工程热力学
- 格式:doc
- 大小:335.00 KB
- 文档页数:6
第1章基本概念1.1 本章基本要求深刻理解热力系统、外界、热力平衡状态、准静态过程、可逆过程、热力循环的概念,掌握温度、压力、比容的物理意义,掌握状态参数的特点。
1.2 本章难点1.热力系统概念,它与环境的相互作用,三种分类方法及其特点,以及它们之间的相互关系。
2.引入准静态过程和可逆过程的必要性,以及它们在实际应用时的条件。
3.系统的选择取决于研究目的与任务,随边界而定,具有随意性。
选取不当将不便于分析。
选定系统后需要精心确定系统与外界之间的各种相互作用以及系统本身能量的变化,否则很难获得正确的结论。
4.稳定状态与平衡状态的区分:稳定状态时状态参数虽然不随时间改变,但是靠外界影响来的。
平衡状态是系统不受外界影响时,参数不随时间变化的状态。
二者既有所区别,又有联系。
平衡必稳定,稳定未必平衡。
5.注意状态参数的特性及状态参数与过程参数的区别。
名词解释闭口系统、开口系统、绝热系统、孤立系统、热力平衡状态、准静态过程、可逆过程、热力循环第2章理想气体的性质2.1 本章基本要求熟练掌握理想气体状态方程的各种表述形式,并能熟练应用理想气体状态方程及理想气体定值比热进行各种热力计算。
并掌握理想气体平均比热的概念和计算方法。
理解混合气体性质,掌握混合气体分压力、分容积的概念。
2.2 本章难点1.运用理想气体状态方程确定气体的数量和体积等,需特别注意有关物理量的含义及单位的选取。
2.考虑比热随温度变化后,产生了多种计算理想气体热力参数变化量的方法,要熟练地掌握和运用这些方法,必须多加练习才能达到目的。
3.在非定值比热情况下,理想气体内能、焓变化量的计算方法,理想混合气体的分量表示法,理想混合气体相对分子质量和气体常数的计算 2.5 自测题一、是非题1.当某一过程完成后,如系统能沿原路线反向进行回复到初态,则上述过程称为可逆过程。
( )2.只有可逆过程才能在p-v 图上描述过程进行轨迹。
( )3.可逆过程一定是准静态过程,而准静态过程不一定是可逆过程。
工程热力学公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外所做的功。
2.热力学第二定律(卡诺循环):η=1-Tc/Th其中,η表示热机的热效率,Tc表示冷源温度,Th表示热源温度。
3.单级涡轮放大循环功率:W=h_1-h_2其中,h_1表示压缩机入口焓,h_2表示涡轮出口焓。
4.热力学性质之一:比热容C=Q/(m*ΔT)其中,C表示比热容,Q表示系统吸收的热量,m表示系统的质量,ΔT表示温度变化。
5.热力学性质之二:比焓变ΔH=m*C*ΔT其中,ΔH表示焓变,m表示系统的质量,C表示比热容,ΔT表示温度变化。
6.理想气体状态方程:PV=nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质量,R表示气体常数,T表示气体的温度。
7.热机制冷效率:ε=(Qh-Qc)/Qh其中,ε表示热机的制冷效率,Qh表示热机吸收的热量,Qc表示热机传递给冷源的热量。
8.熵变表达式:ΔS=Q/T其中,ΔS表示熵变,Q表示系统吸收的热量,T表示温度。
9.热力学性质之三:比容变β=-(1/V)*(∂V/∂T)_P其中,β表示比容变,V表示体积,T表示温度,P表示压力。
10.工作物质循环效率η_cyc = W_net / Qin其中,η_cyc表示工作物质的循环效率,W_net表示净功,Qin表示输入热量。
这只是一小部分工程热力学公式的示例,实际上工程热力学涉及面较广,还有许多其他常用公式。
与热力学相关的公式使工程师能够更好地理解和解决与能量转换和热力学有关的问题,在工程设计和应用中起到重要的作用。
