数字信号处理实验三--用FFT作谱分析
- 格式:docx
- 大小:188.88 KB
- 文档页数:12
数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
数字信号处理实验答案第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR数字滤波器设计及软件实现。
实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。
也可以用MA TLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR数字滤波器设计及软件实现。
实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。
FFT算法分析实验实验报告一、实验目的快速傅里叶变换(Fast Fourier Transform,FFT)是数字信号处理中一种非常重要的算法。
本次实验的目的在于深入理解 FFT 算法的基本原理、性能特点,并通过实际编程实现和实验数据分析,掌握 FFT 算法在频谱分析中的应用。
二、实验原理FFT 算法是离散傅里叶变换(Discrete Fourier Transform,DFT)的快速计算方法。
DFT 的定义为:对于长度为 N 的序列 x(n),其 DFT 为X(k) =∑n=0 到 N-1 x(n) e^(j 2π k n / N) ,其中 j 为虚数单位。
FFT 算法基于分治法的思想,将 N 点 DFT 分解为多个较小规模的DFT,从而大大减少了计算量。
常见的 FFT 算法有基 2 算法、基 4 算法等。
三、实验环境本次实验使用的编程语言为 Python,主要依赖 numpy 库来实现 FFT 计算和相关的数据处理。
四、实验步骤1、生成测试信号首先,生成一个包含不同频率成分的正弦波叠加信号,例如100Hz、200Hz 和 300Hz 的正弦波。
设定采样频率为 1000Hz,采样时间为 1 秒,以获取足够的采样点进行分析。
2、进行 FFT 计算使用 numpy 库中的 fft 函数对生成的测试信号进行 FFT 变换。
3、频谱分析计算 FFT 结果的幅度谱和相位谱。
通过幅度谱确定信号中各个频率成分的强度。
4、误差分析与理论上的频率成分进行对比,计算误差。
五、实验结果与分析1、幅度谱分析观察到在 100Hz、200Hz 和 300Hz 附近出现明显的峰值,对应于生成信号中的频率成分。
峰值的大小反映了相应频率成分的强度。
2、相位谱分析相位谱显示了各个频率成分的相位信息。
3、误差分析计算得到的频率与理论值相比,存在一定的误差,但在可接受范围内。
误差主要来源于采样过程中的量化误差以及 FFT 算法本身的近似处理。
数字信号处理高西全实验报告三选择FFT的变换区间N为8和16 两种情况进行频谱分析^p 。
分别打印其幅频特性曲线。
并进行对比、分析^p 和讨论。
(2)对以下周期序列进行谱分析^p 。
选择FFT的变换区间N为8和16 两种情况分别对以上序列进行频谱分析^p 。
分别打印其幅频特性曲线。
并进行对比、分析^p 和讨论。
(3)对模拟周期信号进行谱分析^p选择采样频率,变换区间N=16,32,64 三种情况进行谱分析^p 。
分别打印其幅频特性,并进行分析^p 和讨论。
四、程序码与运行结果(1) 实验程序:1n=[ones(1,4)];M=8;a=1:(M/2); b=(M/2):-1:1; 2n=[a,b];3n=[b,a];1k8=fft(1n,8);1k16=fft(1n,16);2k8=fft(2n,8);2k16=fft(2n,16);3k8=fft(3n,8);3k16=fft(3n,16);以下绘制幅频特性曲线n=0:length(1k8)-1;subplot(3,2,1);stem(n,abs(1k8),#;.#;);label({#;ω/π#;;#;8点DFT[1(n)]#;});ylabel(#;幅度#;);n=0:length(1k16)-1;subplot(3,2,2);stem(n,abs(1k16),#;.#;);label({#;ω/π#;;#;16点DFT[1(n)]#;});ylabel(#;幅度#;); n=0:length(2k8)-1;subplot(3,2,3);stem(n,abs(2k8),#;.#;);label({#;ω/π#;;#; 8点DFT[2(n)]#;});ylabel(#;幅度#;); n=0:length(2k16)-1;subplot(3,2,4);stem(n,abs(2k16),#;.#;);label({#;ω/π#;;#;16点DFT[2(n)]#;});ylabel(#;幅度#;); n=0:length(3k8)-1;subplot(3,2,5);stem(n,abs(3k8),#;.#;);l abel({#;ω/π#;;#; 8点DFT[3(n)]#;});ylabel(#;幅度#;); n=0:length(3k16)-1;subplot(3,2,6);stem(n,abs(3k16),#;.#;);label({#;ω/π#;;#;16点DFT[3(n)]#;});ylabel(#;幅度#;); 图形:(2)实验程序:n=0:7;4n=cos(pi/4n);4k8=fft(4n,8);subplot(2,2,1);stem(2n/8,abs(4k8),#;.