八年级数学基础知识
- 格式:pdf
- 大小:172.68 KB
- 文档页数:6
八年级数学内容知识点归纳一、有理数有理数是指整数和分数的集合,包括正数、负数和零。
1. 整数的概念和性质2. 有理数的概念和性质3. 有理数的比较大小4. 有理数的加减运算5. 有理数的乘除运算6. 有理数的混合运算二、代数式与方程式代数式是由数、字母、运算符号和括号组成的表达式,方程式是指等式两边的代数式。
1. 代数式的概念和性质2. 代数式的化简与合并3. 代数式的因式分解4. 一元一次方程式的概念和解法5. 一元一次方程式的应用6. 一元二次方程式的概念和解法三、几何与三角形几何是研究空间中图形、大小、位置关系及其变化的学科,三角形是平面上的一种图形。
1. 平面几何和空间几何的概念2. 基本图形的性质与应用3. 直线的性质与应用4. 角的概念和性质5. 三角形的分类和性质6. 三角形的计算和应用四、函数与图像函数是变量之间的一种关系,图像是表示函数关系的一种方式。
1. 函数的概念和性质2. 函数的表示和作图3. 函数的性质及应用4. 直线的斜率和截距5. 二元一次方程组的图像和解法6. 解析几何与向量的应用五、概率与统计概率是研究随机事件发生的可能性,统计是研究数据的收集、分析和解释的学科。
1. 概率的概念和计算2. 概率的应用和实际问题3. 统计的概念和数据的分析4. 统计图的应用和解释5. 样本与总体的概念和比较6. 推断统计和假设检验以上八年级数学知识点的归纳,可以帮助学生复习和总结,同时也为老师备课提供了参考。
学生们应该更加熟练掌握这些知识点,充分理解和应用这些基础数学知识,以便更好地学习和应对高中数学课程的学习。
八年级上册数学第一章笔记
第一章数学基础
一、知识点1:数的概念
1. 整数和分数是两种基本概念。
2. 零和负数也是数学中常用的数。
3. 数的绝对值和倒数概念在数学中非常重要。
二、知识点2:代数式
1. 代数式是表示数量关系的数学符号。
2. 代数式的运算和化简是数学中的重要内容。
3. 理解代数式的意义对于理解数学问题非常重要。
三、知识点3:方程的概念
1. 方程是表示两个数相等的关系。
2. 方程的解法包括移项、合并同类项、解一次方程等步骤。
3. 方程在数学中应用广泛,是解决实际问题的重要工具。
四、知识点4:不等式的概念和性质
1. 不等式是表示两个数大小关系的关系式。
2. 不等式的性质和应用对于理解不等式非常重要。
3. 不等式在数学中应用广泛,是解决实际问题的重要工具。
五、知识点5:函数的概念和图像
1. 函数是表示两个变量之间关系的重要数学概念。
2. 函数的图像和性质是理解函数的重要工具。
3. 函数在数学中应用广泛,是解决实际问题的重要工具。
六、注意事项:
1. 在学习过程中,要注意数学公式的正确使用和推导。
2. 在做题时,要注意题目的细节和要求,正确使用解题步骤和方法。
3. 对于概念和知识点,要反复理解和记忆,形成自己的知识体系。
八年级数学知识点归纳总结一、数与式整数与有理数定义:整数包括正整数、零、负整数;有理数包括整数和分数。
运算:加、减、乘、除四则运算,注意运算的优先级和括号的使用。
例子:计算(-3) + 5 - (-2) × 4 = -3 + 5 + 8 = 10。
实数与数轴定义:实数包括有理数和无理数,数轴上的每一个点都对应一个实数。
性质:实数具有顺序性、稠密性、完备性。
例子:在数轴上标出√2 和-π的位置。
代数式与整式定义:代数式是由数、字母通过有限次加、减、乘、除(除数不为0)和乘方运算所得的式子;整式是代数式中不含除法运算或分母不含字母的式子。
运算:合并同类项、乘法分配律等。
例子:化简代数式3x^2 - 2x + 5 + x^2 - 3x = 4x^2 - 5x + 5。
分式定义:一般地,如果A、B表示两个整式,且B中含有字母,那么式子A/B 就叫做分式。
基本性质:分式的基本性质是分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
运算:分式的加、减、乘、除运算。
例子:计算分式(x + 1) / (x - 2) 与(x - 3) / (x + 1) 的乘积。
二、方程与不等式一元一次方程定义:只含有一个未知数,并且未知数的次数是1的等式。
解法:通过移项、合并同类项、系数化为1等步骤求解。
例子:解方程3x + 5 = 20。
二元一次方程组定义:含有两个未知数,并且含有未知数的项的次数都是1的方程组。
解法:消元法(代入法或加减法)。
例子:解方程组{ x + y = 5, 2x - y = 7 }。
一元一次不等式与不等式组定义:用不等号连接的式子叫不等式;含有一个未知数,并且未知数的次数是1的不等式叫一元一次不等式;由几个一元一次不等式组成的不等式组叫一元一次不等式组。
解法:与一元一次方程类似,但注意解集的确定。
例子:解不等式2x - 3 > 5,并找出其解集。
三、函数函数的概念与性质定义:对于数集A中的每一个数x,按照某种确定的对应关系f,数集B中都有唯一确定的数y与之对应,则这样的对应f叫做从A到B的一个函数。