第一章基本概念及定义一、填空题1、热量与膨胀功都是量,热量通过差而传递热能,膨胀功通过差传递机械能。
2、使系统实现可逆过程的条件是:(1),(2)。
3、工质的基本状态参数有、、。
4、热力过程中工质比热力学能的变化量只取决于过程的___________而与过程的路经无关。
5、热力过程中热力系与外界交换的热量,不但与过程的初终状态有关,而且与_______有关。
6、温度计测温的基本原理是。
二、判断题1、容器中气体的压力不变则压力表的读数也绝对不会改变。
()2、无论过程是否可逆,闭口绝热系统的膨胀功总是等于初、终态的内能差。
()3、膨胀功的计算式⎰=21pdvw,只能适用于可逆过程。
()4、系统的平衡状态是指系统在无外界影响的条件下(不考虑外力场作用),宏观热力性质不随时间而变化的状态。
()5、循环功越大,热效率越高。
()6、可逆过程必是准静态过程,准静态过程不一定是可逆过程。
()7、系统内质量保持不变,则一定是闭口系统。
()8、系统的状态参数保持不变,则系统一定处于平衡状态。
()9、孤立系统的热力状态不能发生变化。
()10、经历一个不可逆过程后,系统和外界的整个系统都能恢复原来状态。
()三、选择题1、闭口系统功的计算式21u u w -=( )。
(A )适用于可逆与不可逆的绝热过程 (B )只适用于绝热自由膨胀过程 (C )只适用于理想气体绝热过程 (D )只适用于可逆的绝热过程 2、孤立系统是指系统与外界( )。
(A )没有物质交换 (B )没有热量交换(C )没有任何能量交换 (D )没有任何能量传递与质交换 3、绝热系统与外界没有( )。
(A )没有物质交换 (B )没有热量交换 (C )没有任何能量交换 (D )没有功量交换 4、闭口系统与外界没有( )。
(A )没有物质交换 (B )没有热量交换 (C )没有任何能量交换 (D )没有功量交换 5、公式121q q t-=η适用于( )。
(A )理想气体任意过程 (B )理想气体可逆循环 (C )任何工质可逆循环 (D )任何工质任何循环 6、( )过程是可逆过程。
1 课程学习1.1 热力学基本定律1.1.1 热力学基本概念及定义第一节热力系热力系:由界面包围着的作为研究对象的物体的总和。
按热力系与外界进行物质交换的情况可将热力系分为:闭口系(或闭系)--与外界无物质交换,为控制质量(c.m.);开口系(或开系)--与外界之间有物质交换,把研究对象规划在一定的空间范围内,称控制容积(c.v.)。
按热力系与外界进行能量交换的情况将热力系分为:简单热力系--与外界只交换热量及一种形式的准静功;绝热系--与外界无热交换;孤立系--与外界既无能量交换又无物质交换。
按热力系内部状况将热力系分为:单元系--只包含一种化学成分的物质;多元系--包含两种以上化学成分的物质;均匀系--热力系各部分具有相同的性质;均匀系--热力系各部分具有不同的性质。
工程热力学中讨论的热力系:简单可压缩系--热力系与外界只有准静功的交换,且由压缩流体构成。
第二节热力系的描述热力系的状态、平衡状态及状态参数*热力系的状态:热力系在某一瞬间所呈现的宏观物理状况。
在热力学中我们一般取设备中的流体工质作为研究对象,这时热力系的状态即是指气体所呈现的物理状况。
*平衡状态:在没有外界影响的条件下系统的各部分在长时间内不发生任何变化的状态。
处于平衡状态的热力系各处的温度、压力等参数是均匀一致的。
而温差是驱动热流的不平衡势,温差的消失是系统建立平衡的必要条件。
对于一个状态可以自由变化的热力系而言,如果系统内或系统与外界之间的一切不平衡势都不存在,则热力系的一切可见宏观变化均将停止,此时热力系所处的状态即是平衡状态。
各种不平衡势的消失是系统建立起平衡状态的必要条件。
*状态参数:用来描述热力系平衡态的物理量。
处于平衡态的热力系其状态参数具有确定的值,而非平衡热力系的状态参数是不确定的。