#;);label({#;ω/π#;;#;8点DFT[4(n)]#;});ylabel(#;幅度#;); 5n=cos(pi/4n)+cos(pi/8n);5k8=fft(5n,8);subplot(2,2,2);stem(2n/8,abs(5k8),#;.#;);label({#;ω/π#;;#;8点DFT[5(n)]#;});ylabel(#;幅度#;); n=0:15;4n=cos(pi/4n);5n=cos(pi/4n)+cos(pi/8n);4k16=fft(4n,16);subplot(2,2,3);stem(2n/16,abs(4k16),#;.#;);label({#;ω/π#;;#;16点DFT[4(n)]#;});ylabel(#;幅度#;); 5k16=fft(5n,16);subplot(2,2,4);stem(2n/16,abs(5k16),#;.#;);label({#;ω/π#;;#;16点DFT[5(n)]#;});ylabel(#;幅度#;); 图形:(3)实验代码:Fs=64;T=1/Fs;N=16;n=0:N-1;6nT=cos(8pinT)+cos(16pinT)+cos(20pinT);6k16=fft(6nT);6k16=fftshift(6k16);Tp=NT;F=1/Tp;k=-N/2:N/2-1;fk=kF;subplot(3,1,1);stem(fk,abs(6k16),#;.#;);label({#;f(Hz)#;;#;16点DFT[6(nT)]#;});ylabel(#;幅度#;); N=32;n=0:N-1;6nT=cos(8pinT)+cos(16pinT)+cos(20pinT);6k32=fft(6nT,32);6k32=fftshift(6k32);Tp=NT;F=1/Tp;k=-N/2:N/2-1;fk=kF;subplot(3,1,2);stem(fk,abs(6k32),#;.#;);label({#;f(Hz)#;;#;32点DFT[6(nT)]#;});ylabel(#;幅度#;); N=64;n=0:N-1;6nT=cos(8pinT)+cos(16pinT)+cos(20pinT);6k64=fft(6nT,64);6k64=fftshift(6k64);Tp=NT;F=1/Tp;k=-N/2:N/2-1;fk=kF;subplot(3,1,3);stem(fk,abs(6k64),#;.#;);label({#;f(Hz)#;;#;64点DFT[6(nT)]#;});ylabel(#;幅度#;);图形:五、实验总结1.结论用DFT对信号进行谱分析^p 时,重点关注频谱分辨率和分析^p 误差,频谱分辨率F=1/Tp=Fs/N,可以依据此等式来选择FFT的变换区间N,而误差主要来自于用FFT作频谱分析^p 时,得到的是离散谱,而当信号是非周期信号时,应该得到连续谱,只有当N较大时,用FFT做出来的离散谱才接近于连续谱,因此N要适当选择大一些。
第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
∑-=--==101,....,0,)(1)(N k nk N N n W k X N n x (3.2) 离散傅立叶反变换与正变换的区别在于N W 变为1-N W ,并多了一个N 1的运算。
因为N W 和1-N W 对于推导按时间抽取的快速傅立叶变换算法并无实质性区别,因此可将FFT 和快速傅立叶反变换(IFFT )算法合并在同一个程序中。
2.利用FFT 进行频谱分析若信号本身是有限长的序列,计算序列的频谱就是直接对序列进行FFT 运算求得)(k X ,)(k X 就代表了序列在[]π2,0之间的频谱值。
幅度谱 )()()(22k X k X k X I R +=相位谱 )()(arctan )(k X k X k R I =ϕ 若信号是模拟信号,用FFT 进行谱分析时,首先必须对信号进行采样,使之变成离散信号,然后就可按照前面的方法用FFT 来对连续信号进行谱分析。
按采样定理,采样频率s f 应大于2倍信号的最高频率,为了满足采样定理,一般在采样之前要设置一个抗混叠低通滤波器。
用FFT 对模拟信号进行谱分析的方框图如下所示。
3.在运用DFT 进行频谱分析的过程中可能产生三种误差:(1)混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist 定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解。
在一般情况下,为了保证不出现频谱混叠,在采样前,先进行抗混叠滤波。
(2)泄漏实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT 来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。
抗混叠低通滤波器 采样T=1/f s N 点FFT泄漏不能与混叠完全分开,因为泄漏导致频谱的扩展,从而造成混叠。
实验三:用FFT对信号作频谱分析实验报告一、实验目的与要求学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。
二、实验原理用FFT对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D和分析误差。
频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是2π/N,因此要求2π/N小于等于D。
可以根据此式选择FFT的变换区间N。
