3第一讲__数列的极限典型例题
- 格式:doc
- 大小:1.88 MB
- 文档页数:21
证明数列极限的题目及答案题目:证明数列$a_n =\frac{n}{n + 1}$的极限为 1证明:首先,我们需要明确数列极限的定义。
对于数列$\{a_n\}$,如果对于任意给定的正数$\epsilon$,总存在正整数$N$,使得当$n > N$ 时,都有$|a_n L| <\epsilon$ 成立,那么就称数列$\{a_n\}$的极限为$L$。
接下来,我们来证明数列$a_n =\frac{n}{n + 1}$的极限为 1。
对于任意给定的正数$\epsilon$,要使$|a_n 1| <\epsilon$,即\\begin{align}\left|\frac{n}{n + 1} 1\right|&<\epsilon\\\left|\frac{n}{n + 1} \frac{n + 1}{n + 1}\right|&<\epsilon\\\left|\frac{-1}{n + 1}\right|&<\epsilon\\\frac{1}{n + 1}&<\epsilon\\n + 1 &>\frac{1}{\epsilon}\\n &>\frac{1}{\epsilon} 1\end{align}\所以,取$N =\left\frac{1}{\epsilon} 1\right$(这里$\cdot$ 表示取整),当$n > N$ 时,就有$|a_n 1| <\epsilon$。
因此,根据数列极限的定义,数列$a_n =\frac{n}{n + 1}$的极限为 1。
题目:证明数列$b_n =\frac{1}{n}$收敛于 0证明:给定任意正数$\epsilon$,要使$|b_n 0| <\epsilon$,即\\begin{align}\left|\frac{1}{n} 0\right|&<\epsilon\\\frac{1}{n}&<\epsilon\\n &>\frac{1}{\epsilon}\end{align}\所以,取$N =\left\frac{1}{\epsilon}\right$,当$n >N$ 时,就有$|b_n 0| <\epsilon$。
数列的极限例题及详解
极限是数学分析中的一个重要概念,它描述了某种函数在某点附近的行为趋势,同时提供了有效的技术来解决数列的极限问题。
我们本文将讨论数列的极限问题,包括定义和几个例子。
一.定义
极限是一个抽象的概念,它指的是一个数列中的每一项都趋近一定的值,这个值称为数列的极限。
另外,数列的极限也称为极限点或极限值。
当然,数学家们对极限的定义更加严格,但这些都不重要,我们只需要理解数列的极限概念即可。
二.例题
1.设a_n=(-1)^n/n,求a_n的极限。
解:
首先,由于(-1)^n为一个交替变化的算子,它的值在n变大时无论n的奇偶性如何,(-1)^n的值都保持不变,因此极限就是
(-1)^n/n的值。
考虑n变大时,(-1)^n/n的值接近于0,所以a_n
的极限就是0.
2.设a_n=(1+1/n)^n,求a_n的极限。
解:
这个例题比较特殊,因为算子(1+1/n)^n这里n和指数相关,考虑当n变大时,(1+1/n)^n的值就接近于e,所以a_n的极限就是e.
3.设a_n=1/n,求a_n的极限。
解:
由于1/n的值是从1开始逐渐减小,当n变大时,1/n的值就逐渐接近于0,所以a_n的极限就是0.
三.总结
本文讨论了数列的极限问题,先介绍了数列极限的定义,然后举例说明了3种数列的极限问题,这其中包含了数列算子计算中比较常见的概念,如交替系数,和指数极限等。
希望本文对读者有所帮助。
课时3 数列的极限一、复习目标理解数列极限的概念,会判断一些简单数列的极限,了解数列极限的定义,掌握极限的四则运算法则,会求某些数列的极限.二、例题讲解:例1.求下列极限:(1)322312lim 22=++∞→n n n n ; (2)21)43(lim 22-=+-+∞→n n n n n ; (3)23)23741(lim 2222=-++++∞→n n n n n n ; (4)]2,0[,cos sin cos 3sin 2lim πααααα∈++∞→n n n n n 解:(4)当4πα=时,原式=25;当40πα<≤时,则有,1tan 0<≤α所以 原式3tan 13tan 2lim =++=∞→ααn n n ,当42παπ>≥时,则有,1cot 0<≤α所以 原式2cot 1cot 32lim =++=∞→ααn n n 例2.已知无穷等比数列}{n a 的各项和为3,前3项的和为926,求这个数列中所有奇数项的和. 解:设等比数列}{n a 的公比为q ,则⎪⎪⎩⎪⎪⎨⎧=--=-,9261)1(,31311qq a q a 解得⎪⎩⎪⎨⎧==2311a q , 等比数列的各奇数项仍成等比数列,其公比为91,故所有奇数项的和为491291=-. 例3.已知数列}{n a 满足条件:)0(,121>==r r a a ,且}{1+n n a a 是公比为q )0(>q的等比数列,设).,2,1(212 =+=-n a a b n n n 求n b 和nn S 1lim ∞→其中n n b b b S ++=21. 解:∵,2121q a a a a a a n n n n n n ==++++∴,01.0121222121≠+=≠=++=-+++r b q a a a a b b nn n n n n 所以}{n b 是首项为r +1公比为q 的等比数列,从而1)1(-+=n n q r b .当1=q 时,01lim ),1(=+=∞→nn n S r n S ; 当10<<q 时,r q S q q r S nn n n +-=--+=∞→111lim ,1)1)(1(; 当1>q 时,01lim ,1)1)(1(=--+=∞→nn n n S q q r S . 所以⎪⎩⎪⎨⎧<<+-≥=∞→.10,11,1,01lim q rq q S n n 三、同步练习:《高考三人行—学生用书》P337课时4 函数的极限一、复习目标1.熟悉函数极限的概念能正确表述并会推断简单函数的极限.2.熟悉函数极限的运算、能对函数式变型后推算函数的极限.二、例题讲解例1.判断下列函数的极限是否存在:(1))(lim ),0(11),0(1)(2x f x xx x x f x ∞→⎪⎪⎩⎪⎪⎨⎧≥+≤=; (2))(lim ),0(1),0(2)(0x g x x x g x →⎩⎨⎧<->=;(3))(lim ),1(1),1(1)(1x p x x x x x p x →⎩⎨⎧<+->-=; (4))(lim ),1()(x f a a x f x x∞→>=.解:(1)显然,当-∞→x 时,0)(→x f ;当+∞→x 时,1)(→x f .即≠+∞→)(lim x f x )(lim x f x -∞→,故)(lim x f x ∞→不存在. (2)显然,1)(lim ,2)(lim 00-==-+→→x g x g x x ,故)(lim 0x f x →不存在. (3)∵0)(lim ,0)(lim 11==-+→→x p x p x x ,∴0)(lim 1=→x p x . (4)当+∞→x 时,+∞→x a ,当-∞→x 时,0→x a ,所以)(lim x f x ∞→不存在. 例2.求下列各式的极限:(1)53512lim 222-=+--→x x x x ; 点评:当)(x f 在0x 处连续时,则可用直接代入法,即)(lim 0x f x x →=)(0x f . (2)6131lim 93lim 323=+=--→→x x x x x ; (3)21111lim 211lim 22=+-=---→→x x x x x ; (4)1)1311(lim 31-=---→x x x ; (5)21)(lim 2=-++∞→x x x x ; (6))]1()1(1[lim 1lim 21121++++++++=--+++--→→x x x x x n x x x n n x n x 2)1(+=n n . 例3.已知n x mx x x =+++-→22lim 22,求m 、n 的值. 解:∵,22lim 22n x mx x x =+++-→∴2-=x 为方程022=++mx x 的根,3=m , 又1)1(lim 223lim 222-=+=+++-→-→x x x x x x ,∴3,1=-=m n .。
数列极限典型例题字数限制为2500字的文章极为冗长,因此我会尝试为您写一篇约500字的短文,探讨数列中的极限典型例题。
数列是数学中非常重要的概念,它在各个数学分支中都有广泛的应用。
而数列的极限是数列中最为重要的概念之一。
本文将介绍数列极限的基本定义以及探讨一些典型的数列极限例题。
首先,什么是数列的极限呢?简单来说,数列的极限表示数列中的值在趋于无限接近某个确定的值,这个确定的值就被称为数列的极限。
我们用符号“lim”来表示数列的极限。
现在我们来看一个例题:求数列an = 2n的极限。
要求这个数列的极限,我们可以分别计算当n趋于正无穷和负无穷时这个数列的值,然后比较它们的值是否一致。
当n趋于正无穷时,数列的值变得越来越大,接近无穷大。