状态参数的特性描述热力系状态的物理量可分为两类:强度量和尺度量(1)强度量与系统中所含物质无关,在热力系中任一点具有确定的数值的物理量。
工程热力学的公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU代表内能的变化,Q代表系统吸收的热量,W代表系统对外界做功。
2.热力学第二定律:dS≥δQ/T其中,dS代表系统的熵变,δQ代表系统吸收的热量,T代表系统的绝对温度。
该定律表明在孤立系统中熵永不减少。
3.等容过程(内能不变):Q=ΔU在等容过程中,系统发生的任何热量变化都会完全转化为内能的变化。
4.等压过程(体积不变):W=PΔV在等压过程中,系统对外界所做的功等于系统内能的变化。
5.等温过程(温度不变):W = Q = nRT ln(V2/V1)在等温过程中,系统对外界所做的功等于系统从初始状态到最终状态所吸收的热量。
6.等熵过程(熵不变):Q=-W在等熵过程中,热量变化与对外界的功相等,系统的熵保持不变。
7.热机效率:η=1-(T2/T1)其中,η代表热机的效率,T2和T1分别代表工作物质的工作温度和热源的温度。
8.热泵效率:η=1-(T1/T2)其中,η代表热泵的效率,T1和T2分别代表热源的温度和工作物质的工作温度。
9.卡诺循环热机的效率上限:η=1-(T2/T1)卡诺循环是具有最高效率的热力循环,其效率仅取决于热源和冷源的温度。
10.纯物质气体的理想气体状态方程:PV=nRT其中,P代表压力,V代表体积,n代表物质的摩尔数,R为气体常数,T代表温度。
11.热力学温标:T(K)=T(°C)+273.15将摄氏温度转化为开尔文温标。
这只是一部分常用的工程热力学公式,还有其他更多的公式和关系式在工程热力学中发挥重要作用。
理解和应用这些公式可以帮助我们分析和解决实际工程问题,提高能源利用效率,促进工程技术的发展。
1.第一章 基本概念及定义 2.热能动力装置:从燃料燃烧中得到热能,以及利用热能所得到动力的整套设备(包括辅助设备)统称热能动力装置。
3.工质:热能和机械能相互转化的媒介物质叫做工质,能量的转换都是通过工质状态的变化实现的。
4.高温热源:工质从中吸取热能的物系叫热源,或称高温热源。
5.低温热源:接受工质排出热能的物系叫冷源,或称低温热源。
6.热力系统:被人为分割出来作为热力学分析对象的有限物质系统叫做热力系统。
7.闭口系统:如果热力系统与外界只有能量交换而无物质交换,则称该系统为闭口系统。
(系统质量不变) 8.开口系统:如果热力系统与外界不仅有能量交换而且有物质交换,则称该系统为开口系统。
(系统体积不变) 9.绝热系统:如果热力系统和外界间无热量交换时称为绝热系统。
(无论开口、闭口系统,只要没有热量越过边界) 10.孤立系统:如果热力系统和外界既无能量交换又无物质交换时,则称该系统为孤立系统。
11.表压力:工质的绝对压力>大气压力时,压力计测得的差数。
12.真空度:工质的绝对压力<大气压力时,压力计测得的差数,此时的压力计也叫真空计。
13.平衡状态:无外界影响系统保持状态参数不随时间而改变的状态。
充要条件是同时到达热平衡和力平衡。
14.稳定状态:系统参数不随时间改变。
(稳定未必平衡) 15.准平衡过程(准静态过程):过程进行的相对缓慢,工质在平衡被破环后自动恢复平衡所需的时间很短,工质有足够的时间来恢复平衡,随时都不致显著偏离平衡状态,那么这样的过程就称为准平衡过程。
它是无限接近于平衡状态的过程。
16.可逆过程:完成某一过程后,工质沿相同的路径逆行回复到原来的状态,并使相互作用所涉及的外界亦回复到原来的状态,而不留下任何改变。
可逆过程=准平衡过程+没有耗散效应(因摩擦机械能转变成热的现象)。