误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时,离散谱的包络才能逼近连续谱,因此N要适当选择大一些。
三、实验步骤及内容(含结果分析)1)对以下序列进行FFT分析:选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。
程序:(1)选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。
x1n=[ones(1,4)];%产生R4(n)序列向量X1k8=fft(x1n,8);%计算x1n的8点DFT X1k16=fft(x1n,16);%计算x1n的16点DFT%以下绘制幅频特性曲线N=8;f=2/N*(0:N-1);figure(1);subplot(1,2,1);stem(f,abs(X1k8),'.');%绘制8点DFT的幅频特性图title('(1a)8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');N=16;f=2/N*(0:N-1);subplot(1,2,2);stem(f,abs(X1k16),'.');%绘制8点DFT的幅频特性图title('(1a)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');%x2n和x3nM=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];%产生长度为8的三角波序列x2(n)x3n=[xb,xa];X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);figure(2);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X2k8),'.');%绘制8点DFT的幅频特性图title('(2a)8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,3);stem(f,abs(X3k8),'.');%绘制8点DFT的幅频特性图title('(3a)8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X2k16),'.');%绘制8点DFT的幅频特性图title('(2a)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,4);stem(f,abs(X3k16),'.');%绘制8点DFT的幅频特性图title('(3a)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');【实验结果】(2)对以下周期序列进行谱分析:x4(n)=cos[(π/4)*n]x5(n)=cos[(π/4)*n]+cos[(π/8)*n]选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。
湖南师范大学职业技术学院(工学院)实验数据报告单实验课程:数字信号处理实验题目:用FFT对信号作频谱分析实验日期: 2019 年 5 月 15 日专业:电信年级: 2016 班:一班姓名:陈哲瀚学号:201630181025 实验目的:学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。
实验内容:(1)对以下序列进行谱分析:其他其他选择FFT的变换区间N为8和16两种情况进行频谱分析。
分别打印其幅频特性曲线,并进行对比、分析和讨论。
(2)对以下周期序列进行谱分析:选择FFT的变换区间N为8和16两种情况分别对以上序列进行频谱分析。
分别打印其幅频特性曲线,并进行对比、分析和讨论。
(3)对模拟周期信号进行谱分析:选择采样频率,对变换区间N=16,32,64三种情况进行谱分析。
分别打印其幅频特性,并进行分析和讨论。
程序清单或流程图:(1)N=4;L=8;%L=16;N1=L-N;x1_0=ones(1,N);x1_1=zeros(1,N1);x1=[x1_0 x1_1];x2=[];x3=[];for n=0:3x2=[x2 n+1];endfor n=4:7x2=[x2 8-n];endfor n=8:L-1x2=[x2 0];endfor n=0:3x3=[x3 4-n];endfor n=4:7x3=[x3 n-3];endfor n=8:L-1x3=[x3 0];endx1k_1=fft(x1,L);x2k_1=fft(x2,L);x3k_1=fft(x3,L);n=0:L-1;figure;subplot(2,3,1);stem(n,x1);title('x1(n)');subplot(2,3,4);stem(n,abs(x1k_1));title('N=8时x1(n)的幅频响应');subplot(2,3,2);stem(n,x2);title('x2(n)');subplot(2,3,5);stem(n,abs(x2k_1));title('N=8时x2(n)的幅频响应');subplot(2,3,3);stem(n,x3);title('x3(n)');subplot(2,3,6);stem(n,abs(x3k_1));title('N=8时x3(n)的幅频响应');(2)L=8;%L=16N=16;m=0:N-1;x4n=cos(pi/4*m);%x5n=cos(pi/4*m)+cos(pi/8*m); n=0:L-1;x1k_1=fft(x4n,L)%L点FFTyn=ifft