由PLC控制的电液步进式液压缸
- 格式:doc
- 大小:18.50 KB
- 文档页数:2
机电综合实验重庆理工大学液压系统的PLC控制实验报告书姓名:王*班级:107040208学号:***********指导老师:张*实验时间:2011/2/22~2011/2/25目录一、实验目的与要求 (3)二、总体方案 (4)三、液压控制回路 (5)四、得失电状态表 (8)五、电气原理图 (9)六、I/O端口分配 (11)七、程序设计与系统流程图 (12)八、自我总结 (16)九、程序清单 (18)附录本组成员名单及任务分配 (23)一、实验目的与要求1、实验目的(1)能熟悉基于plc控制的液压系统开发流程,并设计一个具体的气动、液压系统。
(2)熟悉并掌握各种液压元件的技术参数和使用方法。
(3)熟练掌握plc编程方法。
(4)能熟练使用梯形图编写液压系统的控制软件。
(5)搭建具体硬件(含油、电路)连接,并完成软硬件的联调。
2、实验器材计算机、液压泵、各种液压阀、气动元件、油管、液压接头、plc实验板、导线。
3、实验要求根据本人在本次实验中学习到的相关知识作答。
(1)详细说明本次实验设计思路、方案,画出动作循环、系统油路、控制电路原理图,并文字说明。
(2)详细说明plc控制流程,确定输入/输出口,作I/O规划。
(3)画出plc控制梯形图,要求自锁、定时器。
(4)说明本次实验使用的传感器,与控制电路的接口。
(5)自我总结。
二、总体方案1、根据实验要求,本组最终确定的方案为能够在X-Y方向上铣削出工件的平面,机械本体如图(1)所示。
图(1)如图(1)是一个XY轴十字滑台,其上面有一个可以固定工件的平台。
此XY轴十字滑台是在铣平面的时候用的,采用液压缸控制。
其各个阶段的速度包括工进,快进,快退都是由液压回路里的调速阀控制。
由于铣床只要求铣完整个平面,而不要求其能够加工出各种图案。
故采用这样的方法来调速是可以的。
图中的ST1、ST2、ST3、ST4接近开关所在的位置是滑台整个的工作范围。
ST0是滑台的原点位置。
基于PLC的液压同步系统的程序设计方法在液压系统中,经常要求系统能控制处理多个执行机构同步运行的问题。
下面以笔者为国内某热电厂所设计的由一台PLC和四个电液比例阀组成的系统为例,说明同步系统的组成及程序设计方法。
一、系统组成系统由PLC、电流比例阀、齿轮双齿条油缸及转动执行机构等部分组成。
由PLC控制四个电液比例阀分别驱动四个齿轮双齿条油缸,带动四个执行机构转动。
控制要求规定:四个执行机构转动时,其转动速度应同步,最终的转动位置角度应相同。
系统的PLC选用Koyo SZ-4型产品,其各种模块安装在机架内的不同槽位上,I/O点的地址定义号由该模块所在的槽位决定,八槽机架所安装的模块类型及其地址定义号如图1所示。
图1系统的开关量输入模块选用8ND1型和16ND1型24VDC模块,它们的地址号为1010 ~1077,共56点。
主要用来连接按钮输入信号和接收绝对式旋转编码器发生的编码信号。
开关量输出模块选用8TR1型24VDC模块,它的地址号为~010~Q017,主要用来连接各种指示灯。
模拟量输出模块的型号为2DA2,该D/A模块提供2路-10V~—+10V的输出电压。
Z-CTIF为高速计数模块,该模块用于接收增量式旋转编码器发来的高速脉冲。
比例阀选用的是4WRZ16型先导式电液比例换向阀,其电源形式为直流24V,电磁铁名义电流为800mA。
由PLC输出的-10V~+10V电压控制功率放大器输出-800mA~+800m A电流,输出电流的大小决定了电液比例阀阀口的开度。
系统选用Koyo TRD-NA360PW绝对式旋转编码器作为执行机构转动角度检测反馈元件。
当电液比例阀驱动齿轮双齿条油缸带动执行机构低速转动时,绝对式旋转编码器可将执行机构的转动位置角度实时反馈给PLC。
系统选用的增量式旋转编码器用于发出执行机构转动方向和转动角度大小的指令。
二、程序设计方法1、旋转编码器数据采集的编程方法图2为绝对式旋转编码器和增量式旋转编码器数据采集的部分程序。
液压系统plc控制实例精解液压系统是一种重要的动力传动方式,广泛应用于各个领域。
而PLC(Programmable Logic Controller,可编程逻辑控制器)作为一种现代化的控制设备,能够对液压系统进行智能化的控制和管理。
本文将通过一个实例,详细介绍液压系统PLC控制的具体过程和应用。
我们来了解一下液压系统的基本原理。
液压系统通过液体的流动和压力传递来实现力的传递和工作机构的运动控制。