17.准平衡与可逆区别:准平衡过程只着眼工质内部平衡;可逆过程是分析工质与外界作用产生的总效果,不仅要求工质内部平衡,还要求工质与外界作用可以无条件逆复。
工程热力学知识点总结一、基本概念1. 热力学系统热力学系统是指研究对象的范围,可以是一个物体、一个系统或者多个系统的组合。
根据系统与外界的物质交换和能量交换情况,将系统分为封闭系统、开放系统和孤立系统。
2. 热力学状态热力学状态是指系统的一种特定状态,由系统的几个宏观性质确定。
常用的状态参数有温度、压力、体积和能量等。
3. 热力学过程热力学过程是系统在一定条件下的状态变化。
常见的热力学过程有等温过程、绝热过程、等压过程和等容过程等。
4. 热力学平衡系统的平衡是指系统内各部分之间不存在宏观的能量或物质的不均匀性。
在平衡状态下,系统内各部分之间的宏观性质是不发生变化的。
5. 热力学势函数热力学势函数是描述系统平衡状态的函数,常见的有内能、焓、自由能和吉布斯自由能等。
二、热力学定律1. 热力学第一定律热力学第一定律是能量守恒定律的热力学表述。
它可以表述为:系统的内能变化等于系统对外界所做的功与系统吸收的热的代数之和。
2. 热力学第二定律热力学第二定律是热力学中一个非常重要的定律,它对能量转化的方向和效率进行了限制。
根据热力学第二定律,系统内部永远不会自发地将热量从低温物体传递到高温物体,这就是热机不能做功的原因。
3. 卡诺定理卡诺定理是热力学第二定律的一种推论,它指出在两个恒温热源之间进行热机循环时,效率最高的情况是卡诺循环。
4. 热力学第三定律热力学第三定律规定了在温度接近绝对零度时热容为零,即系统的熵在绝对零度时为常数。
三、热力学循环1. 卡诺循环卡诺循环是一种理想的热机循环,它采用绝热和等温两个可逆过程。
卡诺循环的效率是所有热机循环中最高的。
2. 斯特林循环斯特林循环是一种理想的外燃循环,它采用绝热和等温两个可逆过程。
斯特林循环比卡诺循环的效率低一些,但是实际上,在制冷机中应用得比较广泛。
3. 布雷顿循环布雷顿循环是一种理想的内燃循环,它采用等容和等压两个可逆过程。
布雷顿循环是内燃机的工作循环,应用比较广泛。
工程热力学
工程热力学是热力学在工程领域中的应用。
它研究和应用
热力学原理和方法来解决工程中与热能转化相关的问题,
包括热动力系统的能量转换、热工过程的性能分析和优化、热力装置的设计与运行等。
工程热力学主要涉及以下几个方面的内容:
1. 热力学基本概念和基本定律:研究热力学的基本概念,
如热力学系统、状态、过程等,以及热力学的基本定律,
如能量守恒定律、熵增定律等。
2. 热力学性质和性能分析:研究物质的热力学性质,包括
温度、压力、比容、比热等,以及利用这些性质来进行热
力学性能分析,如热力过程的能量平衡、热效率等。
3. 热力学循环和循环过程分析:研究热力学循环,如蒸汽循环、气体循环等,以及利用热力学方法来进行循环过程分析,如循环效率、功输出等。
4. 热力装置的设计与运行:应用热力学原理和方法来设计和优化热力装置,如发电厂、热交换器、锅炉等,并研究热力装置的运行参数和运行性能。
工程热力学在工程实践中具有重要的应用价值,可以为工程师提供热力学的理论支持和实际问题的解决方案,促进工程领域的能源利用和环境保护。
《工程热力学》思考题:1、热力学第一定律的实质是什么?并写出热力学第一定律的两个基本表达式。
答:热力学第一定律的实质是能量转换与守恒原理。
热力学第一定律的两个基本表达式为:q=Δu+w;q=Δh+wt2、热力学第二定律的实质是什么?并写出熵增原理的数学表达式。
答:热力学第二定律的实质是能量贬值原理。
熵增原理的数学表达式为:dSiso≥0 。
3、什么是可逆过程?实施可逆过程的条件是什么?答:可逆过程为系统与外界能够同时恢复到原态的热力过程。
实施可逆过程的条件是推动过程进行的势差为无穷小,而且无功的耗散。
4、过热蒸汽绝热节流,呈现什么节流效应?并说明理由。