(x1k_1)figure;subplot(3,1,1);plot(m,x4n);title('x4(n)');subplot(3,1,2);stem(n,abs(x1k_1));title('x4(n)的幅频响应');subplot(3,1,3);plot(n,yn);title('还原图');(3)N=16;%N=32;N=64n=0:N-1;fs=64;t=0:1/fs:1;x8n=cos(8*pi*t)+cos(16*pi*t)+cos(20*pi*t); figure;subplot(2,1,1),stem(t,x8n);Xk=fft(x8n,N);title('x8(n)')ylabel('时域')subplot(2,1,2),stem(n,abs(Xk));title('N=16时x8(n)的幅频响应')ylabel('幅频')%abs取模表示幅频运行结果:(1)(2)(3)实验总结:通过实验,我知道了用FFT对信号做频谱分析是学习数字信号处理的重要内容。
数字信号处理FFT频谱分析一、实验目的(1)在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉FFT子程序。
(2)熟悉应用FFT对典型信号进行频谱分析的方法。
(3)了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。
(4)熟悉应用FFT实现两个序列的线性卷积的方法。
(5)初步了解用周期图法做随机信号谱分析的方法。
二、实验原理1、对有限长序列,可以用离散傅里叶变换DFT。
不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列某(n)的长度为N时,它的DFT定义为某(k)某(n)W,WNeknNn0N1j2N逆变换为:1某(n)N某(k)Wk0N1knN有限长序列的DFT使其z变换在单位圆上的等距采样。
因此可用于序列的谱分析。
2、用FFT计算线性卷积用FFT可以实现两个序列的圆周卷积。
在一定的条件下,可以使圆周卷积等于线性卷积,一般情况,设两个序列的长度分别为N1和N2,要使圆周卷积等于线性卷积的充要条件是FFT的长度N大于等于N1加N2.对于长度不足N的序列,分别用FFT对它们补零延长到N。
三、实验内容1、已知有限长序列某(n)=[1,0.5,0,0.5,1,1,0.5,0],要求:①用FFT求该序列的DFT、IDFT图形②假设采样频率F=20Hz,序列长度N分别取8、32和64,用FFT计算其幅度频谱和相位频谱。
①程序实验截图:DFT、IDFT图形实验截图:幅度频谱和相位频谱。
2、用FFT计算下面连续信号的频谱,并观察不同的采样周期T和序列长度N值对频谱特性的影响。
程序:实验截图:3、已知序列某(n)=in(0.4n),1<n<15;y=0.9^n,1<n<20,用FFT实现快速卷积,并测试直接卷积和快速卷积的时间。
程序:实验截图:。
数字信处理实验三用F F T对信作频谱分析实验报告Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】实验三:用FFT对信号作频谱分析实验报告一、实验目的与要求学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。
二、实验原理用FFT对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D和分析误差。
频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是2π/N,因此要求2π/N小于等于D。
可以根据此式选择FFT的变换区间N。
误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时,离散谱的包络才能逼近连续谱,因此N要适当选择大一些。
三、实验步骤及内容(含结果分析)1)对以下序列进行FFT分析:选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。
程序:(1)选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。
x1n=[ones(1,4)];%产生R4(n)序列向量X1k8=fft(x1n,8);%计算x1n的8点DFTX1k16=fft(x1n,16);%计算x1n的16点DFT%以下绘制幅频特性曲线N=8;f=2/N*(0:N-1);figure(1);subplot(1,2,1);stem(f,abs(X1k8),'.');%绘制8点DFT的幅频特性图title('(1a)8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');N=16;f=2/N*(0:N-1);subplot(1,2,2);stem(f,abs(X1k16),'.');%绘制8点DFT的幅频特性图title('(1a)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');%x2n和x3nM=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];%产生长度为8的三角波序列x2(n)x3n=[xb,xa];X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);figure(2);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