初二数学知识点因式分解1、因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法就是相反的两个转化、2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”、3.公因式的确定:系数的最大公约数·相同因式的最低次幂、注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3、4.因式分解的公式:(1)平方差公式: a2-b2=(a+ b)(a- b);(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2、5.因式分解的注意事项:(1)选择因式分解方法的一般次序就是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式、6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子瞧作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项、7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q就是完全平方式 ”、分式1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式、2.有理式:整式与分式统称有理式;即、3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义、4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单、5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解、6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式、7.分式的乘除法法则:、8.分式的乘方:、9.负整指数计算法则:(1)公式: a0=1(a≠0), a-n= (a≠0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:,;(4)公式: (-1)-2=1, (-1)-3=-1、10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母、11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂、12.同分母与异分母的分式加减法法则:、13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x就是未知数,a与b就是用字母表示的已知数,对x来说,字母a就是x的系数,叫做字母系数,字母b就是常数项,我们称它为含有字母系数的一元一次方程、注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数、14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就就是解含有字母系数的方程、特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0、15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程就是整式方程、16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根、17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根就是增根,这时原方程无解;若值不为零,求出的根就是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能就是原方程的增根、18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序、数的开方1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根就是x);注意:(1)a叫x的平方数,(2)已知x 求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算、2.平方根的性质:(1)正数的平方根就是一对相反数;(2)0的平方根还就是0;(3)负数没有平方根、3.平方根的表示方法:a的平方根表示为与、注意:可以瞧作就是一个数,也可以认为就是一个数开二次方的运算、4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为、注意:0的算术平方根还就是0、5.三个重要非负数: a2≥0 ,|a|≥0 ,≥0 、注意:非负数之与为0,说明它们都就是0、6.两个重要公式:(1) ; (a≥0)(2) 、7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根就是x)、注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方、8.立方根的性质:(1)正数的立方根就是一个正数;(2)0的立方根还就是0;(3)负数的立方根就是一个负数、9.立方根的特性:、10.无理数:无限不循环小数叫做无理数、注意:π与开方开不尽的数就是无理数、11.实数:有理数与无理数统称实数、12.实数的分类:(1)(2)、13.数轴的性质:数轴上的点与实数一一对应、14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示、注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:、三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线、(如图)几何表达式举例: (1) ∵AD平分∠BAC∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD∴AD就是角平分线2.三角形的中线定义:在三角形中,连结一个顶点与它的对边的中点的线段叫做三角形的中线、(如图) 几何表达式举例:(1) ∵AD就是三角形的中线∴ BD = CD(2) ∵ BD = CD∴AD就是三角形的中线3.