它由液压泵、执行元件、控制元件和液压储能装置等组成。
液压泵将机械能转化为液压能,通过液压管路将液压能传递给执行元件,从而实现工作机构的运动。
而PLC作为控制元件,通过对液压系统的各个部分进行控制和监测,实现对工作机构的精确控制。
接下来,我们以一个自动压力控制系统为例,详细介绍液压系统PLC控制的实现过程。
该系统主要包括液压泵、液压缸、电磁阀和传感器等组成。
其中,液压泵负责提供压力源,液压缸负责执行工作,电磁阀负责控制液压流向,传感器负责监测压力信号。
PLC作为控制中心,通过对传感器信号的采集和处理,以及对电磁阀的控制,实现对液压系统的自动控制。
PLC需要通过输入模块对传感器信号进行采集。
传感器安装在液压缸的压力管路上,能够实时监测液压系统的压力变化。
当压力达到设定的上下限时,传感器会将信号传递给PLC。
PLC通过输入模块接收到传感器信号后,会对信号进行处理和判断,判断液压系统的压力是否需要调整。
然后,PLC会根据预设的控制逻辑和算法进行计算和判断,确定是否需要调整液压系统的工作状态。
当判断需要调整时,PLC会通过输出模块对电磁阀进行控制。
电磁阀负责控制液压系统的流向,通过开启或关闭液压管路,实现对液压缸的运动控制。
当电磁阀被控制为开启状态时,液压泵提供的液压能够进入液压缸,使其产生相应的运动。
当液压系统的压力达到设定值时,传感器会再次将信号传递给PLC。
PLC会根据信号进行判断,如果压力已经达到设定值,则关闭电磁阀,停止液压泵的工作,从而实现对液压系统的自动控制。
1.单缸连续往复控制回路(气动)1、实验题目:单缸连续往复控制回路(气动)2、实验原理:如图所示,三位四通的电磁阀1YA 、1YB分别外接PLC的Q0.0、Q0.1的输出端子;当三位四通电磁阀还没通电时,液压缸静止,开始按液压缸启动按钮SB1,液压杆开始,当运动到最左端时,Q0.0输出1YA通电时,换向阀向左移动,液压杆向右运动;当运动到最右端时,Q0.1输出1YB通电,换向阀向右移动,液压杆向左快退运动。
通过感应开关SQ1、SQ2来控制PLC程序的Q0.0、Q0.1交换输出,再控制换向阀1YA、1YB 通电,使液压缸自动往复运动。
工作原理图I/O分配表输入输出操作功能地址操作功能地址启动SB1 p 向右运动0.0 停止SB2 I0.1 向左运动0.1 SQ1 I0.2SQ2 I0.3PLC程序PLC外部接线:3、实验目的:通过实验,了解气动的运动原理,通过PLC控制实现液压缸的自动往复运动。
4、实验内容:通过感应开关控制PLC的输入实现液压缸自动往复运动工作无杆腔通气,有杆腔回放气时,杆前进;有杆腔通气,无杆腔放气时,杆快进。
5、实验步骤:1、根据实验需要选择元件(单杆双作用缸、单向节流阀、接近开关、三位五通双电磁换向阀、三联件、连接软管)。
并检验元件的实用性能是否正常。
2、看懂原理图后,搭建实验回路。
3、将三位五通双电磁换向阀和接近开关的电源输入口插入相应的控制板输出口。
4、确认连接安装正确稳妥,把三联件的调压旋钮放松,通气,开启气泵。
待泵工作正常,再次调节三联件的调压旋钮,使回路中的压力在系统工作压力以内。
5、当电磁阀作为得电后,压缩空气经过电磁阀过单向节流阀进入缸的左腔,活塞向右运行;当活塞杆靠近开关时电磁阀右位接入,压缩空气过电磁阀的右位和单向节流阀进入缸的右腔,活塞在压缩空气的作用下左运行。
6、当活塞杆靠近左边接近开关时电磁阀换位,压缩空气进入缸的右腔,活塞在压缩空气的作用下向左运行。
以PLC为基础的控制系统在闸门液压自动启闭机上的应用探讨一、闸门液压自动启闭机的基本原理闸门液压自动启闭机是一种常用于水利工程中的设备,其主要功能是通过液压系统控制闸门的启闭动作。
通常情况下,闸门的启闭需要通过操作人员手动控制,这不仅工作效率低下,而且存在一定的安全隐患。
采用液压自动启闭机能够提高闸门的启闭效率,同时也能够保证操作人员的安全。
液压自动启闭机的基本原理是通过液压缸来实现闸门的启闭动作。
液压缸的工作原理是利用液压传动的力和运动,将能量转换成机械能。
当液压油通过油泵送入液压缸内部时,液压缸的活塞就会向前或者向后运动,从而使得闸门实现启闭动作。
而在这个过程中,控制系统将起着至关重要的作用。
二、以PLC为基础的控制系统以PLC为基础的控制系统主要由PLC控制器、输入/输出模块、人机界面、执行元件等组成。
PLC控制器是控制系统的核心部分,它通过程序控制来实现对液压自动启闭机的控制和调节。
输入/输出模块用于连接传感器和执行器,实现与外部设备的通信。