答:利用h-s图可知温度降低,呈现节流冷效应。
如图:h1=h2;P1>P2;∴t1>t25、水蒸汽定压发生过程一般要经历哪些阶段?当压力高于临界压力时又是一个什么样的过程?答:水蒸汽定压发生过程一般要经历预热、汽化、过热三个阶段。
当压力高于临界压力时水蒸汽定压发生过程没有汽化阶段,汽化是一个渐变过程。
6、系统经历一个不可逆过程后就无法恢复到原状态。
由不可逆过程的定义可知:系统可以恢复到原状态,但系统与外界不能同时恢复到原状态。
填空题1、工质的基本状态参数是(温度,压力,比容)2、氮气的分子量μ=28,则其气体常数(296.94)3、气体吸热100kJ,内能增加60kJ,这时气体体积(增大)4、实现准平衡过程的条件是(推动过程进行的势差为无穷小)5、根据热力系统和外界有无(物质)交换,热力系统可划分为(开口和闭口)6、作为工质状态参数的压力应该是工质的(绝对压力)7、稳定流动能量方程式为(q=(h2-h1)+(C22-C12)/2+g(Z2-Z1)+wS)8、理想气体的定压比热CP和定容比热CV都仅仅是(温度)的单值函数。
9、氧气O2的定压比热CP=0.219kcal/kgK,分子量μ=32.则其定容比热CV=(0.657)kJ/kgK。
10、气体常数Rg与通用气体常数R之间的关系式为:Rg =(R/M)11、平衡状态应同时满足(热)平衡与(力)平衡。
12、技术功wt的定义是由三项能量组成,据此技术功wt的定义式可表示为:wt =(mΔc2/2+mg Δz+mws)。
13、热力系与外界间的相互作用有( 质量交换) 和(能量交换)两类。
15、热力系的总储存能为(热力学能)、(宏观动能)与(宏观位能)的总和。
16、开口系进出口处,伴随质量的进出而交换(推动)功。
17、理想气体的定压比热cp和定容比热cv之间的关系式是(cp-cv=R)。
18、多变指数n = (0)的多变过程为定压过程19、u=cVΔT适用于理想气体的(任何)过程;对于实际气体适用于(定容)过程。
20、推动功等于(pv),热力学能与推动功之和为(焓)。
21、开尔文温标与摄氏温标之间的关系式为:(T=t+273.15)华氏温度换算F=9/5*t+32;绝对压力与真空度之间的关系式为:(Pb-Pv)。
22、卡诺循环是由(两个可逆等温过程和两个可逆的绝热过程)组成的。
卡诺效率η=ω/q1=1-T2/T1 ;23、热力学第一定律的基本数学表达式q=Δu+w适用于(任何)工质,适用于(任何)过程。
24、容积功与技术功之差等于(流动)功,用状态参数计算时该项功量为(Δpv )。
25、热力学第二定律对于循环过程的两个重要推论分别为(卡诺定理)和(克劳修斯不等式)。
26、理想气体的Δh=(cp ΔT ),适用于理想气体的(任何)过程 27、随着压力的提高水蒸汽的汽化潜热逐渐(减小),达到临界压力时,水蒸汽的汽化潜热为(0)。
28、水蒸汽的过热度D 指的是(过热蒸汽的温度与相应压力下的饱和温度之差),干度X 指的是(湿蒸汽中饱和蒸汽的含量份额)。
29、经定熵扩压流动流体流速降低为零时所达到的状态称为(绝热滞止)状态,该状态下的所有参数均称为(滞止)参数。
30、水蒸汽的一点两线三区五态中,五态指的是(未饱和水、饱和水、湿蒸汽、干饱和蒸汽、过热蒸汽)。
31、马赫数:通常把气体速度与当地声速之比称为马赫数;32、绝热滞止:经定熵扩压流动流体流速降低为零时所达到的状态; 33、制冷:指人们认为的维持某一对象的温度低于周围环境的温度;二、简答题(每小题5分,共40分)1. 什么是热力过程?可逆过程的主要特征是什么?答:热力系统从一个平衡态到另一个平衡态,称为热力过程。
可逆过程的主要特征是驱动过程进行的势差无限小,即准静过程,且无耗散。