三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点与垂足间的线段叫做三角形的高线、(如图) 几何表达式举例:(1) ∵AD就是ΔABC的高∴∠ADB=90°(2) ∵∠ADB=90°∴AD就是ΔABC的高※4.三角形的三边关系定理:三角形的两边之与大于第三边,三角形的两边之差小于第三边、(如图) 几何表达式举例: (1) ∵AB+BC>AC∴……………(2) ∵ AB-BC<AC∴……………5.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、几何表达式举例:(1) ∵ΔABC就是等腰三角形(如图) ∴ AB = AC(2) ∵AB = AC∴ΔABC就是等腰三角形6.等边三角形的定义:有三条边相等的三角形叫做等边三角形、(如图) 几何表达式举例:(1)∵ΔABC就是等边三角形∴AB=BC=AC(2) ∵AB=BC=AC∴ΔABC就是等边三角形7.三角形的内角与定理及推论:(1)三角形的内角与180°;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于与它不相邻的两个内角的与;(如图) ※(4)三角形的一个外角大于任何一个与它不相邻的内角、(1) (2) (3)(4) 几何表达式举例:(1) ∵∠A+∠B+∠C=180°∴…………………(2) ∵∠C=90°∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B∴…………………(4) ∵∠ACD >∠A∴…………………8.直角三角形的定义:有一个角就是直角的三角形叫直角三角形、(如图) 几何表达式举例:(1) ∵∠C=90°∴ΔABC就是直角三角形(2) ∵ΔABC就是直角三角形∴∠C=90°9.等腰直角三角形的定义:两条直角边相等的直角三角形叫等腰几何表达式举例:(1) ∵∠C=90° CA=CB直角三角形、(如图) ∴ΔABC就是等腰直角三角形(2) ∵ΔABC就是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质:(1)全等三角形的对应边相等;(如图)(2)全等三角形的对应角相等、(如图) 几何表达式举例:(1) ∵ΔABC≌ΔEFG∴ AB = EF ………(2) ∵ΔABC≌ΔEFG∴∠A=∠E ………11.全等三角形的判定:“SAS”“ASA”“AAS”“SSS”“HL”、 (如图)(1)(2) (3) 几何表达式举例:(1) ∵ AB = EF∵∠B=∠F又∵ BC = FG∴ΔABC≌ΔEFG(2) ………………(3)在RtΔABC与RtΔEFG中∵ AB=EF又∵ AC = EG∴RtΔABC≌RtΔEFG12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相几何表达式举例: (1)∵OC平分∠AOB等;(如图)(2)到角的两边距离相等的点在角平分线上、(如图)又∵CD⊥OA CE⊥OB∴ CD = CE (2) ∵CD⊥OA CE⊥OB 又∵CD = CE∴OC就是角平分线13.线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线、(如图) 几何表达式举例:(1) ∵EF垂直平分AB∴EF⊥AB OA=OB(2) ∵EF⊥AB OA=OB∴EF就是AB的垂直平分线14.线段垂直平分线的性质定理及逆定理: (1)线段垂直平分线上的点与这条线段的两个端点的距离相等;(如图)(2)与一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上、(如图) 几何表达式举例:(1) ∵MN就是线段AB的垂直平分线∴ PA = PB(2) ∵PA = PB∴点P在线段AB的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都就是60°、(如图)(1) (2) (3) 几何表达式举例:(1) ∵AB = AC∴∠B=∠C(2) ∵AB = AC又∵∠BAD=∠CAD∴BD = CDAD⊥BC………………(3) ∵ΔABC就是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形就是等边三角形;(如图)(3)有一个角等于60°的等腰三角形就是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边就是斜边的一半、(如图)(1)(2)(3)(4) 几何表达式举例:(1) ∵∠B=∠C∴ AB = AC(2) ∵∠A=∠B=∠C∴ΔABC就是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC就是等边三角形(4) ∵∠C=90°∠B=30°∴AC =AB17.关于轴对称的定理(1)关于某条直线对称的两个图形就是全等形;(如图) 几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称(2)如果两个图形关于某条直线对称,那么对称轴就是对应点连线的垂直平分线、(如图)∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AE18.