曾谨严量子力学习题第八章
- 格式:pdf
- 大小:262.17 KB
- 文档页数:17
第九章 力学量本征值问题的代数解法9—1)在8.2节式(21)中给出了自旋(21)与轨迹角动量(l )耦合成总角动量j 的波函数jljm φ,这相当于21,21===s j l j 的耦合。
试由8.2节中式(21)写出表9.1(a )中的CG 系数 jm m m j 21121解:8.2节式(21a )(21b ): ()21),0( 21+=≠-=m m l l j jjljm φ⎪⎪⎭⎫ ⎝⎛-+++=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-=j ljljm φ⎪⎪⎭⎫⎝⎛++---=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b )()21++j l此二式中的l 相当于CG 系数中的1j ,而212==s j ,21,~,,~21±=m m m m j 。
因此,(21a )式可重写为jm ∑=222112211m jm m j m j m j m j212121212121212111111111--+=m j jm m j m j jm m j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 ,21111112212121⎪⎪⎭⎫ ⎝⎛++=+j m j jm m j 而212-=m 时,21111112212121⎪⎪⎭⎫ ⎝⎛+-=-+j m j jm m j 对于21211-=-=j l j 的(21b )式,有21111111221,212121⎪⎪⎭⎫ ⎝⎛+--=-+j m j m j m j21111111221,212121⎪⎪⎭⎫ ⎝⎛++=--+j m j m j m j9-2)设两个全同粒子角动量21j j j ==,耦合成总角动量J ,JMj2ψ()()21212121jm jm m m JM m j jm ψψ∑=(1)利用CG 系数的对称性,证明()JMjJj JM j p 22212ψψ--=由此证明,无论是Bose 子或Fermi 子,J 都必须取偶数证:由式(1),JM j p 212ψ()()12212121jm jm m m JM jm jm ψψ∑=把21m m ↔, ()()12122112jm jm m m JM jm jm ψψ∑=利用CG 系数的对称性 ()()()21212112212jm jm m m Jj JM m j m j ψψ∑--=()JMjJj 22ψ--= (2)对于Fermi 子,=j 半奇数,=j 2奇数,但要求ψψ-=12p , 即要求()12-=--Jj ,所以J 必须为偶数。
第8章 自 旋一、填空题1.称______等固有性质______的微观粒子为全同粒子。
【答案】质量;电荷;自旋;完全相同2.对氢原子,不考虑电子的自旋,能级的简并度为______,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为______。
【答案】n 2;2n 23.一个电子运动的旋量波函数为,则表示电子自旋向上、位置在处的几率密度表达式为______,表示电子自旋向下的几率的表达式为______。
【答案】;二、名词解释题 电子自旋。
答:电子的内禀特性之一:(1)在非相对论量子力学中。
电子自旋是作为假定由Uhlenbeck 和Goudsmit 提出的:每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值:;每个电子具有自旋磁矩M s ,它和自旋角动量的关系式:。
(2)在相对论量子力学中,自旋象粒子的其他性质—样包含在波动方程中,不需另作假定。
三、简答题 1.请用泡利矩阵,,定义电子的自旋算符,并验证它们满足角动量对易关系。
答:电子的自旋算符,其中,i =x ,y ,z 。
()()()z ,2,,2r r s r ψψψ⎛⎫= ⎪ ⎪-⎝⎭r ()2,/2r ψ()23d ,/2rr ψ-⎰2±=z s μμ2e M S e M sz s ±=→-=⎪⎪⎭⎫ ⎝⎛=0110xσ⎪⎪⎭⎫ ⎝⎛-=00i i y σ⎪⎪⎭⎫ ⎝⎛-=1001zσi iS σˆ2ˆ=2.写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。
答:总自旋为0。
总自旋为1: 。
3.写出泡利矩阵。
答:,,4.试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。
答:让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。
5.完全描述电子运动的旋量波函数为,试述及分别表示什么样的物理意义。
答:表示电子自旋向下,位置在处的几率密度;表示电子自旋向上的几率。
《量子力学》作业题号及题目教材:曾谨言,《量子力学教程》,科学出版社(2003)(以下简称教材)作业题号:(章节按上课讲义为序)第一章量子力学的历史渊源作业:(无)第二章波函数与Schrödinger方程作业:教材P25-27,1、2、3、5第三章一维势场中的粒子作业:教材P50-52,1、2、3、4、6、10、11第四章力学量用算符表示作业:教材P74-75,1、2、3、4、10、12、14、15、16第五章量子力学的矩阵形式与表象理论作业:教材P142-143,1、2、3、4、6;P175,1第六章守恒量与对称性作业:教材P94-95,1、2、3、4、6、9第七章中心立场作业:教材P115-116,1、3、4、5、12第八章电磁场中粒子的运动作业:教材P126,3第九章自旋与角动量理论初步作业:教材P160-161,1、2、4、7、8第十章微扰论及其他近似方法作业:教材P195,1、2、4;P240,2、3第十一章量子跃迁作业:教材P220-221,1、3、4、6第十二章散射作业:教材P195,6参考书:曾谨言,《量子力学导论》(第二版),北京大学出版社(以下简称参考书)没有教材,使用上书的同学相应的作业题号和题目如下(与教材的题目一样)注:下面的作业题目中,“补充题目”是指布置了的在教材中有而在参考书中没有的作业题目,列出是为了便于只使用参考书的同学。
作业题目:注意:如果公式显示有问题,请安装mathtype5.2第一章 量子力学的历史渊源作业:(无)第二章 波函数与Schrödinger 方程作业:参考书P47-48,1、2、6以及下面题目补充题目:(相应教材P25,3)对于一维自由粒子,(a )设波函数为()ipx p x ψ= ,试用Hamilton 算符 222222d H p m m dx ==− 对()p x ψ运算,验证 2()()2p p p H x x mψψ=。