人机界面则是为了方便操作人员进行监控和操作。
而执行元件则是根据PLC控制器的指令来进行动作的执行。
1. 实现闸门的精确控制在闸门液压自动启闭机中,由于工作环境的复杂性,要求对闸门的启闭动作进行精确控制。
而PLC控制系统可以通过程序设计和逻辑控制,实现对液压缸的精确控制,从而准确实现闸门的启闭动作。
PLC控制系统还可以实时监测液压缸的运行状态,及时发现问题并进行处理,确保闸门的安全和稳定运行。
2. 实现自动化操作液压自动启闭机的主要目的就是实现对闸门启闭动作的自动化操作。
而PLC控制系统能够基于预设的程序和逻辑进行自动控制,无需人工干预,大大提高了操作效率。
可以通过PLC控制系统实现对闸门的定时启闭,根据特定的时间和条件来自动进行启闭动作,无需人工参与。
3. 实现远程监控随着现代化技术的发展,远程监控已经成为工业控制的一个重要趋势。
而PLC控制系统具有较好的通信能力,可以实现与上位机或者工业自动化系统进行连接。
目录引言.............................................. 错误!未定义书签。
第一章负载与运动分析1第二章液压系统方案设计22.1选用执行元件 (2)2.2速度控制回路的选择 (2)2.3选择快速运动和换向回路 (3)2.4速度换接回路的选择 (3)2.5组成液压系统原理图 (4)2.6系统图的原理 (4)第三章梯形图和流程图63.1 梯形图 (6)3.2 流程图 (7)3.3程序 (7)第四章液压系统性能验算74.1验算系统压力损失并确定压力阀的调整值 (7)4.2油液温升验算 (8)第五章设计小结8第六章参考文献错误!未定义书签。
引言液压系统已经在各个部门得到越来越广泛的应用,而且越先进的设备,其应用液压系统的部门就越多。
液压传动是用液体作为来传递能量的,液压传动有以下优点:易于获得较大的力或力矩,功率重量比大,易于实现往复运动,易于实现较大围的无级变速,传递运动平稳,可实现快速而且无冲击,与机械传动相比易于布局和操纵,易于防止过载事故,自动润滑、元件寿命较长,易于实现标准化、系列化。
液压传动的根本目的就是用液压介质来传递能量,而液压介质的能量是由其所具有的压力及力流量来表现的。
而所有的根本回路的作用就是控制液压介质的压力和流量,因此液压根本回路的作用就是三个方面:控制压力、控制流量的大小、控制流动的方向。
所以根本回路可以按照这三方面的作用而分成三大类:压力控制回路、流量控制回路、方向控制回路。
第一章负载与运动分析负载分析中,暂不考虑回油腔的背压力,液压缸的密封装置产生的摩擦阻力在机械效率中加以考虑。
因工作部件是卧式放置,重力的水平分力为零,这样需要考虑的力有:夹紧力,导轨摩擦力,惯性力。
在对液压系统进展工况分析时,本设计实例只考虑组合机床动力滑台所受到的工作负载、惯性负载和机械摩擦阻力负载,其他负载可忽略。
〔1〕工作负载F W工作负载是在工作过程中由于机器特定的工作情况而产生的负载,对于金属切削机床液压系统来说,沿液压缸轴线方向的切削力即为工作负载,即〔2〕阻力负载Ff阻力负载主要是工作台的机械摩擦阻力,分为静摩擦阻力和动摩擦阻力两局部。
基于PLC的液压控制系统设计与实现摘要:随着现代科技技术的不断进步,促使中国工业领域也逐渐转向自动化控制的方向发展。
PLC作为新兴的工业控制器,其不仅具备较高的可靠性,同时还拥有目前工业领域中较先进的技术,PLC控制系统在工业领域中得到了广泛的推广与应用。
PLC控制系统作为目前较为先进技术,其可以充分取代传统的电力控制系统,以便可以充分确保达到准确度、控制、可靠性较高的标准,同时在确保工业生产效率与自动化生产质量的同时,可以充分增加系统的实用性,从根本上降低系统出现故障的概率。
关键词:PLC;液压系统;PLC控制系统引言液压系统是一个非常典型的非线性系统,且带有惯性过程。
针对传统液压控制系统的不足,为使其拥有更好的性能和人性化操作界面,构建和介绍了基于PLC的液压控制系统,该系统经实践证明具备可使用性。
一、液压系统硬件结构及工作原理常规的液压控制系统只拥有单个液压缸,但因为压力表的里程范围较大,通常情况下单个液压缸的里程范围为0.6~60MPa,促使压力表的回弹性能结构之间的差距也较大。
目前针对压力表的中高里程(20~60MPa)展开检定时,其可以充分满足生产的基本要求。