X2k8),'.');%绘制8点DFT的幅频特性图title('(2a)8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,3);stem(f,abs(X3k8),'.');%绘制8点DFT的幅频特性图title('(3a)8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X2k16),'.');%绘制8点DFT的幅频特性图title('(2a)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,4);stem(f,abs(X3k16),'.');%绘制8点DFT的幅频特性图title('(3a)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');【实验结果】(2)对以下周期序列进行谱分析:x4(n)=cos[(π/4)*n]x5(n)=cos[(π/4)*n]+cos[(π/8)*n]选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。
实验三快速Fourier变换(FFT)及其应用一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB 中的有关函数。
2.应用FFT对典型信号进行频谱分析。
3. 了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。
4.应用FFT实现两个序列的线性卷积和方法。
二、实验原理与方法上机实验内容:(1)、观察高斯序列的时域和幅频特性,固定信号xa(n)中参数p=8,改变q的值,使q分别等于2,4,8,观察它们的时域和幅频特性,了解当q取不同值时,对信号序列的时域幅频特性的影响;固定q=8,改变p,使p分别等于8,13,14,观察参数p变化对信号序列的时域及幅频特性的影响,观察p等于多少时,会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。
程序:function [x, F]=gauss(p,q);n=0:15;x(n+1)=exp(-(n+1-p).^2/q);F=fft(x);endclear all;figure(1)[x1,F1]=gauss(8,2);n=0:15;subplot(3,2,1);plot(n,x1);text(6,0.2,'p=8,q=2');grid on;xlabel('n');ylabel('时域');subplot(3,2,2);plot(abs(F1));text(7.5,2,'p=8,q=2');grid on;xlabel('k');ylabel('频域');[x2,F2]=gauss(8,4);n=0:15;subplot(3,2,3);plot(n,x2);text(6,0.2,'p=8,q=4');grid on;xlabel('n');ylabel('时域');subplot(3,2,4);plot(abs(F2));text(7.5,2,'p=8,q=4'); grid on;xlabel('k');ylabel('频域');[x3,F3]=gauss(8,8);n=0:15;subplot(3,2,5);plot(n,x3);text(6,0.2,'p=8,q=8'); grid on;xlabel('n');ylabel('时域');subplot(3,2,6);plot(abs(F3));text(7.5,2,'p=8,q=8'); grid on;xlabel('k');ylabel('频域');figure(2)[x4,F4]=gauss(8,8);n=0:15;subplot(3,2,1);plot(n,x4);text(6,0.2,'p=8,q=8'); grid on;xlabel('n');ylabel('时域');subplot(3,2,2);plot(abs(F4));text(7.5,2,'p=8,q=8'); grid on;xlabel('k');ylabel('频域');[x5,F5]=gauss(13,8);n=0:15;subplot(3,2,3);plot(n,x5);text(6,0.2,'p=13,q=8'); grid on;xlabel('n');ylabel('时域');subplot(3,2,4);plot(abs(F5));text(7.5,2,'p=13,q=8'); grid on ;xlabel('k');ylabel('频域');[x6,F6]=gauss(14,8); n=0:15;subplot(3,2,5);plot(n,x6);text(6,0.2,'p=14,q=8'); grid on ;xlabel('n');ylabel('时域'); subplot(3,2,6);plot(abs(F6));text(7.5,2,'p=14,q=8'); grid on ;xlabel('k'); ylabel('频域');5101500.51p=8,q=2n时域0510152024p=8,q=2k频域5101500.51p=8,q=4n时域0510152024p=8,q=4k频域5101500.51p=8,q=8n时域51015200510p=8,q=8k频域5101500.51p=8,q=8n时域51015200510p=8,q=8k频域5101500.51p=13,q=8n时域510152005p=13,q=8k频域5101500.51p=14,q=8n时域510152005p=14,q=8k频域(2)、观察衰减正弦序列xb(n)的时域和幅频特性,a=0.1,f=0.0625,检查谱峰出现位置是否正确,注意频谱的形状,绘出幅频特性曲线,改变f ,使f 分别等于0.4375和0.5625,观察这两种情况下,频谱的形状和谱峰出现位置,有无混叠和泄漏现象?说明产生现象的原因。
