2)由a n =v 2r=rω2知,在v 一定时,an 与r 成反比;在ω一定时,a n 与r 成正比.如图所示是一个玩具陀螺.A 、B 和C 是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )A .A 、B 和C 三点的线速度大小相等 B .A 、B 和C 三点的角速度相等 C .A 、B 的角速度比C 的大D .C 的线速度比A 、B 的大解析:A 、B 和C 均是同一陀螺上的点,它们做圆周运动的角速度都为陀螺旋转的角速度ω,B 对、C 错.三点的运动半径关系r A =r B >r C ,据v =ωr 可知,三点的线速度关系v A =v B >v C ,A 、D 错.答案:B在传动装置中各物理量之间的关系传动类型图示结论共轴传动各点角速度ω相同,而线速度v =ωr 与半径r 成正比,向心加速度大小a =rω2与半径r 成正比.皮带(链条)传动当皮带不打滑时,用皮带连接的两轮边沿上的各点线速度大小相等,由ω=v r 可知,ω与r 成反比,由a =v 2r可知,a 与r 成反比.1-1:如图所示为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n解析:因为主动轮顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,A 错误、B 正确;由于通过皮带传动,皮带与轮边缘接触处的速度相等,所以由2πnr 1=2πn 2r 2,得从动轮的转速为n 2=nr 1r 2,C 正确、D 错误. 答案:BC匀速圆周运动的实例分析1.汽车转弯类问题汽车(或自行车)在水平路面上转弯如图所示.路面对汽车(或自行车)的静摩擦力提供向心力.若动摩擦因数为μ,则由μmg =m v 2R得汽车(或自行车)安全转弯的最大速度为v =μgR .2.火车拐弯问题 设火车车轨间距为L ,两轨高度差为h ,火车转弯半径为R ,火车质量为M ,如图所示.因为θ角很小,所以sin θ≈tan θ,故h L=F n Mg,所以向心力Fn =h LMg .又因为Fn =Mv 2/R ,所以车速v =ghR L.3.汽车过桥问题 项目 凸形桥 凹形桥受力 分析图以a 方向为正方向,根据牛顿第二定律列方程mg -F N 1=m v 2r F N 1=mg -m v 2rF N 2-mg =m v 2r F N 2=mg +m v 2r讨论v 增大,小车对桥的压力F′N 1减小;当v增大到rg 时,F′N 1=0 v 增大,小车对桥的压力F′N 2增大;只要v ≠0,F′N 1<F′N 2由列表比较可知,汽车在凹形桥上行驶对桥面及轮胎损害大,但在凸形桥上,最高点速率不能超过gr .在半径为r 的半圆柱面最高点,汽车以v =gr 的速率行驶将脱离桥面. 在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看做是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( )A. gRhL B. gRh d C.gRLh D. gRd h解析:汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F 向=mg tan θ.根据牛顿第二定律:F 向=m v 2R,tan θ=h d ,解得汽车转弯时的车速v =gRhd,B 对. 答案:B解决圆周运动问题的主要步骤2-1:“飞车走壁”是一种传统的杂技艺术,演员骑车在倾角很大的桶面上做圆周运动而不掉下来.如图所示,已知桶壁的倾角为θ,车和人的总质量为m ,做圆周运动的半径为r .若使演员骑车做圆周运动时不受桶壁的摩擦力,下列说法正确的是( )A .人和车的速度为gr tan θB .人和车的速度为gr sin θC .桶面对车的弹力为mg cos θD .桶面对车的弹力为mgsin θ解析:对人和车进行受力分析如图所示.根据直角三角形的边角关系和向心力公式可列方程:F N cos θ=mg ,mg tan θ=m v 2r.解得v =gr tan θ,F N =mgcos θ. 答案:AC竖直面内圆周运动中的临界问题有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况.(2012·济南模拟)如图所示,小球紧贴在竖直放置的光滑圆形管道内壁做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( ) A.小球通过最高点时的最小速度v min=g R+rB.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力解析:小球沿管上升到最高点的速度可以为零,故A错误,B正确;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力F N与球重力在背离圆心方向的分力F mg的合力提供向心力,即:F N-F mg=ma,因此,外侧管壁一定对球有作用力,而内侧壁无作用力,C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力情况与小球速度大小有关,D错误.答案:BC(2012·江西南昌模拟)如图所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L .现使小球在竖直平面内做圆周运动,当小球到达最高点的速率为v 时,两段线中张力恰好均为零,若小球到达最高点速率为2v ,则此时每段线中张力为多大?