但对于压力表的而言,例如:20MPa~10MPa以下的量程展开检定的过程中,系统的控制极易出现超调的情况,通过升级软件的方式也无法将这项问题从根本上解决掉,因此在实际研究液压控制系统的硬件时,可选择在原有的液压缸上增加一个小型的压力缸,并将其通过控制压力装置连接至系统中,将其作为具备辅助功能的压力源,当运行液压控制系统的过程中两种液压缸之间可以相互协作,共同完成实际生产控制工作。
在实际试验的过程中,可以将传统液压缸与小型液压缸的截面比例控制在4∶1,同时还需要将其有效里程范围控制在250mm 之内,在运行控制系统的过程中,当小型液压缸的压力值可以达到1~2MPa时,其与实际压力表中里程的范围之间差距较大,不可以满足实际需求。
所以根据实际结果可知,在实际运行控制系统的过程中,需要将大型液压缸作为控制的主要环节,将小型液压缸作为调节压力的环节。
PLC在船舶制造中的应用在船舶制造中,PLC(可编程逻辑控制器)是一种关键的自动化控制设备,广泛应用于船舶的各个系统和过程中,以提高生产效率、保障安全和质量。
本文将探讨PLC在船舶制造中的应用。
一、PLC在船舶电气系统中的应用在船舶电气系统中,PLC扮演着重要的角色。
它能够通过逻辑控制实现对船舶各个电气设备的自动化控制。
例如,在船舶的供电系统中,PLC能够通过监测电压、电流和频率等参数,实现对发电机组的启动、停止和并网控制。
此外,船舶上的照明系统、通信系统以及动力系统等也可以通过PLC进行智能化控制。
二、PLC在船舶液压系统中的应用船舶的液压系统对于船体的运行和操作至关重要。
PLC可以通过控制液压系统的阀门、泵站和执行器等关键部件,实现对船舶液压系统的自动化控制。
例如,在船舶的舵机系统中,PLC能够通过接收舵机操纵杆的指令,控制舵机的角度,实现对船舶舵角的精确调节。
此外,PLC还可以实现对船舶的液压缸、液压泵和液压阀等设备的自动控制,提高船舶的操作效率和安全性。
三、PLC在船舶自动化生产线中的应用在船舶制造过程中,自动化生产线的应用能够提高生产效率、降低人工成本,并确保产品质量。
PLC在船舶自动化生产线中具有广泛的应用。
例如,在船舶钣金加工过程中,PLC能够控制数控切割机、自动焊接机和涂装机等设备的运行,实现对船舶构件的自动化加工。
此外,PLC还可以与机器人系统和物流输送系统等设备集成,实现船舶制造过程中的自动化控制和协调。
四、PLC在船舶安全系统中的应用船舶的安全性对于船舶制造和航行至关重要。
PLC在船舶安全系统中的应用能够有效地提高船舶的安全性能。
例如,在船舶的火灾报警系统中,PLC可以实现对火灾探测器和报警装置的自动控制,及时发现和处理火灾隐患。
此外,PLC还可以应用于船舶的气体检测系统、泄漏报警系统和船舶自动消防系统中,确保船舶及其人员的安全。
五、PLC在船舶监控与维护中的应用船舶的监控与维护对于保障船舶的正常运行和延长使用寿命至关重要。
PLC在液压控制系统中的应用案例随着科技的不断发展,PLC(可编程逻辑控制器)在控制系统中的应用越来越广泛。
液压控制系统作为工业自动化领域中的一项重要技术,也不断受益于PLC的发展和应用。
本文将通过一个实际案例,介绍PLC在液压控制系统中的应用。
案例背景:某工厂生产线上有一个液压系统,用于驱动一个液压缸完成产品的加工过程。
在传统的液压控制系统中,使用传感器和继电器来实现控制,在加工过程中存在一些问题,如响应速度慢、控制精度不高等。
为了解决这些问题,工厂决定引入PLC控制技术。
PLC在液压控制系统中的应用:1. 硬件配置:工厂采购了一台适用于液压控制的PLC控制器,并通过输入输出模块与液压系统和其他设备进行接口连接。
PLC控制器能够接收和处理各种传感器和执行器的信号。
2. 程序开发:工程师根据液压控制系统的要求,使用PLC编程软件开发了对应的控制程序。
该程序包括输入/输出的配置,信号的处理和逻辑控制。
3. 传感器信号的采集与处理:PLC通过数字输入模块采集液压系统中的压力传感器和位移传感器的信号。
这些信号被反馈到PLC控制器进行实时处理。
4. 控制策略的设计:工程师根据加工过程的需求,设计了液压缸的控制策略。
通过PLC控制器,控制液压泵的启停,调节液压缸的运动速度和位置。
5. 报警与保护功能:PLC控制器还具备报警和保护功能。
当液压系统发生异常情况时,PLC能够立即响应并触发相应的报警和保护措施,防止设备损坏。
6. 人机界面:工程师还设计了一个人机界面,通过触摸屏与PLC进行交互。
操作员可以通过触摸屏监视和控制整个液压控制系统的运行。
案例效果与总结:通过引入PLC控制技术,液压控制系统的性能得到了显著提升。
PLC的高速运算和精确控制使得液压缸的响应速度加快,提高了加工效率和控制精度。