第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR数字滤波器设计及软件实现。
实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
实验1:系统响应及系统稳定性实验程序清单:close all;clear all%======内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性====== A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B和Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n)x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(B,A,58); %求系统单位脉冲响应h(n)subplot(2,2,1);y='h(n)';stem(hn, 'y'); %调用函数tstem绘图title('(a) 系统单位脉冲响应h(n)');y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)subplot(2,2,2);y='y1(n)';stem(y1n,'y');title('(b) 系统对R8(n)的响应y1(n)');y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)subplot(2,2,4);y='y2(n)';stem(y2n,'y');title('(c) 系统对u(n)的响应y2(n)');%===内容2:调用conv函数计算卷积============================x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n)h1n=[ones(1,10) zeros(1,10)];h2n=[1 2.5 2.5 1 zeros(1,10)];y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);y='h1(n)';stem(h1n,'y'); %调用函数tstem绘图title('(d) 系统单位脉冲响应h1(n)');subplot(2,2,2);y='y21(n)'; stem(y21n,'y');title('(e) h1(n)与R8(n)的卷积y21(n)');subplot(2,2,3);y='h2(n)'; stem(h2n, 'y'); %调用函数tstem绘图title('(f) 系统单位脉冲响应h2(n)');subplot(2,2,4);y='y22(n)';stem(y22n,'y');title('(g) h2(n)与R8(n)的卷积y22(n)');%=========内容3:谐振器分析========================un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B和Ay31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n)figure(3)subplot(2,1,1);y='y31(n)';stem(y31n,'y');title('(h) 谐振器对u(n)的响应y31(n)');subplot(2,1,2);y='y32(n)';stem(y32n,'y');title('(i) 谐振器对正弦信号的响应y32(n)');实验程序运行结果及分析讨论程序运行结果如图10.1.1所示。
数字信号处理课程实验实验报告实验一 利用FFT 分析连续信号频谱一、 实验目的1、 进一步加深离散傅里叶变换DFT 原理的理解;2、 应用离散傅里叶变换DFT (实际应用FFT 计算)分析连续信号的频谱;3、 深刻理解利用DFT 分析连续信号的频谱的原理,分析工程中常出现的现象及解决方法。
二、 实验原理1、 利用DFT 分析连续时间周期信号的频谱周期为Tp 的周期性连续时间信号)(t x p 的频谱(傅里叶级数的系数))(Ωjk x p 是非周期离散谱,定义为)(Ωjk x p =dt e t x p1tjk p p 0Ω-⎰)(T T 其中f 2p2ππ==ΩT 为信号的基频,Ωk 为信号的谐频,谱线间隔为Ω。
通过时域采样就可以利用DFT 分析连续周期信号的频谱。
其步骤为: ① 确定周期信号的基本周期Tp ;② 计算一个周期内的采样点数N ,若周期信号的最高频谱为Ωp ,则频谱中有2p+1 根谱线;若周期信号的频谱无限宽,则认为集中信号90%以上(或根据实际需要)能量的前p+1 个谐波为近似的频谱范围,其余的谐波忽略不计。
取N ≥2p+1; ③ 对连续周期信号以采样间隔NT T p=进行采样 ; ④ 利用FFT 计算采样信号的N 点DFT ,得到()k X ; ⑤ 最后求出连续周期信号的频谱为)(Ωjk x p =N1()k X 。