勾股定理及逆定理:(1)直角三角形的两直角边a、b的平方与等于斜边c的平方,即a2+b2=c2;(如图) (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形就是直角三角形、(如图) 几何表达式举例:(1) ∵ΔABC就是直角三角形∴a2+b2=c2(2) ∵a2+b2=c2∴ΔABC就是直角三角形19.RtΔ斜边中线定理及逆定理:(1)直角三角形中,斜边上的中线就是斜边的一半;(如图)(2)如果三角形一边上的中线就是这边的一半,那么这个三角形就是直角三角形、(如图) 几何表达式举例:(1)∵ΔABC就是直角三角形∵D就是AB的中点∴CD = AB(2) ∵CD=AD=BD∴ΔABC就是直角三角形几何B级概念:(要求理解、会讲、会用,主要用于填空与选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数、二常识:1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之与、2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而八年级数学重点知识点(全)第三个交点可在三角形内,三角形上,三角形外、注意:三角形的角平分线、中线、高线都就是线段、3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA、4.三角形能否成立的条件就是:最长边<另两边之与、5.直角三角形能否成立的条件就是:最长边的平方等于另两边的平方与、6.分别含30°、45°、60°的直角三角形就是特殊的直角三角形、7.如图,双垂图形中,有两个重要的性质,即:(1) AC·CB=CD·AB ; (2)∠1=∠B ,∠2=∠A 、8.三角形中,最多有一个内角就是钝角,但最少有两个外角就是钝角、9.全等三角形中,重合的点就是对应顶点,对应顶点所对的角就是对应角,对应角所对的边就是对应边、10.等边三角形就是特殊的等腰三角形、11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明、12.符合“AAA”“SSA”条件的三角形不能判定全等、13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法、14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线、15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图、16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该就是几何基本作图、17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图、※18.几何重要图形与辅助线:(1)选取与作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;八年级数学重点知识点(全)③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图、(2)已知角平分线、(若BD就是角平分线)①在BA 上截取BE=BC构造全等,转移线段与角;②过D点作DE∥BC交AB于E,构造等腰三角形、(3)已知三角形中线(若AD就是BC的中线)①过D点作DE∥AC交AB于E,构造中位线 ; ②延长AD到E,使DE=AD连结CE构造全等,转移线段与角;③∵AD就是中线∴SΔABD= SΔADC(等底等高的三角形等面积)(4) 已知等腰三角形ABC中,AB=AC①作等腰三角形ABC底边的中线AD (顶角的平分线或底边的高)构造全等三角形; ②作等腰三角形ABC一边的平行线DE,构造新的等腰三角形、八年级数学重点知识点(全) (5)其它①作等边三角形ABC一边的平行线DE,构造新的等边三角形; ②作CE∥AB,转移角; ③延长BD与AC交于E,不规则图形转化为规则图形;④多边形转化为三角形; ⑤延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形; ⑥若a∥b,AC,BC就是角平分线,则∠C=90°、。
八年级数学知识点归纳(6篇)八年级数学知识点归纳11、二元一次方程①二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
②二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
2、二元一次方程组①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
②二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
③二元一次方程组的解法代入〔消元〕法加减〔消元〕法④一次函数与二元一次方程〔组〕的关系:一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解一次函数与二元一次方程组的关系:二元一次方程组的解可看作两个一次函数和的图象的交点。
当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象〔直线〕平行即无交点时,说明相应的二元一次方程组无解。
八年级数学知识点归纳21、函数一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
2、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式〔取全体实数〕,分式〔分母不为0〕、二次根式〔被开方数为非负数〕、实际意义几方面考虑。
3、函数的三种表示法及其优缺点关系式〔解析〕法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式〔解析〕法。
列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
图象法用图象表示函数关系的方法叫做图象法。
4、由函数关系式画其图像的一般步骤列表:列表给出自变量与函数的一些对应值。
描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。