此外,PLC还具备即时报警和保护功能,保障了设备和操作人员的安全。
总之,PLC在液压控制系统中的应用案例证明了其在工业自动化领域中的重要性和价值。
plc课程设计Cad版本 PLC控制图纸(整套)请添加626895124题目压力机液压及控制系统设计Cad版本 PLC控制图纸(整套)请添加626895124目录1.工况分析与计算-------------------------------------------------(P5)1.1工况分析---------------------------------------------------(P5)1.2工作循环-----------------------------------------------------(P5) 1.3压力机技术参数---------------------------------------------(P5)1.4负载分析与计算---------------------------------------------(P6)2.液压系统的设计-------------------------------------------------(P8)2.1执行元件类型的选择----------------------------------------(P8)2.2控制回路选择与设计----------------------------------------(P8)2.2.1方向控制回路------------------------------------------(P8)2.2.2速度控制回路------------------------------------------(P9)2.2.3压力控制回路------------------------------------------(P9)2.2.4液压油源回路------------------------------------------(P9)2.2.5液压系统的合成----------------------------------------(P10)2.3液压元件的计算和选择--------------------------------------(P11)2.3.1液压泵的选择------------------------------------------(P11)2.3.2辅助元件的选择----------------------------------------(P12)2.3.3液压系统的性能验算----------------------------------- (P14)3.液压压力机控制系统设计--------------------------------------- (P15)3.1 plc概述---------------------------------------------------(P15)3.2 plc控制部分设计------------------------------------------(P16)3.2.1控制系统采用plc的必要性------------------------------(P16)3.2.2 PLC的功能---------------------------------------------(P17)3.2.3 PLC的选型--------------------------------------------(P18)3.2.4 PLC输入/输出分配表-----------------------------------(P19)2.2.5 PLC控制程序设计--------------------------------------(P21)4.结论----------------------------------------------------------(P22)参考文献--------------------------------------------------------(P23)10T压力机液压及控制系统设计摘要:液压压力机是一种利用液体静压力来加工金属、塑料、橡胶、木材、粉末等制品的机械。
基于PLC的液压机控制系统设计刘俊,李文(大连交通大学电气信息学院,辽宁大连116028)摘 要:针对传统液压机控制系统的不足,为使其拥有更好的性能和人性化操作界面,构建了基于PLC与工业触摸屏的电气控制系统整体结构,设计采用三菱FX1N PLC作为主控核心,实现的功能分别为与上位机的数据交换,对液压机外围硬件电路以及内部阀体控制和对压力、位移、温度的数据检测。