因为对连续周期信号按采样间隔NT T p=进行采样,每个周期抽取N 点时,则有 t=nT ,Tp=NT那么 )(Ωjk x p =dt et x p 1tjk p p 0Ω-⎰)(T T =∑-=-10n n p 2jk e n x p N T T T T T π)( =∑-=-1n n N 2jk e n x N 1N T π)(=)(k N 1X若能按照满足采样定理的采样间隔进行抽样,并且采取整周期为信号分析的长度,则利用FFT 计算得到的离散频谱值等于连续周期信号频谱)(Ωjk x p 的准确值。
用FFT 对信号做频谱分析一、实验目的学习用FFT 对连续信号和时域离散信号进行谱分析方法,了解可能出现的分析误差及其原因,以便应用FFT 。
二、实验原理用FFT 对信号频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对于信号进行谱分析的重要问题是频谱分析率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频谱分辨率是2ᴨ/N ≤D.可以根据此式选择FFT 变换区间N 。
误差主要来自于用FFT 做频谱分析时,得到的是离散谱,而信号(周期信号外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行谱分析时,首先按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
三、实验步骤及内容(1)对以下序列进行谱分析:)()(41n n Rx =n n n n n n x 其他7430081)(2≤≤≤≤⎪⎩⎪⎨⎧-+= n7430034)(3其他≤≤≤≤⎪⎩⎪⎨⎧--=n n n n n x 选择FFT 的变换区间N 为8或16两种进行谱分析。
分别打印其幅频特性曲线,并进行对比,分析,讨论。
(2)对以下周期序列进行谱分析:n n x 4cos )(4π=n n n x 8cos 4cos )(5ππ+=选择FFT 的变换区间N 为8或16两种情况分别对以上序列进行谱分析。
分别打印幅频特性曲线,并进行对比,分析和讨论。
(3)对模拟周期信号进行谱分析:t t t t x πππ20cos 16cos 8cos )(6++=选择采样频率Fs=64Hz ,对变换区间N=16,32,64三种情况进行谱分析。
数字信号处理实验报告一、实验目的(1) 进一步加深DFT 算法原理和基本性质的理解(因为FFT 只是DFT 的一种快速算法,所以FFT 的运算结果必然满足DFT 的基本性质);(2) 熟悉FFT 算法的原理;(3) 学习用FFT 对连续信号和时域离散信号进行谱分析的方法分析误差及其原因,以便在实际中正确应用FFT 。
二、实验内容 (1)x(n)={1 0≤n ≤50 其他构造DFT 函数计算x(n)的10点DFT ,20点DFT并画出图形;(2)利用FFT 对下列信号逐个进行谱分析并画出图形 a 、x 1(n)=R 4(n); b 、x 2(n)=cos π4n ; c 、x 3(n)=sin π8n以上3个序列的FFT 变换区间N=8,16(3)设一序列中含有两种频率成份,f1=2HZ,f2=2.05HZ,采样频率取为fs =10HZ ,即)/2sin()/2sin()(21s s f n f f n f n x ππ+=要区分出这两种频率成份,必须满足N>400,为什么? a.取x(n)(0≤n<128)时,计算x(n)的DFT X(k)b.将a 中的x (n )以补零方式使其加长到0≤n<512,计算X(k)c.取x(n)( 0≤n<512),计算X(k)(4)令)()()(32n x n x n x +=用FFT 计算16点离散傅立叶变换并画出图形,分析DFT 的对称性 (5))()()(32n jx n x n x +=用FFT 计算16点离散傅立叶变换并画出图形,分析DFT 的对称性 三、实验代码 (1)1、 代码function[Xk]=dft(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk; %离散傅立叶变换方法定义N=10; %10点DFTn1=[0:N-1];x1=[ones(1,6),zeros(1,N-6)]; %生成1行6列的单位矩阵和1行N-6列的0矩阵Xk1=dft(x1,N); %10点DFTfigure(1);subplot(2,1,1);stem(n1,x1); %画火柴图xlabel(‘n’);ylabel(‘x(n)’);subplot(2,1,2);stem(n1,abs(Xk1));xlabel(‘n’);ylabel(‘x(n)’);N=20;n2=[0:N-1];x2=[ones(1,6),zeros(1,14)];Xk2=dft(x2,N);figure(2);subplot(2,1,1);stem(n2,x2);xlabel(‘n’);ylabel(‘x(n)’);subplot(2,1,2);stem(n2,abs(Xk2));xlabel(‘n’);ylabel(‘x(n)’);2、运行结果图1 10点DFT图2 20点DFT3、结果分析定义x(n)的N 点DFT 为由定义知:DFT 具有隐含周期性,周期与DFT 的变换长度N 一致,这说明,变换长度不一样,DFT 的结果也不一样10)()(1-≤≤=∑-=N k W n x k X N n nkNNjN eW