当n趋于负无穷时,数列的值变得越来越小,接近负无穷大。
根据这个分析,我们可以得出结论:数列an = 2n的极限不存在。
接下来我们看另一个例题:求数列bn = (-1)n的极限。
同样,我们可以计算当n趋于正无穷和负无穷时这个数列的值。
当n趋于正无穷时,数列的值交替变为1和-1,没有趋于特定的值。
同样地,当n趋于负无穷时,数列的值也交替变为1和-1,没有趋于特定的值。
所以数列bn = (-1)n的极限也不存在。
最后我们来看一个有界数列的极限例题:求数列cn = (-1)n/n的极限。
对于这个数列,我们同样可以计算当n趋于正无穷和负无穷时的值。
当n趋于正无穷时,数列的值交替变为-1/n和1/n,但是无论n取多大,这个数列的绝对值都小于1/n。
同样地,当n趋于负无穷时,数列的值也交替变为-1/n和1/n,但是无论n取多小,这个数列的绝对值都小于1/n。
综上所述,我们可以得出结论:数列cn = (-1)n/n的极限为0。
以上就是数列极限的基本定义以及一些典型例题的探讨。
通过这些例题的分析,我们可以更好地理解数列极限的概念,并学会如何计算数列的极限。
数列极限作为数学中的基础知识,在各个数学分支中有重要的应用,希望本文对您有所帮助。
数列极限例题数列极限是数学中一个非常重要的概念,它在微积分、数学分析等领域有着广泛的应用。
理解数列极限的概念对于深入学习数学是至关重要的。
在本文中,我们将通过例题来详细介绍数列极限的概念和计算方法。
首先,让我们来看一个简单的数列极限例题:求极限lim(n→∞)(1/n)。
这个数列是一个常见的数列,数列的通项公式为1/n。
我们要求这个数列当n趋向于无穷大时的极限。
根据数列极限的定义,当n趋向于无穷大时,1/n趋近于0。
因此,极限lim(n→∞)(1/n)= 0。
接着,我们来看一个稍复杂一点的数列极限例题:求极限lim(n→∞)(n²+3n)/n²。
这个数列的通项公式为(n²+3n)/n²。
我们要求这个数列当n趋向于无穷大时的极限。
可以将数列中的n²扩展开来,得到(n²/n² + 3n/n²)。
简化得到1 + 3/n。
当n趋向于无穷大时,3/n趋近于0,因此极限lim(n→∞)(n²+3n)/n² = 1。
最后,我们来看一个更具挑战性的数列极限例题:求极限lim(n→∞)(n²+3n²+5n²+...+(2n-1)n²)/n²。
这个数列的通项公式可以写成(n² + 3n² + 5n² + ... + (2n-1)n²)/n²。
将分子中的各项合并得到n²(1 + 3 + 5 + ... + 2n-1)/n²。
数列1 + 3 + 5+ ... + 2n-1可以看作是n²的等差数列的和,公式为n²(n²-1)/2。
因此,极限lim(n→∞)(n²+3n²+5n²+...+(2n-1)n²)/n² = (n²)²(n²-1)/2n²² = (n²-1)/2。
第一讲 极限一般地,在n 无限增大的变化过程中,如果无穷数列{a n }中的项a n 无限趋近于某个常数A ,那么称A 为数列{a n }的极限。
记作lim n n a A →∞=。
读作“n 趋向无穷大时,数列{a n }的极限等于A ”。
例 判断下列数列是否有极限,如果有极限,给出它的极限;如果没有极限,说明理由。
(1)14,1,94,4,254,…,24n ,…;(2)-1,1,-1,1,…,(1)n -,…; (3)-3,-3,-3,…,-3,…。
例 判断下列说法是否正确,并说明理由。
(1)数列3,3,3,…,3的极限是3。
(2)数列11012n nn a n =⎧=⎨⎩≥的极限是0;(3)数列(1)n n a =-的极限为1lim 1n n n a n →∞⎧=⎨-⎩为偶数为奇数。
(4)数列1n a n n=+满足1lim ||lim 0n n n a n n →∞→∞-==,所以lim n n a n →∞=。
(5)在n 无限增大的变化过程中,如果无穷数列{a n }中的项a n 越来越接近于某个常数c ,那么称c 是数列的极限。
一些基本结论极限的准确定义定义 若对任何ε>0,总存在正整数N ,当n >N 时,|x n -a |< ε,即(,)n x U a ε∈,则称数列{x n }收敛,a 称为数列{x n }当n →∞时的极限,记为lim n n x →∞=a 或 x n →a (n →∞).数列极限的运算性质如果lim n →∞a n =A ,lim n →∞b n =B ,那么(1)lim n →∞(a n ±b n )=lim n →∞a n ±lim n →∞b n =A ±B ;(2)lim n →∞(a n ×b n )=lim n →∞a n ×lim n →∞b n =A ×B ;(3)lim n n na b →∞=lim lim n nn n a b →∞→∞=A B (B ≠0,b n ≠0)。
归纳法证明数列极限的例题大家好,今天我们聊点看似复杂,但其实很简单的东西——数列的极限证明。
别慌,别慌,虽然听上去像是某种高级数学题目,其实只要弄清楚几个小窍门,搞定它一点不难。
其实这玩意儿就像是在找一个数列的“归宿”一样,数列在一堆数字中晃来晃去,最终总会收敛到某个固定的数值。
就像是你走了好久的路,最后终于找到了一个舒服的地方坐下来,休息了。
明白了吗?那么我们今天就聊聊怎么用“归纳法”来证明这些数列的极限问题。
你可能会问:啥是归纳法?这听上去有点复杂。
哈哈,别担心,归纳法其实就是“从小到大”的推理法,打个比方,像是我们看电影,前面的情节铺得好,最后的结局自然水到渠成。
你先验证一个简单的情况,然后一步一步推到更复杂的情形。
就像你玩跳远一样,先从小跳开始,跳得越来越远,最后跳得远得不行。
这个思路很简单,就是“从已知推到未知”。
你只要找到一个最简单的、能推得出来的情况,然后慢慢扩大范围,直到推到你想要的结果。
那么接下来我们看看怎么用归纳法证明数列的极限。
假设我们有一个数列 ( a_1,a_2, a_3, dots ),我们知道,这个数列最终会收敛到某个数 ( L ),也就是数列的极限。
那怎么证明这个极限呢?好啦,我们就用归纳法。
你得做第一步,找到一个基础情况。
就好像你做饭,第一步得先准备好材料,才能开始做菜。
比如,我们设 ( a_1 ) 是一个已经知道的值,接着假设 ( a_n ) 是符合某个规律的,那我们就可以猜测 ( a_{n+1 ) 也会接近这个极限。
然后,我们用数学推理一步一步证明,最后你就能得出结论:这个数列的极限就是 ( L )。
但问题来了,归纳法在数学上有点讲究。
你得确保你的假设是对的。
如果你说“从( a_1 ) 推到( a_n )”,你得确认 ( a_n ) 真的能代表数列的趋势。
举个例子,就像你说要把一个大西瓜分给大家,结果一刀下去,发现里面全是水,根本没肉。
这可就麻烦了。
所以,在归纳法中,你得小心,不要乱猜。
求数列极限的典型例题1. 数列极限的基本概念好吧,咱们先聊聊“数列极限”是什么东西。
听到这个词,有些小伙伴可能会觉得有点晦涩,但其实它就像是在你追求目标时,永远朝着一个方向走。
比如说,你在吃泡面,面条一根接一根地煮,最后不就是想要那碗美味的泡面吗?数列极限就像是那些面条,随着时间的推移,越来越接近那个最终的目标。
简单说,就是数列中的数字越来越接近某个固定的数值。
1.1 数列的构成首先,咱们得明白,数列其实就是一串数字的集合。
就像你收集邮票,或者存钱,都是一点一点积累起来的。
这些数字可以是任意的,但一旦它们有了某种规律,那就更有意思了!你可以想象一下,一个数列就像是一条蜿蜒的小路,有高有低,有起有伏,但总是朝着某个地方前进。
1.2 极限的意义接下来,咱们聊聊极限。
极限就是指,当你无限接近某个值时的状态。
就好比你追一个人,越追越近,最后你们总会碰到一起。
极限让我们可以理解数列在无穷远处的行为,仿佛是在做一个长途旅行,虽然现在离目的地还远,但心中早已打定主意,不达目的誓不罢休。
2. 常见的数列极限例题现在,咱们来点实际的,举几个例子,让大家更加明白数列极限是怎么回事。
比如,咱们来看一个很经典的数列:( a_n = frac{1{n )。
当 ( n ) 变得越来越大时,这个数列的值会趋向于0。
听起来简单吧?但实际上,它在告诉我们一种深刻的哲理:无论你多么强大,总会有一种力量能让你慢下来。
2.1 例子解析咱们再来看看另一个数列:( b_n = frac{n{n+1 )。
当 ( n ) 越来越大时,这个数列的极限也会趋近于1。
这个过程就像是你在考试前努力复习,结果最后都快要考满分了。
其实,每个数列的极限都藏着一个故事,你只需细心观察。
2.2 直观理解更直观地说,如果你想知道一个数列的极限,可以试试图形化的方式。
比如,画一条图线,随着 ( n ) 的增加,你会发现它越来越接近某个水平线。
这种图形就像是生活中的风景,虽然一路上风景各异,但终究你会看到那条直线,心中默念:“终于到了!”3. 求极限的技巧与方法当然,求极限的方法也有很多,咱们简单聊几个。
证明数列极限的题目及答案关键信息项:1、数列的表达式:____________________2、所给定的极限值:____________________3、证明所使用的方法:____________________4、证明过程中的关键步骤和推理:____________________5、最终得出结论的依据:____________________11 题目设数列{an} 满足 an =(n + 1) / n ,证明当 n 趋向于无穷大时,数列{an} 的极限为 1 。