(重力加速度为g )解析:本题属于最高点无支持物的情况.当速率为v 时,mg =mv 2R当速率为2v 时,满足mg +F =m 2v 2R得F =3mg则设每根线上的张力为F T ,满足:2F T cos 60°2=3mg即F T =3mg . 答案: 3mg1.如图是摩托车比赛转弯时的情形.转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是( )A .摩托车一直受到沿半径方向向外的离心力作用B .摩托车所受外力的合力小于所需的向心力C .摩托车将沿其线速度的方向沿直线滑去D .摩托车将沿其半径方向沿直线滑去解析:本题考查圆周运动的规律和离心现象.摩托车只受重力、地面支持力和地面的摩擦力作用,没有离心力,A 项错误;摩托车正确转弯时可看做是做匀速圆周运动,所受的合力等于向心力,如果向外滑动,说明提供的向心力即合力小于需要的向心力,B 项正确;摩托车将在沿线速度方向与半径向外的方向之间做离心曲线运动,C 、D 项错误.答案:B2.如图所示,用细线拴着一个小球,在光滑水平面上做匀速圆周运动,则下列说法中正确的是( )A .小球线速度大小一定时,线越长越容易断B .小球线速度大小一定时,线越短越容易断C .小球角速度一定时,线越长越容易断D .小球角速度一定时,线越短一定越容易断 解析:小球线速度大小一定时,线的拉力大小与线的长度L 的关系可用F =m v 2L来判断;小球角速度一定时,线的拉力大小与线的长度L的关系可用F =mω2L 来判断.答案:BC3.如图所示的齿轮传动装置中,主动轮的齿数z 1=24,从动轮的齿数z 2=8,当主动轮以角速度ω顺时针转动时,从动轮的运动情况是( )A .顺时针转动,周期为2π/3ωB .逆时针转动,周期为2π/3ωC .顺时针转动,周期为6π/ωD .逆时针转动,周期为6π/ω解析:主动轮顺时针转动,从动轮逆时针转动,两轮边缘的线速度相等,由齿数关系知主动轮转一周时,从动轮转三周,故T 从=2π3ω,B 正确.答案:B4.如图所示,长为L 的轻杆一端固定一质量为m 的小球,另一端可绕固定光滑水平转轴O 转动,现使小球在竖直平面内做圆周运动,C 为圆周的最高点,若小球通过圆周最低点D 的速度大小为6gL ,则小球在C 点( )A .速度等于gLB .速度大于gLC .受到轻杆向上的弹力D .受到轻杆向下的拉力解析:小球从最低点转到最高点,由2mgL =12mv 2D -12mv 2C ,解得v C =2gL ,则小球在C 点的速度大于gL ,B 项对.在C 点,由牛顿第二定律得F +mg =m v 2CL,得F =mg ,F 方向向下,故D 项正确.答案:BD5.“飞车走壁”杂技表演比较受青少年的喜爱,这项运动由杂技演员驾驶摩托车,简化后的模型如图所示.表演者沿表演台的侧壁做匀速圆周运动.若表演时杂技演员和摩托车的总质量不变.摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰好为零,轨道平面离地面的高度为H 、侧壁倾斜角度α不变,则下列说法中正确的是( )A .摩托车做圆周运动的H 越高,向心力越大B .摩托车做圆周运动的H 越高,线速度越大C .摩托车做圆周运动的H 越高,向心力做功越多D .摩托车对侧壁的压力随高度H 变大而减小 解析:考查圆周运动向心力相关知识,学生的分析能力、建模能力.经分析可知向心力由重力及侧壁对摩托车弹力的合力提供,因摩托车和演员整体做匀速圆周运动,所受合外力等于向心力,因而B 正确.答案:B。
高一物理圆周运动知识点总结引言:物理学是一门研究物质运动规律的学科,而圆周运动则是物体在一个固定点周围做圆形轨迹运动的一种形式。
在高中物理学习中,我们经常接触到圆周运动的概念和相关公式。
本文将对高一物理圆周运动的知识点进行总结和归纳,以帮助大家更好地理解和掌握这一内容。
一、圆周运动的定义和基本概念圆周运动是指物体沿着一个固定点周围做圆形轨迹的运动。
在圆周运动中,有一些基本概念需要了解:1. 圆周运动的轨迹是一个圆形,圆心为固定点。
2. 物体沿圆周运动的路径称为弧长,用字母s表示,单位为米(m)。
3. 物体在单位时间内所通过的弧长称为线速度,用字母v表示,单位为米每秒(m/s)。
4. 圆周运动的周期是指物体完成一次圆周运动所需要的时间,用字母T表示,单位为秒(s)。
5. 圆周运动的频率是指单位时间内圆周运动次数的倒数,用字母f表示,单位为赫兹(Hz)。
二、圆周运动与物体的加速度1. 圆周运动的加速度公式为a = v²/r,其中a为加速度,v为线速度,r为物体与圆心之间的距离,也称为半径。
2. 由加速度公式可以看出,加速度的大小与线速度的平方成正比,与半径的倒数成反比。
3. 在圆周运动中,当线速度增大,加速度也会增大;当半径增大,加速度会减小。
三、圆周运动中的离心力和向心力1. 圆周运动中,物体所受到的合力分为离心力和向心力两部分。
2. 离心力的方向指向远离圆心的方向,它的大小与加速度的大小成正比。
3. 向心力的方向指向圆心,它的大小与离心力相等,但方向相反。
4. 离心力和向心力的合力为零,使物体保持在圆周运动状态。
四、圆周运动中的角度和角速度1. 圆周运动的角度是指物体在圆周上所呈现的角度大小,用字母θ表示,单位为弧度(rad)。
2. 弧度是旋转一周所对应的圆心角,1弧度等于圆上的一条弧长等于半径的一部分。
3. 圆周运动的角速度是指单位时间内物体在圆周上转过的角度,用字母ω表示,单位为弧度每秒(rad/s)。