π2-=其中(2)1、代码N=64;n=[0:N-1];x1=[ones(1,4),zeros(1,N-4)];%定义x1(n)=R4(n)nx2=cos((pi/4)*n); %定义x2(n)=cosπ4nx3=sin((pi/8)*n); %定义x3(n)=sinπ8y1=fft(x1);y2=fft(x2);y3=fft(x3); %分别进行DFTfigure(1);m1=abs(y1);subplot(2,1,1); %绘制x1(n)的图形stem(n,x1);subplot(2,1,2); %绘制x1(n)的DFT图形stem(n,m1)figure(2);m2=abs(y2);subplot(2,1,1);stem(n,x2); %绘制x2(n)的图形subplot(2,1,2);stem(n,m2); %绘制x1(n)的DFT图形figure(3);m3=abs(y3);subplot(2,1,1);stem(n,x3); %绘制x3(n)的图形subplot(2,1,2);stem(n,m3); %绘制x1(n)的DFT图形2、运行结果图3 x1(n)的DFT前后图形图4 x2(n)的DFT前后图形图5 x3(n)的DFT前后图形3、结果分析由图可以看出,离散序列的DFT与对应连续函数的FT有对应关系,不同之处在于DFT的结果是离散的,而FT的结果是连续的,再者,DFT结果与DFT 的变换长度N有关。
(3)a、1、程序N=256;n=[0:N-1];x=sin(2*pi*2*n/10)+sin(2*pi*2.05*n/10); %定义xX=fft(x); %DFTfigure(1);subplot(2,1,1);stem(n,x); %绘制xsubplot(2,1,2);plot(n,abs(X)); %绘制DFT后的图形2、运行结果图6 长度为256的DFTb、1、程序N=128;n=[0:N-1];n1=[0:511];x=sin(2*pi*2*n/10)+sin(2*pi*2.05*n/10);x1=[x,zeros(1,384)]; %以补零方式将n加长到512 X1=fft(x1);figure();subplot(2,1,1)stem(n1,x1); %绘制xsubplot(2,1,2);plot(n1,abs(X1)) %绘制DFT后的图形2、运行结果图7 以补零方式加长到512的DFTC、1、程序N1=512;n2=[0:N1-1];x2=sin(2*pi*2*n2/10)+sin(2*pi*2.05*n2/10); %长度为512时变换X2=fft(x2);hold onfigure();subplot(2,1,1);stem(n2,x2); %绘制xsubplot(2,1,2);plot(n2,abs(X2)); %绘制DFT后的图形2、运行结果图8 长度为512的DFT3、结果分析由三种情况下的DFT结果可知,要区分信号中的两个不同频率,需要有一定个数的N,也就是说,N要足够大才可以区分开两个频率;第一种N,N<400,因此DFT后二者频率未被区分开来;第二种N,N以补零的方式加长到512点,大于400,则可以将二者频率区分开来;第三种N,N>400,二者频率分开了;也就是说,区分不同频率从DFT的角度来讲只要加长N的长度,而不管是以补零方式加长还是其他方式加长。
(4)1、程序N=16;n=[0:N-1];x2=cos((pi/4)*n);x3=sin((pi/8)*n);x=x2+x3; %定义前述的序列x2(n)、x3(n)和x(n)y2=fft(x2);y3=fft(x3); y=fft(x); %对x2(n)、x3(n) 和x(n)进行傅立叶变换figure(1);m2=abs(y2);subplot(2,1,1);stem(n,x2); %绘制x2(n)的图形subplot(2,1,2);stem(n,m2) %绘制DFT后的x2(n)图形figure(2);m3=abs(y3);subplot(2,1,1);stem(n,x3); %绘制x3(n)的图形subplot(2,1,2);stem(n,m3); %绘制DFT后的x3(n)图形figure(3);m=abs(y);subplot(2,1,1);stem(n,x); %绘制x(n)的图形subplot(2,1,2);stem(n,m); %绘制DFT后的x(n)图形2、运行结果图9 x2(n)DFT前后的图形图10 x3(n)DFT前后的图形图11 x(n)DFT前后的图形3、结果分析a、x2(n)为实偶对称序列(余弦序列),也可以认为是共轭对称序列;b、x3(n)为实奇对称序列(正弦序列),也可以认为是共轭反对称序列;c、x(n)可以认为是一个分成了共轭对称和共轭反对称序列的实序列,则其DFT的实部对应x2(n),其虚部和j一起对应x3(n);以上就是DFT的共轭对称性的一部分。
(5)1、程序N=16;n=[0:N-1];x1=cos((pi/4)*n)+j*sin((pi/8)*n);y1=fft(x1);figure(1);m1=abs(y1);subplot(2,1,1);stem(n,x1); %绘制x1(n)的图形subplot(2,1,2);stem(n,m1); %绘制DFT后的x1(n)图形2、运行结果图12 x1(n)DFT前后的图形3、结果分析X1(n)可以认为是一个分成了实部和虚部的序列,则其DFT的实部对应共轭对称序列,其虚部和j一起对应共轭反对称序列。
就是DFT的共轭对称性的另一部分。
四、实验小结通过此次实验,我进一步加深DFT算法原理和基本性质的理解;熟悉FFT算法的原理;知道了如何用FFT对连续信号和时域离散信号进行谱分析的方法分析误差及其原因,以便在实际中正确应用FFT。
同时此次实验也加深了我对课本知识的理解,能更加熟练的将课本知识运用的实际问题中。