连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
5、正比例函数和一次函数①正比例函数和一次函数的概念一般地,假设两个变量x,y间的关系可以表示成y=kx+b 〔k,b为常数,k不等于 0〕的形式,那么称y是x的一次函数〔x为自变量,y为因变量〕。
八年级数学知识点梳理一、数与式1.实数•实数的概念:理解实数包括有理数和无理数,其中无理数不能表示为两个整数的商。
•实数的性质:掌握实数的四则运算性质,了解实数的顺序关系,会进行实数的大小比较。
•实数的运算:熟练进行实数的加、减、乘、除四则运算,理解运算顺序(先乘除后加减,同级运算从左到右)。
2.二次根式•二次根式的概念:理解二次根式是形如√a(a≥0)的数学表达式,知道它表示a的非负平方根。
•二次根式的性质:掌握二次根式的性质,如√a² = |a|,√ab = √a * √b(a≥0, b≥0)等。
•二次根式的运算:学会进行二次根式的加、减、乘、除运算,理解运算规则。
3.分式•分式的概念:理解分式是两个整式的商,其中分母不为零。
•分式的基本性质:掌握分式的基本性质,如分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
•分式的运算:熟练进行分式的加、减、乘、除运算,理解运算顺序和运算法则。
二、方程与不等式1.一元二次方程•一元二次方程的概念:理解一元二次方程是只含有一个未知数,且未知数的最高次数为2的方程。
•一元二次方程的解法:学习一元二次方程的解法,如因式分解法、配方法、公式法等。
•一元二次方程的应用:理解一元二次方程在实际问题中的应用,如面积、速度、时间等问题。
2.分式方程•分式方程的概念:理解分式方程是含有分式的方程。
•分式方程的解法:学习分式方程的解法,如去分母法、换元法等。
•分式方程的应用:理解分式方程在实际问题中的应用,如比例、百分比等问题。
3.不等式与不等式组•不等式的概念:理解不等式是表示两个数之间大小关系的数学式子,用不等号连接。
•一元一次不等式的解法:学习一元一次不等式的解法,包括移项、合并同类项、化系数为1等步骤。
•不等式组:理解不等式组是由几个一元一次不等式组成的,学习不等式组的解法。
三、函数及其图像1.函数的概念•函数的定义:理解函数是一种特殊的对应关系,其中每一个输入值(自变量)只对应一个输出值(因变量)。
一、数与代数1.整数的概念与运算2.分数的概念与运算3.数轴与有理数的比较4.平方根与立方根的计算5.一元一次方程的解法与应用6.一元一次不等式的解法与应用7.比例的概念与运用8.百分数与利率的计算二、几何与图形1.平面图形的性质与分类2.直角三角形的性质与计算3.同位角与同旁内角的性质4.平行线与平行四边形的性质5.圆的概念与性质6.三视图与简单立体图形的认识7.相似三角形的判定与应用三、函数与方程1.函数的概念与性质2.反比例函数与比例函数的认识与应用3.图像的平移、翻转与旋转4.二次函数与一元二次方程的认识与应用5.次多项式的乘法与因式分解6.四边形的角度与边长关系四、统计与概率1.统计调查与数据的处理2.全面的频数表、频率表和直方图3.样本调查与抽样调查4.概率的概念与计算5.排列与组合的选择问题五、三角函数1.弧度与角度的转换2.三角函数的定义与性质3.三角函数的图像与变换4.正弦定理与余弦定理的运用5.三角函数与两点间的距离关系六、数列与数项1.等差数列的概念与计算2.等差中项数列与等差数列的和数列3.等比数列的概念与计算4.等比数列与利率计算的应用七、平面向量1.平面向量的基本概念与运算2.平面向量的共线性与共点性3.向量的投影与单位向量4.平面向量与立体几何的应用以上是初中八年级数学的主要知识点,涵盖了数与代数、几何与图形、函数与方程、统计与概率、三角函数、数列与数项、平面向量等内容。
学生们可以根据自己的学习进度和教材进行相应的学习和复习。
一、有理数与小数1.有理数的概念及性质-有理数是整数和分数的统称,可以表示为有限小数或无限循环小数。
-有理数的大小比较,可以通过分数的化简和通分运算进行比较。
-有理数的加减乘除运算,可以通过分数的加减乘除运算规则进行计算。
2.小数与小数运算-小数的表示方法(小数点后有限位数或无限循环位数)。
-小数的加减运算、乘法运算和除法运算。
注意小数运算时小数点的对齐。
3.有理数与坐标系-有理数的对应点及坐标系的概念。
-坐标系中有理数的比较和计算。
二、代数与方程式1.代数式和代数运算-字母的提法和代数式的概念。
-代数式的加减乘除运算。
-同类项的合并和拆分。
2.简单方程式的解法-等式的性质及等式变形。
-一元一次方程式的解法,包括去括号、合并同类项、移项成一次项系数为1的等式等。
-一元一次方程式的应用问题解答。
三、函数与图像1.函数的概念-函数的定义和函数符号(f(x))。
-输入、输出和自变量、因变量的概念。
-图像和函数值的关系。
2.一次函数-一次函数的特征和函数图像。
-一次函数的斜率和截距。
3.指数-正数指数和零指数的定义和性质。
-指数运算的法则。
四、平面图形与坐标1.多边形-多边形的概念和性质。
-等边三角形、等腰三角形和直角三角形的性质。
2.平行四边形、矩形和正方形-平行四边形、矩形和正方形的定义和性质。
3.圆-圆的概念和性质,如圆心、半径、弦等。
-圆周角、弧和弧长的关系。
4.坐标系和直角坐标系-坐标系的概念和性质。
-直角坐标系中点的坐标和距离的计算。
五、数据和概率1.统计数据-数据的收集、整理和描述。
-数据的频率和频率分布表。
2.简单统计参数-平均数、中位数、众数和范围的概念和计算。
3.概率-随机事件和概率的概念。
-有限样本空间中的概率计算。
六、几何与形状1.平面几何-几何图形的基本概念和性质,如点、线段、角、平行线等。
-形状的分类,如全等、相似等。
2.三角形-三角形的定义和性质,如直角三角形、等腰三角形等。