111 证明对于任意给定的正数ε ,要找到一个正整数 N ,使得当 n > N 时,|an 1| <ε 成立。
\\begin{align}|an 1| &=\left|\frac{n + 1}{n} 1\right|\\&=\left|\frac{n + 1 n}{n}\right|\\&=\frac{1}{n}\end{align}\为了使\(\frac{1}{n} <ε\),即\(n >\frac{1}{ε}\)。
所以取\(N =\left\frac{1}{ε}\right + 1\)(其中\(\cdot\)表示取整函数),当\(n > N\)时,有\(n >\frac{1}{ε}\),即\(\frac{1}{n} <ε\),所以\(|an 1| <ε\)。
综上,根据数列极限的定义,当 n 趋向于无穷大时,数列{an} 的极限为 1 。
12 题目设数列{bn} 满足\(bn =\frac{1}{n}\),证明当 n 趋向于无穷大时,数列{bn} 的极限为 0 。
121 证明对于任意给定的正数ε ,要找到一个正整数 N ,使得当 n > N 时,\(|bn 0| <ε\)成立。
\|bn 0| =\left|\frac{1}{n} 0\right| =\frac{1}{n}\为了使\(\frac{1}{n} <ε\),即\(n >\frac{1}{ε}\)。
数列的极限一、知识要点1数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即|a n -a |无限地接近于0),那么就说数列}{n a 以a 为极限记作lim n n a a →∞=.(注:a 不一定是{a n }中的项) 2几个重要极限:(1)01lim=∞→n n (2)C C n =∞→lim (C 是常数) (3)()()()⎪⎩⎪⎨⎧-=>=<=∞→1,11,110lim a a a a a n n 或不存在,(4)⎪⎪⎩⎪⎪⎨⎧<=>=++++++++----∞→)()()(0lim 011101110t s t s b a t s b n b n b n b a n a n a n a s s s s t t t t n 不存在3. 数列极限的运算法则:如果,lim ,lim B b A a n n n n ==∞→∞→那么B A b a n n n +=+∞→)(lim B A b a n n n -=-∞→)(limB A b a n n n .).(lim =∞→ )0(lim≠=∞→B B Ab a nn n 4.无穷等比数列的各项和⑴公比的绝对值小于1的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做lim n n S S →∞=⑵1lim ,(0||1)1n n a S S q q→∞==<<- 二、方法与技巧⑴只有无穷数列才可能有极限,有限数列无极限.⑵运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形) ⑶求数列极限最后往往转化为()N m nm ∈1或()1<q q n型的极限.⑷求极限的常用方法: ①分子、分母同时除以m n 或n a .②求和(或积)的极限一般先求和(或积)再求极限. ③利用已知数列极限(如() 01lim,10lim =<=∞→∞→nq q n n n 等). ④含参数问题应对参数进行分类讨论求极限.⑤∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限题型讲解例1 求下列式子的极限: ①nnn )1(lim-∞→; ②∞→n lim 112322+++n n n ; ③∞→n lim 1122++n n ; ④∞→n lim 757222+++n n n ; (2) ∞→n lim (n n +2-n );(3)∞→n lim (22n +24n + (22)n) 例2 ()B A b a B b A a n n n n n n n +=+==∞→∞→∞→lim lim ,lim 是的( )A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→ 的例4 求nn nn n a a a a --∞→+-lim (a >0);例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值;例6 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求a 1的取值范围例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim 1122+-+-n n n n a a 的值.数列极限课后检测1下列极限正确的个数是( )①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0 ③∞→n lim n n n n 3232+-=-1 ④∞→n lim C =C (C 为常数) A 2 B 3 C 4 D 都不正确 3下列四个命题中正确的是( )A 若∞→n lim a n 2=A 2,则∞→n lim a n =AB 若a n >0,∞→n lim a n =A ,则A >0C 若∞→n lim a n =A ,则∞→n lim a n 2=A 2D 若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n5若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于( ) A 2411 B 2417 C 2419 D 24256数列{a n }中,n a 的极限存在,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim (a 1+a 2+…+a n )等于( )A 52B 72C 41D 254 7.∞→n lim n n ++++ 212=__________ ∞→n lim 32222-+n nn =____________∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]= 8已知a 、b 、c 是实常数,且∞→n lim c bn can ++=2, ∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是( )9 {a n }中a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =_____________10等比数列{a n }公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1=_____________11已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *)(1)求{b n }的通项公式;(2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值 12已知{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limn n b a =21, 求极限∞→n lim (111b a +221b a +…+nn b a 1)的值例题解析答案例1n的分子有界,分可以无限增大,因此极限为0;②112322+++n n n 的分子次数等于分母次数,极限为两首项(最高项)系数之比; ③∞→n lim1122++n n 的分子次数小于于分母次数,极限为0解:①0nn =; ②2222213321lim lim 3111n n n n n n n n→∞→∞++++==++; ③∞→n lim 2222121lim lim 0111n n n n n n n→∞→∞++==++点评:分子次数高于分母次数,极限不存在;分析:(4)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(5)因n n +2与n 都没有极限,可先分子有理化再求极限;(6)因为极限的运算法则只适用于有限个数列,需先求和再求极限解:(1)∞→n lim 757222+++n n n =∞→n lim 2275712nn n +++52(2)∞→n lim (n n +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n21(3)原式=∞→n lim22642n n ++++ =∞→n lim 2)1(nn n +=∞→n lim (1+n 1)=1 点评:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n2+n +7), ∞→n lim (5n 