并给出相应的PLC程序及部分上位机界面设计。
应用结果表明,与传统设计相比,该系统既可以实现自动优化运行,又可以满足手动控制的操作要求,提高了工作效率,是机电一体化的典型应用。
关键词:液压控制;电气控制;可编程逻辑控制器;数据检测;人机界面中图分类号:TH137;TM57 文献标志码:B 文章编号:1671 5276(2011)01 0157 04Control Syste m Design of Hydraulic Press Based on PLCL I U Jun,L IW en(E l e ctrica l and Infor m a tion I nstit u t e,Da lian Jiao t ong Un ive rsity,Da li a n116028,Ch ina)Abstrac t:To m ake up f or t he short age in t he traditional control sys t e m f or hydr auli c pr ess,t his paper constructs t he overall s truc t ure of e l e ctrical contr o l sys t e m based on PL C and indus trial touch screen.I n or der t o m ake t his sys t e m has bett er perf or mance and hu manized operati o n int erf ace,M it sub i s hi FX1N PLC is used as the core t o rea lize its f unction data exchange w ith PC,t he contro l of the peripheral hard w ar e c ircuits and int ernal valves,and t he data de t ec tion i n t he pressure,displace ment and t e mperat ure.And ita lso of f ers the des i g n o f t he corr espond i n g PL C procedure and part o f t he PC int erf ace des ign.Runn i n g result sho w s that co m pared w ith t he trad iti o nal des ign,the syst em not on l y can r eali z e the aut omatic op tm i al oper a ti o n,but also can mee t t he perf or mance require ment s f or manual contr o l and m i prove work effi c iency.This is a typica l appli c ati o n ofmechanical and elec trica l int egrati o n.K ey word s:hydraulic contr o;l e l e ctrical contro;l PL C;dat a det ecti o n;HM I(H u manM achine Int erf ace)0 引言转向架可以说是铁道车辆上最重要的部件之一,它直接承载车体质量,保证车辆顺利通过曲线。
PLC液压控制实例课程设计一、课程目标知识目标:1. 学生能理解PLC液压控制的基本原理,掌握液压系统的组成部分及工作流程。
2. 学生能掌握PLC编程中与液压控制相关的指令,并能运用这些指令进行简单的液压控制程序编写。
3. 学生能了解液压控制在工业生产中的应用及重要性。
技能目标:1. 学生能运用所学知识,设计简单的PLC液压控制程序,实现特定的工作任务。
2. 学生能通过实际操作,掌握液压元件的安装、调试及故障排查方法。
3. 学生能运用相关软件进行PLC液压控制系统的模拟与优化。
情感态度价值观目标:1. 学生通过课程学习,培养对自动化技术及液压控制技术的兴趣,激发创新意识。