- 1 -初二数学知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x 2+px+q , 有“ x 2+px+q 是完全平方式 ⇔ q 2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A 的形式,如果B 中含有字母,式子BA 叫- 2 -做分式.2.有理式:整式与分式统称有理式;即 ⎩⎨⎧分式整式有理式.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:,bdacd c b a =⋅bcadc d b a d c b a =⋅=÷. 8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则: (1)公式: a 0=1(a ≠0), a -n=na 1(a ≠0); (2)正整指数的运算法则都可用于负整指数计算;(3)公式:nna b b a ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-,n m m n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.- 3 -11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则: ;c b a c b c a ±=±bdbcad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x 2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.- 4 -3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0. 5.三个重要非负数: a 2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x 3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 . 13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)- 5 -- 6 -- 7 -- 8 -几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,- 10 -- 11 -而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;ABCEDA BCD 12②一举多得;③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD是角平分线)(3)已知三角形中线(若AD是BC的中线)(4) 已知等腰三角形ABC中,AB=AC- 12 -(5)其它- 13 -。
一、代数与方程1.一元一次方程与一元一次方程的应用:-解一元一次方程;-列方程、解方程解决实际问题。
2.一元二次方程与勾股定理:-解一元二次方程;-利用勾股定理解决实际问题。
3.平方根与立方根:-计算平方根与立方根;-应用平方根与立方根解决实际问题。
4.整式的加减运算:-整式的合并同类项;-整式的加减运算。
5.等比数列与指数函数:-等比数列的概念与性质;-利用等比数列解决实际问题;-指数函数的基本概念与性质。
二、平面图形与空间几何1.直角三角形与勾股定理:-直角三角形的性质与判定;-勾股定理的概念与应用。
2.平行线与平行四边形:-平行线的性质与判定;-平行四边形的性质与判定。
3.三角形的面积公式:-三角形面积公式的推导与应用。
4.相似与全等:-三角形相似与全等的概念与判定;-利用相似与全等解决实际问题。
5.空间几何体的表面积与体积:-立方体、长方体、棱柱的表面积与体积;-表面积与体积的单位换算。
三、数据与概率1.数据的整理、分析与应用:-数据的调查与整理;-数据的统计与分析。
2.平均数与中位数:-平均数的计算与应用;-中位数的计算与应用。
3.概率的基本概念与计算:-事件的概念与概率的计算;-用频率估计概率。
四、函数的初步认识1.函数的概念与表示:-自变量、因变量与函数的关系;-函数的表示及函数解析式。
2.函数的图象与性质:-函数图象的初步认识;-函数的单调性、奇偶性与周期性。
以上仅列举了初中八年级数学的一些重点知识点,详细内容可以根据教材内容进行查阅。
八年级数学是一个重要的阶段,涉及的知识点较多。
下面是八年级数学的重点知识点:一、代数部分1.代数的基本运算:包括加减乘除四则运算,以及带有小数、分数和负数的运算。
2.一元一次方程:学会列方程和解方程的基本方法,掌握一步、两步、多项式方程的解法。
3.一元一次方程组:理解方程组的概念,学会解二元一次方程组的方法。
4.字母代数式的化简:掌握常见代数式的运算规律,如同底数幂相加、同底数幂相乘等。
二、图形部分1.平面图形:学习平面图形的性质,如三角形内角和、等腰三角形的性质、平行四边形的性质等,了解平面图形的证明方法。
2.空间图形:了解常见的空间图形的名称、性质和投影方法,如长方体、正方体、棱柱、棱锥等。
3.相似图形:了解相似图形的概念和判定方法,学会计算相似图形的边长比例和面积比例。
4.长度、面积和体积的计算:学习计算长方形、三角形、圆的周长和面积,以及长方体、正方体、棱柱、棱锥的体积。
三、函数部分1.函数的概念:了解函数的定义、定义域和值域,学会用图象、数表和解析式表示函数。
2.函数的性质:学习函数的奇偶性、单调性、最大值和最小值等性质,能够根据函数图象判断函数的性质。
3.函数的应用:掌握函数的实际应用,如函数的表示和解决问题的方法。
四、概率与统计部分1.概率的计算:学习计算多个事件的概率,掌握事件的互斥和独立性质,了解事件的发生与否的概率。