2+7)不存在,∴原式无极限对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )= ∞→n limn n +2-∞→n lim n =∞-∞=0;②原式=∞→n limn n +2-∞→n lim n =∞-∞不存在对于(3)要避免出现原式=∞→n lim 22n +∞→n lim 24n +…+∞→n lim22n n =0+0+…+0=0这样的错误 例2 B例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→ 的值为解:由nnn b a ∞→lim=3⇒d 1=3d 2 ,∴n n n nb a a a 221lim +++∞→ =2121114])12([2)1(lim d d d n b n d n n na n =-+-+∞→43 点评:化归思想 例4 求nn nn n a a a a --∞→+-lim (a >0);解:nnnn n a a a a --∞→+-lim =⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧<<-=+-=>=+-∞→∞→).10(111lim ),1(0),1(11111lim 2222a a a a a a a n nn n n n 点评:注意分类讨论例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值; 解:11)()1(lim 2++-+--∞→n b n b a n a n =1,∴ ⎩⎨⎧=+-=-1)(01b a a ⇒a=1,b=─1例6 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求a 1的取值范围 解: ∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在∴0<|q |<1或q =1当q =1时,21a -1=21,∴a 1=3当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q ∴0<|2a 1-1|<1∴0<a 1<1且a 121 综上,得0<a 1<1且a 1≠21或a 1=3 例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim1122+-+-n n n n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c n n 且(2) ∞→n lim1122+-+-n nn n a a =∞→n lim n n n n cc 323211+--- ①当c =2时,原式=-41; ②当c>2时,原式=∞→n lim ccc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c 21点评:求数列极限时要注意分类讨论思想的应用 试卷解析 1 答案:B3解析:排除法,取a n =(-1)n ,排除A ;取a n =n1,排除B;取a n =b n =n ,排除D .答案:C 5 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n nn nn n n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n n n∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…)∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C6 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n 56]+a n ∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n )∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0∴∞→n lim a n =0 答案:C7 解析:原式=∞→n lim2)1(2++n n n =∞→n lim 221212nnn ++=0∞→n lim 32222-+n n n =∞→n lim 23221nn -+21 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ]=∞→n lim 22+n n=2 答案:C 8解析: 答案:D 由∞→n lim cbn can ++=2,得a =2b由∞→n lim b cn c bn --22=3,得b =3c ,∴c =31b ∴ca =6∴∞→n lim a cn c an ++22=∞→n lim 22na c n ca ++=c a =69析:由题意得n a -1-n a =3 (n ≥2)∴{n a }是公差为3的等差数列,1a∴n a =3+(n -1)·3=3n ∴a n =3n 2∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim 21213nn ++=3 10析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38∴a 1=2 11 解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1n =2时,a 2=6代入得a 3=15同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2要证b n =2n 2,只需证a n =2n 2-n①当n =1时,a 1=2×12-1=1成立②假设当n =k 时,a k =2k 2-k 成立那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1)=11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1) ∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ]=41∞→n lim [1+21-n 1-11+n ]=8312 解:{a n }、{b n }的公差分别为d 1、d 2∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1),∴2d 2-3d 1=2又∞→n limn n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n )∴原式=∞→n lim 41(1-121+n )=41。
第一讲 数列的极限一、内容提要 1.数列极限的定义N n N a x n n >∀N ∈∃>∀⇔=∞→,,0lim ε,有ε<-a x n .注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-⇔ε另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度.注2 若n n x ∞→lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是唯一的,若N 满足定义中的要求,则取 ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >∃N ∈∀>∃⇔≠∞→00,,0lim ε,有00ε≥-a x n .2. 子列的定义在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{}k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥.注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >∀N ∈∃>∀⇔=∞→,,0lim ε,有ε<-a x k n .注4 ⇔=∞→a x n n lim {}n x 的任一子列{}k n x 收敛于a . 3.数列有界对数列{}n x ,若0>∃M ,使得对N n >∀,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量对数列{}n x ,如果0>∀G ,N n N >∀N ∈∃,,有G x n >,则称{}n x 为无穷大量,记作∞=∞→n n x lim .注1 ∞只是一个记号,不是确切的数.当{}n x 为无穷大量时,数列{}n x 是发散的,即nn x ∞→lim 不存在.注2 若∞=∞→n n x lim ,则{}n x 无界,反之不真.注3 设{}n x 与{}n y 为同号无穷大量,则{}n n y x +为无穷大量. 注4 设{}n x 为无穷大量,{}n y 有界,则{}n n y x ±为无穷大量.注5 设{}n x 为无穷大量,对数列{}n y ,若0>∃δ,,N ∈∃N 使得对N n >∀,有δ≥n y ,则{}n n y x 为无穷大量.