2. 温度为500°C 的热源向热机工质放出500 kJ 的热量,设环境温度为30°C ,试问这部分热量的火用(yong )值(最大可用能)为多少?答: =⎪⎭⎫⎝⎛++-⨯=15.27350015.273301500,q x E 303.95kJ3. 两个不同温度(T 1,T 2)的恒温热源间工作的可逆热机,从高温热源T 1吸收热量Q 1向低温热源T2放出热量Q 2,证明:由高温热源、低温热源、热机和功源四个子系统构成的孤立系统熵增 。
假设功源的熵变△S W =0。
证明:四个子系统构成的孤立系统熵增为 (1分)对热机循环子系统: 1分1分根据卡诺定理及推论:14. 刚性绝热容器中间用隔板分为两部分,A 中存有高压空气,B 中保持真空,如右图所示。
若将隔板抽去,试分析容器中空气的状态参数(T 、P 、u 、s 、v )如何变化,并简述为什么。
答:u 、T 不变,P 减小,v 增大,s 增大。
自由膨胀12iso T T R S S S S S ∆=∆+∆+∆+∆W121200ISO Q QS T T -∆=+++R 0S ∆=iso 0S ∆=5. 试由开口系能量方程一般表达式出发,证明绝热节流过程中,节流前后工质的焓值不变。
(绝热节流过程可看作稳态稳流过程,宏观动能和重力位能的变化可忽略不计)答:开口系一般能量方程表达式为绝热节流过程是稳态稳流过程,因此有如下简化条件,则上式可以简化为:根据质量守恒,有代入能量方程,有6. 什么是理想混合气体中某组元的分压力?试按分压力给出第i 组元的状态方程。
答:在混合气体的温度之下,当i 组元单独占有整个混合气体的容积(中容积)时对容器壁面所形成的压力,称为该组元的分压力;若表为P i ,则该组元的状态方程可写成:P i V = m i R i T 。
7. 高、低温热源的温差愈大,卡诺制冷机的制冷系数是否就愈大,愈有利?试证明你的结论。
答:否,温差愈大,卡诺制冷机的制冷系数愈小,耗功越大。
(2分)证明:TTw q T T T R ∆==-=22212ε,当2q 不变,T ∆↑时,↑w 、↓R ε。
即在同样2q 下(说明得到的收益相同),温差愈大,需耗费更多的外界有用功量,制冷系数下降。
(3分)8. 一个控制质量由初始状态A 分别经可逆与不可逆等温吸热过程到达状态B ,若两过程中热源温度均为r T 。
试证明系统在可逆过程中吸收的热量多,对外做出的膨胀功也大。
答:经历可逆或不可逆定温过程后,按题给两种情况下过程的初、终状态相同,因而系统的熵变相同。
由系统的熵方程g f s s s +=∆,对于可逆过程其熵产为零,故热熵流将大于不可逆过程。
可见,可逆过程的热量将大于不可逆过程;(3分)由热力学第一定律,w u q +∆=,因过程的初、终状态相同,热力学能变化∆u 相同,故可逆与不可逆两种情况相比,可逆过程的过程功亦较大。
(2分)三、作图题:(每小题5分,共10分)1. 试在所给参数坐标图上定性地画出理想气体过点1的下述过程,分别指出该过程的过程指数n 应当在什么数值范围内 (图中请标明四个基本过程线): 1)压缩、升温、吸热的过程 2)膨胀、降温、吸热的过程。
pTs答: (1) k n >; (2) k n <<1评分:四条基本线(2分)两条曲线(2分)n 取值(1分)2. 如图所示T -s 图上理想气体任意可逆过程1-2的热量如何表示?热力学能变化量、焓变化量如何表示?若过程1-2是不可逆的,上述各量是否相同?(请写出简明的作图方法。
)答:对可逆过程,热量为面积1-m-k-2-1,热力学能变化量为面积1-m-n-2v -1,焓变化量为1-m-g-2p -1。
对不可逆过程,热量无法表示,热力学能和焓变化量相同TsT四、计算题:(共50分)1. 压气机在95 kPa 、25 ℃的状态下稳定地以340 m 3/min 的容积流率吸入空气,进口处的空气流速可以忽略不计;压气机排口处的截面积为0.025 m 2,排出的压缩空气的参数为200 kPa 、120 ℃。