2. 学生能够认识到PLC液压控制在实际生产中的重要作用,增强社会责任感和使命感。
3. 学生在团队协作中,培养沟通、协作能力,提高解决问题的信心和决心。
课程性质:本课程为实践性较强的课程,结合理论教学和实际操作,培养学生动手能力和实际应用能力。
学生特点:学生具备一定的电气控制基础和PLC编程知识,对液压控制有一定了解,但对实际应用尚不熟悉。
教学要求:注重理论与实践相结合,充分调动学生的主观能动性,引导学生通过实际操作掌握液压控制技术,提高学生的综合应用能力。
在教学过程中,关注学生的个体差异,给予个性化指导,确保课程目标的实现。
通过对课程目标的分解,为后续教学设计和评估提供明确依据。
二、教学内容1. PLC液压控制基本原理:介绍液压系统的组成、工作原理及液压油的选择,重点讲解液压泵、液压缸、液压马达等主要元件的作用及性能。
2. PLC液压控制编程:结合课本内容,讲解与液压控制相关的PLC指令,如位指令、字指令、比较指令等,以及编程软件的使用方法。
3. 液压控制程序设计:根据实际案例,指导学生设计简单的PLC液压控制程序,实现特定功能,如顺序动作、压力控制、速度控制等。
4. 液压控制系统安装与调试:介绍液压元件的安装方法、调试步骤及注意事项,结合实际操作,使学生掌握液压系统的搭建和调试技能。
plc对液压基本回路综合实验台的控制设计PLC对液压基本回路综合实验台的控制设计液压技术在现代工业中得到了广泛的应用,液压基本回路综合实验台是液压技术教学中必不可少的设备。
为了更好地进行实验教学,需要对实验台进行控制设计。
本文将介绍PLC对液压基本回路综合实验台的控制设计。
一、实验台的基本结构液压基本回路综合实验台主要由液压泵、液压缸、液压阀、压力表、流量表、油箱等组成。
实验台的基本结构如下图所示:二、PLC控制系统的设计PLC控制系统是实验台的核心部分,它可以实现对实验台的自动控制和监测。
PLC控制系统的设计包括硬件设计和软件设计两个方面。
1. 硬件设计硬件设计主要包括PLC选型、输入输出模块选型、电源选型等。
在选型时需要考虑实验台的控制要求和实验数据的采集要求。
一般情况下,我们可以选择一款功能强大、性价比高的PLC,如西门子S7-200系列PLC。
输入输出模块可以根据实验台的控制要求进行选型,如需要控制液压泵的启停,可以选择一个开关量输入模块和一个继电器输出模块。
电源选型需要考虑PLC和输入输出模块的电压要求,一般情况下,我们可以选择一个稳定可靠的交流电源。
2. 软件设计软件设计主要包括PLC程序设计和人机界面设计两个方面。
PLC程序设计是实验台控制的核心,它可以实现对实验台的自动控制和监测。
PLC程序设计需要根据实验台的控制要求进行编写,如需要控制液压泵的启停,可以编写一个简单的控制程序,如下所示:人机界面设计是实验台控制的重要组成部分,它可以实现对实验数据的采集和显示。
人机界面设计需要根据实验数据的采集要求进行设计,如需要采集液压泵的压力和流量,可以设计一个简单的数据采集界面,如下所示:三、实验结果分析经过PLC控制系统的设计,实验台可以实现对液压泵、液压阀等设备的自动控制和监测。
实验数据可以通过人机界面进行采集和显示,方便教师和学生进行实验教学。
实验结果表明,PLC控制系统的设计可以有效提高实验台的自动化程度和数据采集精度,为液压技术教学提供了有力的支持。
数字式电液步进液压缸是由步进电机和液压力放大器组成的,其输出力可达上万牛顿。
因此,常用于重型精密机械的伺服进给系统中,如轧钢机的压下机构和轧辊磨床的进给机构。
液压力放大器是一个直接位置反馈式液压伺服机构,由控制滑阀、液压缸和螺杆-螺母反馈机构组成,见图l。
当步进电机在输入脉冲的作用下转过一个步距角时,经齿轮带动滑阀的阀芯旋转,由于活塞尚未移动使滑阀的阀芯产生一定的轴向位移,阀口打开,压力油进入液压缸使活塞外伸同时反馈螺母带动滑阀的阀芯退回零位,活塞停止运动。
如果连续输入脉冲电液步进液压缸即按一定的速度外伸,改变输入脉冲的频率即可改变活塞的速度。
电液步进液压缸是增量式数字控制电液伺服元件,即步进电机作电信号一机械位移的转换元件。
图2是增量数字控制电液伺服元件的控制方框图。
微机发出控制脉冲序列经驱动电源放大驱动步进电机运动:步进电机的运动严格与液压力放大器的运动成比,即微机的控制脉冲严格控制电液步进液压缸的运动:电液步进液压缸的位移与控制脉冲的总数成正比;而电液步进液压缸的运动速度与控制脉冲的频率成正比因此,电液步进液压缸的控制就在于步进电机的控制步进电机可以采用微计算机或可编程控制器(PLC)进行控制。