特别的,若0≠→a y n ,则{}n n y x 为无穷大量. 5.无穷小量若0lim =∞→n n x ,则称{}n x 为无穷小量.注1 若0lim =∞→n n x ,{}n y 有界,则0lim =∞→n n n y x .注2 若∞=∞→n n x lim ,则01lim=∞→nn x ;若0l i m =∞→n n x ,且,N ∈∃N 使得对N n >∀,0≠n x ,则∞=∞→nn x 1lim.6.收敛数列的性质(1)若{}n x 收敛,则{}n x 必有界,反之不真. (2)若{}n x 收敛,则极限必唯一.(3)若a x n n =∞→lim ,b y n n =∞→lim ,且b a >,则N ∈∃N ,使得当N n >时,有n n y x >.注 这条性质称为“保号性”,在理论分析论证中应用极普遍.(4)若a x n n =∞→lim ,b y n n =∞→lim ,且N ∈∃N ,使得当N n >时,有n n y x >,则b a ≥.注 这条性质在一些参考书中称为“保不等号(式)性”.(5)若数列{}n x 、{}n y 皆收敛,则它们和、差、积、商所构成的数列{}n n y x +,{}n n y x -,{}n n y x ,⎭⎬⎫⎩⎨⎧n n y x (0lim ≠∞→nn y )也收敛,且有()=±∞→n n n y x lim ±∞→n n x lim n n y ∞→lim ,=⋅∞→n n n y x lim ⋅∞→n n x lim n n y ∞→lim ,=∞→nnn y x lim n n nn y x ∞→∞→lim lim (0lim ≠∞→n n y ).7. 迫敛性(夹逼定理)若N ∈∃N ,使得当N n >时,有n n n z x y ≤≤,且n n y ∞→lim a z n n ==∞→lim ,则a x n n =∞→lim .8. 单调有界定理单调递增有上界数列{}n x 必收敛,单调递减有下界数列{}n x 必收敛. 9. Cauchy 收敛准则数列{}n x 收敛的充要条件是:N m n N >∀N ∈∃>∀,,,0ε,有ε<-m n x x .注 Cauchy 收敛准则是判断数列敛散性的重要理论依据.尽管没有提供计算极限的方法,但它的长处也在于此――在论证极限问题时不需要事先知道极限值. 10.Bolzano Weierstrass 定理 有界数列必有收敛子列.11. 7182818284.211lim ==⎪⎭⎫⎝⎛+∞→e n nn12.几个重要不等式(1) ,222ab b a ≥+ .1 s i n ≤x . s i n x x ≤ (2) 算术-几何-调和平均不等式:对,,,,21+∈∀R n a a a 记,1)(121∑==+++=ni i n i a n n a a a a M (算术平均值) ,)(1121nni i n n i a a a a a G ⎪⎪⎭⎫⎝⎛==∏= (几何平均值) .1111111)(1121∑∑====+++=ni in i ini a n a n a a a na H (调和平均值)有均值不等式: ),( )( )(i i i a M a G a H ≤≤等号当且仅当n a a a === 21时成立. (3) Bernoulli 不等式: (在中学已用数学归纳法证明过) 对,0x ∀> 由二项展开式 23(1)(1)(2)(1)1,2!3!nn n n n n n x nx x x x ---+=+++++)1(,1)1(>+>+⇒n nx x n(4)Cauchy -Schwarz 不等式: k k b a ,∀(n k ,,2,1 =),有≤⎪⎭⎫⎝⎛∑=21n k k k b a ≤⎪⎭⎫ ⎝⎛∑=21n k k k b a ∑=n k k a 12∑=nk kb12(5)N n ∈∀,nn n 1)11ln(11<+<+ 13. O. Stolz 公式二、典型例题 1.用“N -ε”“N G -”证明数列的极限.(必须掌握) 例1 用定义证明下列各式:(1)163153lim22=+-++∞→n n n n n ; (2)设0>n x ,a x n n =∞→lim ,则a x n n =∞→lim;(97,北大,10分) (3)0ln lim=∞→αn nn )0(>α证明:(1)0>∀ε,欲使不等式ε<=<-<+--=-+-++nn n n n n n n n n n n n 6636635616315322222成立,只须ε6>n ,于是,0>∀ε,取1]6[+=εN ,当N n >时,有ε<<-+-++n n n n n 616315322 即 163153lim22=+-++∞→n n n n n . (2)由a x n n =∞→lim ,0>n x ,知N n N >∀N ∈∃>∀,,0ε,有εa a x n <-,则<+-=-ax a x a x n n n ε<-aa x n于是,N n N >∀N ∈∃>∀,,0ε,有<-a x n ε<-aa x n ,即 a x n n =∞→lim .(3)已知n n ln >,因为<⎪⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡<=<αααααααn n n n n n 1ln 2ln 2ln 022≤⎪⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡αααn n 122≤⋅αααnn ][2222244αααααn n n =⋅,所以,0>∀ε,欲使不等式=-0ln αn n ≤αnnln εαα<24n 成立,只须ααε24⎪⎭⎫ ⎝⎛>n .于是,0>∀ε,取=N 142+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛ααε,当N n >时,有=-0ln αn n ≤αn nln εαα<24n ,即 0ln lim =∞→αn nn .评注1 本例中,我们均将a x n -做了适当的变形,使得ε<≤-)(n g a x n ,从而从解不等式ε<)(n g 中求出定义中的N .将a x n -放大时要注意两点:①)(n g 应满足当∞→n 时,0)(→n g .这是因为要使ε<)(n g ,)(n g 必须能够任意小;②不等式ε<)(n g 容易求解.评注2 用定义证明a x n →)(∞→n ,对0>∀ε,只要找到一个自然数)(εN ,使得当)(εN n >时,有ε<-a x n 即可.关键证明N ∈)(εN 的存在性.评注3 在第二小题中,用到了数列极限定义的等价命题,即: (1)N n N >∀N ∈∃>∀,,0ε,有εM a x n <-(M 为任一正常数). (2)N n N >∀N ∈∃>∀,,0ε,有k n a x ε<-)(N k ∈.例2 用定义证明下列各式: (1)1lim=∞→n n n ;(92,南开,10分) (2)0lim =∞→n kn an ),1(N k a ∈>证明:(1)(方法一)由于1>n n (1>n ),可令λ+=1n n (0>λ),则()>++-++=+==n n nnn n n n n λλλλ 22)1(1)1(22)1(λ-n n (2>n ) 当2>n 时,21nn >-,有 >n >-22)1(λn n 2222)1(44-=nn n n λ即 nn n210<-<.0>∀ε,欲使不等式=-1n n ε<<-nn n 21成立,只须24ε>n .于是,0>∀ε,取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=2,14max 2εN ,当N n >时,有 1-nn ε<<n 2,即 1lim =∞→nn n .(方法二)因为n n n n n n n n n n n n n212211)111(112+<-+=++++≤⋅⋅⋅⋅⋅=≤- 个, 所以1-nn n2<,0>∀ε,欲使不等式=-1n n ε<<-nn n 21成立,只须24ε>n .于是,0>∀ε,取142+⎥⎦⎤⎢⎣⎡=εN ,当N n >时,有1-nn ε<<n2,即 1lim=∞→nn n .(2)当1=k 时,由于1>a ,可记λ+=1a (0>λ),则>++-++=+=n n n n n n a λλλλ 22)1(1)1(22)1(λ-n n (2>n ) 当2>n 时,21nn >-,于是有 <<n an 02242)1(λλn n n n <-.0>∀ε,欲使不等式0-n a n <<n a n ελ<24n 成立,只须24ελ>n .对0>∀ε,取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=2,14max 2ελN ,当N n >时,有0-n a n <<n an ελ<24n . 当1>k 时,11>k a (1>a ),而=n ka n kn k a n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(1.则由以上证明知N n N >∀N ∈∃>∀,,0ε,有ε<<nka n )(01,即kn k a n ε<<0,故 0lim =∞→n kn an .