压气机的散热量为60 kJ/min 。
已知空气的气体常数Rg=0.287 kJ/(kg.K),比定热容c V =0.717 kJ/(kg.K),求压气机所消耗的功率。
(16分) 解:以压气机中空气为研究对象,其稳定工况的能量方程为0)2()2(22221211=++-+++-∙∙∙∙m gz c h m gz c h W Q sh即∙∙∙∙++-+++=m gz c h m gz c h Q W sh)2()2(22221211 (a )其中:)/(10006010603s J Q -=⨯-=∙)/(2944.660340)25273(2871095311s kg T R V p m g =⨯+⨯⨯==∙∙mz s m c 0/01=∆≈)/(0.95380)25120()717273()/(99.141025.010200)120273(2872944.6123222222s J T c h h h s m A p T mR A m c p g =-⨯+=∆=-=∆=⨯⨯+⨯⨯===∙∙ρ 将以上数据代入式(a ),可得压气机所消耗的功率为:)/(10648.6)299.1410.95380(2944.6100052s J W sh ⨯-=--⨯+-=∙2. 在高温环境中有一容器,A 侧装有2 kg 氮气,压力为0.07 MPa ,温度为67℃; B 侧装有8 kg 氮气,压力为0.1 MPa ,温度为17℃,。
A 和B 的壁面均为透热壁面,它们之间用管道和阀门相连,见附图。
现打开阀门,氮气由B 流向A 。
氮气可视为理想气体,已知气体常数R g,N 2 = 297 J/(kg·K),过程中的平均定容比热容c v = 0.742 kJ/( kg·K),若压力平衡时容器中气体温度为t 2 = 40℃,试求:⑴平衡时终压力P 2;⑵吸热量Q ;⑶气体的熵变。
(18分) 解:⑴容器A 和B 的容积分别为361A 1A g A A m8851.21007.03402972=⨯⨯⨯==P T R m V 361B 1B g B B m 8904.6101.02902978=⨯⨯⨯==P T R m V (4分)N 2 8 kg 0.1 MPa 17 ℃N 22 kg 0.07MPa67℃取A+B 中的气体为系统(CM ),m = m A + m B = 2 +8 =10 kgV = V A + V B = 2.8851 + 6.8904 = 9.7755 m 3(2分)终态时的气体压力MPa 0951.07755.9313297102g 2=⨯⨯==V T mR P (2分)⑵按题给,系统不对外作功,有kJ46.96222646.2322)29083402(742.0313742.010)(B1B A1A v 2v =-=⨯+⨯⨯-⨯⨯=+-=∆=T m T m c T mc U Q (5分)⑶原在A 中的氮气熵变(2分) kJ/K 3540.0)07.00951.0297ln .06727340273039ln .1(2)P P ln R T T lnc (m S A 2g A 2p A A -=-++⨯=-=∆ 原在B 中的氮气熵变(2分)kJ/K 7538.0)1.00951.0297ln .01727340273039ln .1(2)P P ln R T T lnc (m S B 2g B 2p B B =-++⨯=-=∆ 全部氮气的熵变kJ/K 3998.07538.03540.0S S S B A =+-=∆+∆=∆(1分)3. 将100 kg 温度为30 ℃的水与200 kg 温度为80 ℃的水在绝热容器中混合,假定容器内壁与水之间也是绝热的,且水的比热容为定值,取K)kJ/(kg 187.4⋅=c ,环境温度为17 ℃。