2.统计的基本概念:学习统计的方法和概念,包括数据的收集和整理,以及频率、中位数、众数和均值的计算。
五、其他部分1.数列的概念与性质:了解数列的概念和基本性质,学会计算等差数列和等比数列的通项和前n项和。
2.平面向量:学习平面向量的概念、运算法则和坐标表示。
3.数型思维与解题方法:学会运用数型思维解决实际问题,掌握解题方法和策略。
以上列举了八年级数学的重点知识点,这些知识点在数学学习中是必不可少的基础。
学生在学习过程中应重点理解掌握,并能够将其应用到解决实际问题中。
数学知识点总结
一、上册知识点:
1.整数的加减法:正整数、负整数、零的概念,整数的加法和减法运算法则。
2.有理数:有理数的概念,有理数的分类(正有理数、负有理数、零),有理数的加法和减法运算法则。
3.乘方:乘方的概念,乘方的性质,乘方的运算法则。
4.乘法与除法:乘法的概念,乘法的性质,乘法的运算法则;除法的概念,除法的性质,除法的运算法则。
5.分数:分数的概念,分数的性质,分数的加减法运算法则。
6.代数式:代数式的概念,代数式的简化,代数式的加减法运算法则。
7.一元一次方程:一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。
8.几何图形:点、线、面的概念,几何图形的基本性质,几何图形的分类。
9.角:角的概念,角的分类,角的性质,角的度量。
10.平行线:平行线的概念,平行线的性质,平行线的判定。
二、下册知识点:
1.直角三角形:直角三角形的概念,直角三角形的性质,直
角三角形的边角关系。
2.勾股定理:勾股定理的概念,勾股定理的应用。
3.多边形:多边形的概念,多边形的分类,多边形的性质。
4.圆:圆的概念,圆的性质,圆的度量。
5.圆柱和圆锥:圆柱和圆锥的概念,圆柱和圆锥的性质,圆柱和圆锥的计算。
6.比例与比例式:比例的概念,比例的性质,比例式的概念,比例式的计算。
7.百分数:百分数的概念,百分数的性质,百分数的计算。
8.数据的收集与整理:数据的收集方法,数据的整理方法,数据的分析与表示。
9.概率:概率的概念,概率的计算。
10.函数与图像:函数的概念,函数的性质,函数的图像。
八年级数学章节知识点随着学习的深入,八年级数学的知识点逐渐增多,需要不断地学习与掌握。
下面,本文将为大家整理八年级数学章节的知识点,希望能够对大家的学习有所帮助。
一、代数基础1. 代数式的定义与含义2. 代数式的运算规律3. 简单的一元二次方程及其解法4. 多项式的基本概念5. 多项式的加减法二、函数初步1. 函数的定义及函数符号的含义2. 一次函数及其图像3. 二次函数及其图像4. 分段函数及其图像5. 反比例函数及其图像三、平面图形初步1. 各种平面图形的定义与性质2. 二元一次方程组的几何意义3. 相似与全等4. 三角形的中线、内心、外心以及垂心四、立体几何初步1. 立体图形的定义与性质2. 立体图形的表面积与体积3. 三视图的定义、制图及应用4. 空间向量的基本概念及相关定理五、统计初步1. 统计学的基本概念、随机事件与概率的含义2. 图表的绘制及读取3. 调查与抽样六、大数与无限小初步1. 大数与单位换算2. 百分数及其应用3. 加减法、乘除法的应用4. 无限小的概念与性质七、三角函数初步1. 直角三角形的三边及其内角2. 三角函数的定义及应用3. 三角函数的性质及定理4. 三角恒等式与解三角形八、函数的图像和性质1. 常用初等函数及其图像2. 函数的增减性及极值问题3. 函数的奇偶性、周期性和对称性4. 函数的复合、反函数及反函数的图像以上就是八年级数学章节的知识点,这些都是学生们需要认真学习和掌握的内容。
在学习的过程中,我们应该注意理论与实践相结合,不断地练习与思考。
只有通过不断地学习与探究,才能真正地理解这些知识点,并在以后的学习与生活中运用到最大化。
八年级数学知识点总结归纳一、代数1. 代数表达式- 变量和常数- 单项式和多项式- 合并同类项- 因式分解2. 方程与不等式- 一元一次方程- 二元一次方程- 不等式及其解集- 线性方程组的解法(代入法、消元法)3. 函数- 函数的概念- 函数的表示方法(表格、图形、公式)- 函数的性质(定义域、值域、单调性、奇偶性)二、几何1. 平面几何- 点、线、面的基本性质- 角的概念(邻角、对角、平行线与角度的关系)- 三角形的性质(边角关系、内角和定理、海伦公式) - 四边形的性质(平行四边形、矩形、菱形、正方形)2. 圆的基本性质- 圆的定义- 圆的对称性- 弦、弧、切线的性质- 圆周角和圆心角的关系3. 几何变换- 平移变换- 旋转变换- 轴对称变换- 相似与全等三、数论1. 整数- 整数的性质- 质数与合数- 最大公约数和最小公倍数2. 分数与小数- 分数的基本性质- 分数的四则运算- 小数与分数的互化3. 比例与百分数- 比例的概念- 比例的性质- 百分数的应用四、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表(条形图、折线图、饼图)2. 概率- 概率的基本概念- 事件的概率计算- 随机事件的概率五、应用题1. 代数应用题- 利用方程解决实际问题- 利用函数关系解决实际问题2. 几何应用题- 利用几何知识解决实际问题- 利用圆的知识解决实际问题3. 综合应用题- 结合代数、几何、数论、统计与概率解决综合性问题六、解题技巧1. 审题与分析- 正确理解题目要求- 分析题目中的数量关系2. 计算技巧- 准确快速的计算方法- 利用代数技巧简化运算3. 检查与验证- 检查计算过程中的错误- 验证答案的正确性以上是对八年级数学知识点的总结归纳。
每个部分都包含了该年级学生应该掌握的核心概念和技能。
教师和学生可以根据这个总结来复习和巩固相关知识,提高解题能力。
8年级数学知识点归纳总结一、全等三角形能够完全重合的两个三角形叫做全等三角形。
全等三角形的性质。