评注1 在本例中,0>∀ε,要从不等式ε<-a x n 中解得N 非常困难.根据n x 的特征,利用二项式定理展开较容易.要注意,在这两个小题中,一个λ是变量,一个λ是定值. 评注2 从第一小题的方法二可看出算术-几何平均不等式的妙处. 评注3 第二小题的证明用了从特殊到一般的证法.例 用定义证明:0!lim =∞→n a nn (0>a )(山东大学)证明:当10≤<a 时,结论显然成立.当1>a 时,欲使[][][][]ε<⋅<⋅⋅+⋅⋅⋅⋅=-n a a a n a a a a a a a n a a n !1210! 成立, 只须>n [][]ε!1a a a +.于是0>∀ε,取=N [][]1!1+⎥⎦⎤⎢⎣⎡+εa a a ,当N n >时,有[][]ε<⋅<-n aa a n a a n !0!即 0!lim =∞→n a nn . 例 设1<α,用“N -ε”语言,证明:0])1[(lim =-+∞→ααn n n .证明:当0≤α时,结论恒成立. 当10<<α时,0>∀ε,欲使<-+=--+]1)11[(0)1(ααααn n n n εαα<=-+-11)111(nn n只须>n αε-111.于是0>∀ε,取=N 1111+⎥⎥⎦⎤⎢⎢⎣⎡-αε,当N n >时,有 <--+0)1(ααn n εα<-11n即 0])1[(lim =-+∞→ααn n n .2.迫敛性(夹逼定理)n 项和问题可用夹逼定理、定积分、级数来做,通项有递增或递减趋势时考虑夹逼定理.n n n z x y ≤≤,b y n →,c z n →}{n x ⇒有界,但不能说明n x 有极限.使用夹逼定理时,要求n n z y ,趋于同一个数.例 求证:0!lim =∞→n a nn (a 为常数).分析:na m a m a a a a n a n ⋅⋅+⋅⋅⋅⋅⋅= 1321!,因a 为固定常数,必存在正整数m ,使1+<≤m a m ,因此,自1+m a 开始,11<+m a ,12<+m a ,1,<n a,且∞→n 时,0→na. 证明:对于固定的a ,必存在正整数m ,使1+<m a ,当1+≥m n 时,有≤⋅⋅+⋅⋅⋅⋅⋅=≤n a m a m a a a a n an1321!0n am am⋅!, 由于∞→n lim0!=⋅na m am,由夹逼定理得0!lim=∞→n ann ,即 0!lim =∞→n a nn . 评注 当极限不易直接求出时,可将求极限的变量作适当的放大或缩小,使放大、缩小所得的新变量易于求极限,且二者极限值相同,直接由夹逼定理得出结果.例 若}{n a 是正数数列,且02lim21=+++∞→nna a a nn ,则0lim1=⋅⋅⋅∞→n n n a a n . 证明:由()()()n n na a a ⋅⋅⋅ 2121nna a a n+++≤212,知n n na a a n ⋅⋅⋅⋅ 21!nna a a n+++≤212即 n n a a a ⋅⋅⋅ 21n n n n na a a !1221⋅+++≤.于是,n n a a a n ⋅⋅⋅<210nnn nna a a !1221⋅+++≤,而由已知02lim21=+++∞→nna a a nn 及∞→n lim0!1=nn故 ∞→n lim0!1221=⋅+++nnn nna a a由夹逼定理得 0lim1=⋅⋅⋅∞→n n n a a n .评注1 极限四则运算性质普遍被应用,值得注意的是这些性质成立的条件,即参加运算各变量的极限存在,且在商的运算中,分母极限不为0. 评注2 对一些基本结果能够熟练和灵活应用.例如: (1)0lim =∞→nn q (1<q ) (2)01lim=∞→an n (0>a )(3)1lim=∞→nn a (0>a ) (4)1lim =∞→n n n(5)0!lim =∞→n a n n (0>a ) (6)∞→n lim 0!1=n n 例 证明:若a x n n =∞→lim (a 有限或∞±),则a nx x x nn =+++∞→ 21lim(a 有限或∞±).证明:(1)设a 为有限,因为a x n n =∞→lim ,则11,,0N n N >∀N ∈∃>∀ε,有2ε<-a x n .于是=-+++a n x x x n21()()()na x a x a x n -++-+- 21 +-++-+-≤nax a x a x N 121 nax a x n N -++-+ 1121εε+<-+<n A n N n n A . 其中a x a x a x A N -++-+-=121 为非负数.因为0lim=∞→nAn ,故对上述的22,,0N n N >∀N ∈∃>ε,有2ε<n A .取},m ax {21N N N =当N n >时,有εεε=+<-+++2221a n x x x n即 a nx x x nn =+++∞→ 21lim.(2)设+∞=a ,因为+∞=∞→n n x lim ,则11,,0N n N G >∀N ∈∃>∀,有G x n 2>,且0121>+++N x x x .于是=+++nx x x n21 ++++n x x x N 121 n x x n N +++ 11G nN G n N n G nx x nN 11122)(21-=->++>+取12N N =,当N n >时,G G nN <12,于是 G G G nx x x n=->+++221 .即 +∞=+++∞→nx x x nn 21lim(3)-∞=a 时证法与(2)类似.评注1 这一结论也称Cauchy 第一定理,是一个有用的结果,应用它可计算一些极限,例如:(1)01211lim=+++∞→nn n (已知01lim =∞→n n );(2)1321lim 3=++++∞→nnn n (已知1lim =∞→n n n ).评注2 此结论是充分的,而非必要的,但若条件加强为“}{n x 为单调数列”,则由a nx x x nn =+++∞→ 21lim可推出a x n n =∞→lim .评注3 证明一个变量能够任意小,将它放大后,分成有限项,然后证明它的每一项都能任意小,这种“拆分方法”是证明某些极限问题的一个常用方法,例如:若10<<λ,a a n n =∞→lim (a 为有限数),证明:λλλλ-=++++--∞→1)(lim 0221aa a a a n n n n n . 分析:令0221a a a a x nn n n n λλλ++++=-- ,则01101221)()()()1(a a a a a a a a x n n n n n n n n +-----++-+-+=-λλλλλ .只须证 0)()()(101221→-++-+----a a a a a a nn n n n λλλ (∞→n )由于a a n n =∞→lim ,故N n N >∀N ∈∃,,有ε<--1n n a a .于是)()()(101221a a a a a a n n n n n -++-+----λλλ101111221a a a a a a a a a a n N n N n N N n N n N n n n n -++-+-++-+-≤---+-+----λλλλλ 再利用0lim =∞→n n λ(10<<λ)即得.例 求下列各式的极限: (1))2211(lim 222nn n nn n n n n +++++++++∞→(2)n n n1211lim +++∞→ (3)nn nn 2642)12(531lim ⋅⋅⋅⋅-⋅⋅⋅⋅∞→解:(1)≤+++++++++≤+++++n n n n n n n n n n n n 2222221121 1212+++++n n n∵∞→n lim n n n n +++++221 ∞→=n lim 212)1(2=+++n n n n n , ∞→n lim 1212+++++n n n ∞→=n lim 2112)1(2=+++n n n n , 由夹逼定理, ∴21)2211(lim 222=+++++++++∞→nn n n n n n n n (2)n n n n n=+++≤+++≤11112111 ∵1lim=∞→nn n ,由夹逼定理,∴11211lim =+++∞→n n n. (3)∵121243212642)12(531212212452321<-⋅⋅⋅=⋅⋅⋅⋅-⋅⋅⋅⋅=⋅--⋅⋅⋅≤nn n n n n n n , ∴12642)12(53121<⋅⋅⋅⋅-⋅⋅⋅⋅≤⋅n n nn n n.∵∞→n lim121=⋅nnn,由夹逼定理,∴12642)12(531lim=⋅⋅⋅⋅-⋅⋅⋅⋅∞→nn nn .评注nn 212-的极限是1,用此法体现了“1”的好处,可以放前,也可放后.若极限不是1,则不能用此法,例如:)12(53)1(32+⋅⋅⋅+⋅⋅⋅=n n x n ,求n n x ∞→lim .解:∵0>n x ,{}n x 单调递减,{}n x 单调递减有下界,故其极限存在. 