PLC具有通用性强、可靠性高、指令系统简单、编程简便易学、易于掌握、体积小、维修工作少、现场接口安装方便等一系列优点。
因而目前绝大部分采用液压传动的系统,如大型组合机床、加工中心、轧钢机的压下机构和轧辊磨床的进给机构等均采用PLC控制技术;而电液步进液压缸的PLC控制只占用PLC的3~5个I/O接口及几十Bit的内存,且可以省去电液步进液压缸的控制微机使控制系统简洁、成本显著下降,可靠性大大提高,更显示出其卓越的性能。
1 电液步进液压缸的PLC控制方法
电液步进液压缸的控制主要有三个因素:
(1)活塞行程控制。
由电液步进液压缸的工作原理和特性可知电液步进液压缸的活塞位移正比于所输入的控制脉冲个数;因此可以根据电液伺服机构的位移量确定PLC输出的脉冲个数:
n=ΔL/δ (1)
式中:△L —电液伺服机构的位移量(mm);
δ—电液伺服机构的脉冲当量(mm/脉冲)。
(2)活塞速度控制。
电液步进液压缸的活塞速度取决于输入的脉冲频率;因此可以根据电液伺服机构的速度,确定其PLC输出的脉冲频率:
f=Vf/60δ (2)
式中:Vf—电液伺服机构的进给速度(mm/min)。
(3)活塞运动方向控制。
电液步进液压缸的运动方向由步进电机的转向进行控制。
步进电机的转向可以通过改变步进电机各绕组的通电顺序来改变其转向;如三相步进电机通电顺序为A—AB—B—BC—C一CA—A⋯时步进电机正转;当绕组按A—AC—C—CB—B—BA—A⋯顺序通电时步进电机反转。
因此可以通过PLC输出的方向控制信号改变硬件环行分配器的输出顺序来实现,或经编程改变输出脉冲的顺序来改变步进电机绕组的通电顺序实现。
2 电液步进液压缸的伺服控制、驱动及接口
2.1 电液步进液压缸控制系统的组成
电液步进液压缸的控制系统由可编程控制器、环行脉冲分配器和步进电机功率驱动器组成,其结构见图3。
控制系统中PLC用来产生控制脉冲;通过PLC编程输出一定数量的方波脉冲,控制步进电机的转角进而控制电液步进液压缸的运动;同时通过编程控制脉冲频率,既电液步进液压缸活塞的速度;环行脉冲分配器将可编程控制器输出的控制脉冲按步进电机的通电顺序分配到相应的绕组。
PLC控制的步进电机可以采用软件环行分配器,也可以采用硬件环行分配器。
采用软环占用的PLC资源较多,特别是步进电机绕组相数M >4时,对于大型生产线应该予以充分考虑。
采用硬件环行分配器,虽然硬件结构稍微复杂些,但可以节省占用PLC的I/O口点数,目前市场有多种专用芯片可以选用。
步进电机功率驱动器将PLC输出的控制脉冲放大到几十~上百伏特、几安~十几安的驱动能力。
一般PLC的输出接口具有一定的驱动能力,而通常的晶体管直流输出接口的负载能力仅为十几~几十伏特、几十一几百毫安。
但对于功率步进电液压英才网用心专注、服务专业
机则要求几十~上百伏特、几安~十几安的驱动能力,因此应该采用驱动器对输出脉冲进行放大。
2.2 可编程控制器的接口
如电液步进液压缸采用硬件环行分配器,则占用PLC的I/O口点数少于5点,一般仅为3点。
其中I口占用一点,作为启动控制信号;O口占用2点,一点作为PLC的脉冲输出接口,接至伺服系统硬环的时钟脉冲输入端,另一点作为步进电机转向控制信号,接至硬环的相序分配控制端,伺服系统采用软件环行分配器时,其接口如图5。
3 电液步进液压缸PLC控制的软件逻辑
由电液步进液压缸的PLC控制方法可知,应使步进电机的输人脉冲总数和脉冲频率受到相应的控制。
因此在控制软件上设置一个脉冲总数和脉冲频率可控的脉冲信号发生器;对于频率较低的控制脉冲可以利用PLC中的定时器构成,如图6所示。
脉冲频率可以通过定时器的定时常数控制脉冲周期,脉冲总数控制则可以设置一脉冲计数器C10。
当脉冲数达到设定值时,计数器C10动作切断脉冲发生器回路,使其停止工作。
电液步进液压缸的步进电机无脉冲输入时便停止运转,电液步进液压缸活塞定位。
电液步进液压缸速度要求较高时,可以用PLC中的高速脉冲发生器。
不同的PLC其高速脉冲的频率可达60O0~10000Hz。
对于的电液步进液压缸动态特性,其频率可以得到充分满足。
4 应用实例与结论
(1)对PLC控制的电液步进液压缸开环伺服机构进行了测试,其性能完全可以满足系统的技术要求。
控制软件结构合理,接口可靠。
(2)将PLC控制的电液步进液压缸用于某大型生产线的数控滑台,每个滑台仅占用4个I/O接口,节省了微机控制系统,进给速度为Vf=0.1-2.2m/min,完全满足工艺要求和加工精度要求,工作可靠。
液压英才网用心专注、服务专业。