全等三角形对应边相等,对应角相等。
三角形全等的判定。
SAS,ASA,AAS,SSS,HL(直角三角形中)。
角平分线的性质定理。
角的平分线垂直于角的两边。
判定定理。
一个角是另一个角的两倍,那么这两个角互为对顶角。
余角、补角定理。
同角或等角的余角、补角相等。
等式的性质。
等式两边同时加、减、乘、除(除数不为0)结果仍得等式。
直角三角形全等的特殊条件:HL。
直角三角形被斜边上的高分所截得的两个直角三角形和以斜边为公共边的两个直角三角形全等。
证明方法:S-S,A-A,A-S,H-L,SAS,ASA,AAS,SSS,HL。
二、轴对称轴对称图形:一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线是它的对称轴。
轴对称:两个图形沿一条直线折叠后,这两个图形能够互相重合,那么这两个图形成轴对称,这条直线是它们的对称轴。
画对称轴的方法:用尺子按轴对称的方向画。
轴对称的性质:轴对称的两个图形是全等形;对称轴是对应点连线的垂直平分线;对应线段相等,对应角相等。
画法:画出一个图形的另一半,使这两个图形完全重合。
从而得到轴对称图形的画法。
要注意做好的是虚线要顺畅地相连接,一定要准确找出相等的线段与角。
旋转$180$度后对应的线段与角相等是这类问题的特点注意利用。
在平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于$x$轴对称的点,横坐标相同,纵坐标互为相反数;关于$y$轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点横纵坐标均互为相反数。
补充:等腰三角形的性质:等腰三角形的两个底角相等(简称:等边对等角)多边形的内角和定理:$(n-2)180=nA$ 多边形的外角和定理:任意多边形的外角和等于$360^{\circ}$平行四边形、矩形、菱形、正方形的性质:平行四边形:矩形:正方形:四个角都是直角;对角线相等;对角线互相平分;菱形:四个角都是直角;对角线互相垂直;对角线互相平分;四边相等特殊四边形的性质和判定定理:性质定理:平行四边形的对边相等且平行;矩形四个角都是直角,正方形的四个角都是直角且四条边相等;菱形的四条边都相等;正方形的四条边都相等且四个角都是直角(注:正方形是特殊的矩形也是特殊的菱形)。
八年级数学知识点归纳一、实数1. 有理数与无理数的定义- 有理数:可以表示为两个整数的比的数,如分数、整数。
- 无理数:不能表示为两个整数的比的数,如√2、π。
2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的计算- 实数的性质和比较大小3. 科学记数法- 表示非常大或非常小的数- a×10^n 的形式二、代数表达式1. 单项式- 系数、次数- 单项式的乘法和除法2. 多项式- 多项式的定义- 多项式的加法、减法、乘法- 多项式的因式分解- 多项式的次数和项3. 代数方程- 一元一次方程、一元二次方程- 方程的解法:直接开平方法、配方法、公式法、因式分解法三、几何1. 平面几何- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类和性质- 四边形的分类和性质- 圆的基本性质和定理2. 几何图形的计算- 面积计算:三角形、四边形、圆、扇形- 体积计算:长方体、立方体、圆柱、圆锥、球3. 几何变换- 平移、旋转、对称(轴对称、中心对称)- 坐标系中点的坐标变换四、函数1. 函数的概念- 函数的定义- 函数的表示方法:表格、图像、公式2. 线性函数- 线性函数的定义和图像- 斜率、截距的概念- 线性函数的方程3. 二次函数- 二次函数的定义和图像- 顶点、对称轴的概念- 二次函数的方程和性质五、概率与统计1. 概率- 随机事件的概率- 概率的计算- 条件概率和独立事件2. 统计- 数据的收集和整理- 描述性统计:平均数、中位数、众数、方差、标准差- 概率分布和统计图表六、数列1. 等差数列- 等差数列的定义- 通项公式和前n项和公式2. 等比数列- 等比数列的定义- 通项公式和前n项和公式以上是八年级数学的主要知识点归纳。
在实际教学和学习中,每个知识点都需要通过大量的练习题来巩固和深化理解。
教师和学生应根据具体的教学大纲和学习目标,合理安排教学进度和学习计划。
数学知识点整理(八年级)一、有理数与整数运算1.有理数的定义和表示方法2.有理数的大小比较3.有理数的加法和减法运算4.有理数的乘法和除法运算5.零的特殊性质6.绝对值的概念及性质7.有理数的乘方运算8.有理数的混合运算二、方程与不等式1.一元一次方程的概念及解法2.一元一次方程的应用3.一元一次不等式的概念及解法4.一元一次不等式的应用5.一元一次方程组的概念及解法6.一元一次方程组的应用三、图形的性质与坐标系1.线段的性质及划分2.平行线和垂直线的判定3.三角形的内角和及性质4.等腰三角形的性质5.直角三角形和斜三角形的性质6.相似三角形的概念及判定7.线段比例定理和角度比例定理8.平面直角坐标系及点的坐标表示9.走迷宫的应用四、数列与函数1.等差数列的概念及通项公式2.等比数列的概念及通项公式3.等差数列和等比数列的应用4.函数的概念及表示方法5.函数的增减性及最值问题6.奇偶函数及二次函数五、几何运动1.平移、旋转和对称的概念2.图形的平移、旋转和对称的性质3.平移、旋转和对称的应用六、统计与概率1.数据的收集、整理和展示2.平均数、中位数和众数的概念及计算3.资料的分析和解读4.概率的概念及计算七、三角函数1.弧度制度量2.同角三角比值3.三角函数的概念及计算总结:八年级数学全册的知识点主要包括有理数与整数运算、方程与不等式、图形的性质与坐标系、数列与函数、几何运动、统计与概率以及三角函数等内容。
通过学习这些知识点,可以帮助学生提升数学综合素养和问题解决能力。