令a x n n =∞→lim ,∵3221++⋅=+n n x x n n ∴=+∞→1lim n n x n n x ∞→lim ∞→n lim322++n n , a a 21=, ∴0=a ,即 0lim =∞→n n x .)2112111(lim nn +++++++∞→ (中科院) 评注 拆项:分母是两项的积,111)1(1+-=+n n n n插项:分子、分母相差一个常数时总可以插项.1111111+-=+-+=+n n n n n 3单调有界必有极限 常用方法:①n n x x -+1;②nn x x 1+;③归纳法;④导数法. )(1n n x f x =+ 0)(>'x f )(x f 单调递增12x x > )()(12x f x f > 23x x > 12x x < )()(12x f x f < 23x x <0)(<'x f )(x f 单调递减 12x x > )()(12x f x f < 23x x <12x x < )()(12x f x f > 23x x >不解决决问题.命题:)(1n n x f x =+,若)(x f 单调递增,且12x x >(12x x <),则{}n x 单调递增(单调递减).例 求下列数列极限:(1)设0>A ,01>x ,)(211nn n x A x x +=+;(98,华中科大,10分) (2)设01>x ,nnn x x x ++=+3331;(04,武大)(3)设a x =0,b x =1,221--+=n n n x x x ( ,3,2=n ).(2000,浙大) 解:(1)首先注意A x Ax x A x x nn n n n =⋅⋅≥+=+221)(211,所以{}n x 为有下界数列. 另一方面,因为0)(21)(211≤-=-+=-+n nn n n n n x x Ax x A x x x .(或()121)1(21221=+≤+=+A Ax A x x nn n )故{}n x 为单调递减数列.因而n n x ∞→lim 存在,且记为a . 由极限的四则运算,在)(211nn n x Ax x +=+两端同时取极限∞→n ,得)(21aAa a +=.并注意到0>≥A x n ,解得A a =.(2)注意到33)1(333301<++=++=<+nn n n n x x x x x ,于是{}n x 为有界数列.另一方面,由)24)(3()3(2333333333333311211121121-------+++-=++-⎪⎪⎭⎫⎝⎛++-=+-=-++=-n n n n n n n n n n n n n n x x x x x x x x x x x x x x )2)(3(31121---++-=n n n x x x 知=---+11n n n n x x x x 02133)2)(3(311211121>+=+-++-------n n n n n n x x x x x x . 即n n x x -+1与1--n n x x 保持同号,因此{}n x 为单调数列,所以n n x ∞→lim 存在(记为a ).由极限的四则运算,在n n n x x x ++=+3331两端同时取极限∞→n ,得aaa ++=333.并注意到30<<n x ,解得3=a .(3)由于nn n n n n n n n n a b x x x x x x x x x x x )2()2()2(2201112111--=--=--==--=-+=----+ , 又=+-=∑-=+0101)(x x x x n m m m n a a b a a b x nn m mn +-----=+--=∑-=)21(1)21(1)()2(1)(10,所以 n n x ∞→lim 323)(2)21(1)21(1lim)(a b a a b a a b nn +=+-=+-----=∞→. 评注1 求递归数列的极限,主要利用单调有界必有极限的原理,用归纳法或已知的一些基本结果说明数列的单调、有界性.在说明递归数列单调性时,可用函数的单调性.下面给出一个重要的结论:设)(1n n x f x =+( ,2,1=n )I x n ∈,若)(x f 在区间I 上单调递增,且12x x >(或12x x <),则数列{}n x 单调递增(或单调递减).评注2 第三小题的方法较为典型,根据所给的11,,-+n n n x x x 之间的关系,得到n n x x -+1与1--n n x x 的等式,再利用错位相减的思想,将数列通项n x 写成级数的表达式.例 设11,b a 为任意正数,且11b a ≤,设11112----+=n n n n n b a b a a ,11--=n n n b a b ( ,3,2=n ),则{}n a ,{}n b 收敛,且极限相同. 证明:由≤+=----11112n n n n n b a b a a 111122----n n n n b a b a n n n b b a ==--11,知≤=--11n n n b a b 111---=n n n b b b .则10b b n ≤<,即{}n b 为单调有界数列.又10b b a n n ≤≤<,且=-+=-------1111112n n n n n n n a b a b a a a =+---------111121112n n n n n n n b a b a a b a 0)(11111≥+------n n n n n b a a b a , 所以{}n a 亦为单调有界数列.由单调有界必有极限定理,n n a ∞→lim 与n n b ∞→lim 存在,且分别记为a 与b .在11112----+=n n n n n b a b a a 与11--=n n n b a b 两端同时取极限∞→n ,得ba ab a +=2与ab b =.考虑到11,b a 为任意正数且110b b a a n n ≤≤≤<. 即得0≠=b a .例 (1)设21=x ,nn x x 121+=+,求n n x ∞→lim ;(2)设01=x ,22=x ,且02311=---+n n n x x x ( ,3,2=n ),求n n x ∞→lim .解:(1)假设n n x ∞→lim 存在且等于a ,由极限的四则运算,在nn x x 121+=+两端同时取极限∞→n ,得aa 12+=,即21±=a . 又2>n x ,故21+=a .下面只须验证数列{}a x n -趋于零(∞→n ).由于<-<-=⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=-<+a x a x a x a x a x n n n n n 41121201a x n-⎪⎭⎫ ⎝⎛<141, 而∞→n lim 0411=-⎪⎭⎫⎝⎛a x n,由夹逼定理得=∞→n n x lim 21+=a . (2)由02311=---+n n n x x x ,知=++n n x x 231=+-123n n x x =+--2123n n x x 62312=+=x x , 则 2321+-=+n n x x . 假设n n x ∞→lim 存在且等于a ,由极限的四则运算,得56=a . 下面只须验证数列⎭⎬⎫⎩⎨⎧-56n x 趋于零(∞→n ).由于 =-+-=--56232561n n x x =⎪⎭⎫⎝⎛---56321n x 56325632111⋅⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=--n n x . 显然∞→n lim 056321=⋅⎪⎭⎫⎝⎛-n ,由夹逼定理得56lim =∞→n n x .评注1 两例题中均采用了“先求出结果后验证”的方法,当我们不能直接用单调有界必有极限定理时,可以先假设a x n n =∞→lim ,由递归方程求出a ,然后设法证明数列{}a x n -趋于零.评注2 对数列{}n x ,若满足a x k a x n n -≤--1( ,3,2=n ),其中10<<k ,则必有a x n n =∞→lim .这一结论在验证极限存在或求解递归数列的极限时非常有用.评注3 本例的第二小题还可用Cauchy 收敛原理验证它们极限的存在性.设1a >0,1+n a =n a +n a 1,证明n 1(04,上海交大)证 (1)要证n =1 ,只要证2lim 12nn a n →∞=,即只要证221lim 1(22)2n nn a a n n+→∞-=+-,即证221lim()2n n n a a +→∞-= (2)因1+n a =n a +n a 1,故110n n n a a a +-=>,1211n n na a a +=+ 2211112211()()112n n n n n n n n n n na a a a a a a a a a a +++++-=-+==++=+ 因此只要证21lim0n na →∞=,即只要证lim n n a →∞=∞(3)由110n n na a a +-=>知,{}n a 单调增加,假如{}n a 有上界,则{}n a 必有极限a ,由1+n a =n a +n a 1知,a =a +1a ,因此10a=,矛盾. 这表明{}n a 单调增加、没有上界,因此lim n n a →∞=∞. (证完)4 利用序列的Cauchy 收敛准则例 (1)设21xx =(10≤≤x ),2221--=n n x x x ,求n n x ∞→lim ;(2)设111==y x ,n n n y x x 21+=+,n n n y x y +=+1,求nnn y x ∞→lim ; 解:(1)由21x x =(10≤≤x ),得211≤x .假设21≤k x ,则412≤k x .有=-=+2221k k x x x 21212≤-k x x由归纳法可得 21≤n x . 于是 ⎪⎪⎭⎫ ⎝⎛---=---++22222121n p n n pn x x x x x x111111212--+--+--+-≤-+=n p n n p n n p n x x x x x x 021211111→≤-≤≤-+-n p n x x (∞→n ). 由Cauchy 收敛准则知:n n x ∞→lim 存在并记为a ,由极限的四则运算,在2221--=nn x x x 两端同时取极限∞→n ,得022=-+x a a .注意到21≤n x ,故x a x n n ++-==∞→11lim .(2)设nnn y x a =,显然1>n a . 由于nn n n n n n n a y x y x y x a ++=++==+++1112111,则 111111+++-+=-n n n n a a a a ()()<++-=--1111n n n n a a a a <<-- 141n n a a 12141a a n --. 于是=-+n p n a a n n p n p n p n p n a a a a a a -++-+-+-+-+-++1211 n n p n p n p n p n a a a a a a -++-+-≤+-+-+-++121112124141a a n p n -⎪⎭⎫⎝⎛++<--- 12141141141a a p n ---⋅=- 03141121→-⋅<-a a n (∞→n ). 由Cauchy 收敛准则知:n n x ∞→lim 存在并记为a . 由极限的四则运算,在nn a a ++=+1111两端同时取极限∞→n ,得22=a . 注意到1>n a ,故=∞→n nn y x lim2lim =∞→n n a . 评注1 Cauchy 收敛准则之所以重要就在于它不需要借助数列以外的任何数,只须根据数列各项之间的相互关系就能判断该数列的敛散性. 本例两小题都运用了Cauchy 收敛准则,但细节上稍有不同.其实第一小题可用第二小题的方法,只是在第一小题中数列{}n x 有界,因此有11111≤+≤-++x x x x p p .保证了定义中的N 仅与ε有关.评注2 “对N p ∈∀有()0lim =-+∞→n p n n x x ”这种说法与Cauchy 收敛准则并不一致.这里要求对每个固定的p ,可找到既与ε又与p 的关的N,当N n >,有ε<-+n p n x x .而Cauchy 收敛准则要求所找到的N只能与任意的ε有关.5 利用Stolz 定理计算数列极限例 求下列极限(1)⎪⎪⎭⎫⎝⎛-+++∞→421lim 3333n n n n(2)假设1222...lim ,lim 2n n n n a a na aa a n →∞→∞+++==证明:(00,大连理工,10)(04,上海交大)证明:Stolz 公式121211222212...(2...(1))(2...)limlim(1)(1)lim 212n n n n n n n n a a na a a na n a a a na n n n n a a n +→∞→∞+→∞++++++++++++=+-+==+(3)nn n ln 1211lim +++∞→ (4)n n n n 1232lim++++∞→ (5)n n an 2lim ∞→(1>a )6 关于否定命题的证明 (书上一些典型例题需背)a x n n ≠∞→lim{}n x 发散例 证明:nx n 131211++++= 发散.例 设0≠n a ( ,2,1=n ),且0lim =∞→n n a ,若存在极限l a a nn n =+∞→1lim,则1≤l .(北大,20)7 杂例 (1) )1(1321211lim +++⋅+⋅∞→n n n(2) (04,武大)2212lim(...),(1)11()1lim()11(1)1n n n n n n a a a an a a a a a a →∞→∞+++>-=-=--- (3) )1()1)(1(lim 22n n x x x +++∞→ (1<x);(4)设31=a ,n n n a a a +=+21( ,2,1=n ),求:⎪⎪⎭⎫ ⎝⎛++++++=∞→n n a a a l 111111lim 21 .。
用数列极限的定义证明极限的例题1. 引言:极限,这是什么鬼?嘿,朋友们!今天我们来聊聊一个数学里的“小妖怪”——极限。
听到“极限”,大家可能会觉得心里一紧,像是看到一只可怕的蜘蛛,但其实它并没有那么可怕。
我们只需要用点小技巧,就能把它变成温顺的小猫咪。
极限的定义其实就像是一把钥匙,可以打开理解数列行为的神秘大门。
那么,准备好了吗?让我们一起探个究竟!2. 极限的定义:简单明了,没啥难的2.1 数列和极限首先,极限是个啥?简单说,就是数列在无限接近某个值的时候的“最终状态”。
比如说,想象一下你在海边,海浪一波接一波,你在等着最后一波冲到脚边。
那个脚边的水位,就是极限了。
更具体一点,假设我们有一个数列 ( a_n ),它的极限是 ( L ),那就意味着当 ( n ) 越来越大,( a_n ) 就会越来越接近 ( L )。
这就好比是你一路向前跑,目标就是那棵大树,跑得越快,你离树就越近。
2.2 形式化的定义现在我们把这个概念再说得正式一点。
根据极限的定义,如果对每一个小于( epsilon ) 的正数(就是一个小数,比如0.01,0.001啥的),都能找到一个正整数( N ),使得当 ( n > N ) 时,( |a_n L| < epsilon )。
哎呀,听上去有点复杂,但只要你理解了“接近”的感觉,就没问题了。
这就像是在说,只要我足够努力,就一定能让我的距离越来越小,直到几乎碰到目标。
3. 例子时间:举个栗子3.1 经典数列好了,咱们来个具体的例子吧,帮大家消化一下。
考虑数列 ( a_n = frac{1{n )。
那么,这个数列的极限是啥呢?从名字上看,它好像越来越小,越来越小。
其实没错,随着 ( n ) 的增加,( a_n ) 确实是往0靠近的。
那么,按照咱们刚才说的定义,咱们得找个 ( epsilon > 0 ),比如说 ( epsilon =0.01 )。
接下来,我们要找一个 ( N ),使得当 ( n > N ) 时,( |a_n 0| < 0.01 )。
数列极限习题及答案数列极限习题及答案数列是数学中的重要概念,它在许多领域中都有广泛的应用。
数列的极限是数学分析中的基本概念之一,它描述了数列随着项数的增加趋向于某个确定的值。
在这篇文章中,我们将讨论一些关于数列极限的习题,并给出相应的答案。
1. 习题一:考虑数列{an},其中an = 1/n。
求该数列的极限。
解答:要求该数列的极限,我们需要计算当n趋向于无穷大时,数列的值趋向于的值。
对于这个数列,当n趋向于无穷大时,an的值趋向于0。
因此,该数列的极限为0。
2. 习题二:考虑数列{bn},其中bn = (-1)^n/n。
求该数列的极限。
解答:对于这个数列,当n为奇数时,bn = -1/n;当n为偶数时,bn = 1/n。
当n趋向于无穷大时,奇数项和偶数项的绝对值都趋向于无穷大。
但是,由于数列中的负号交替出现,所以数列的极限不存在。
3. 习题三:考虑数列{cn},其中cn = (n+1)/n。
求该数列的极限。
解答:对于这个数列,当n趋向于无穷大时,cn的值趋向于1。
因此,该数列的极限为1。
4. 习题四:考虑数列{dn},其中dn = 2^n/n!。
求该数列的极限。
解答:要求该数列的极限,可以尝试计算数列的前几项并观察规律。
当n取1时,d1 = 2/1 = 2;当n取2时,d2 = 4/2 = 2;当n取3时,d3 = 8/6 = 4/3;当n取4时,d4 = 16/24 = 2/3。
观察可以发现,当n趋向于无穷大时,数列的值趋向于0。
因此,该数列的极限为0。
5. 习题五:考虑数列{en},其中en = (1+1/n)^n。
求该数列的极限。
解答:对于这个数列,当n趋向于无穷大时,(1+1/n)^n的值趋向于自然对数e 的值。
因此,该数列的极限为e。
通过以上习题的讨论,我们可以看到数列的极限与数列的定义和表达式有着密切的关系。
在计算数列的极限时,我们需要观察数列的规律,并利用数学知识进行推导和计算。
数列极限的概念在数学分析中有着广泛的应用,例如在微积分、实分析等领域中都会涉及到。
第一讲 数列的极限一、内容提要 1.数列极限的定义N n N a x n n >∀N ∈∃>∀⇔=∞→,,0lim ε,有ε<-a x n .注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-⇔ε另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度.注 2 若n n x ∞→lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是唯一的,若N 满足定义中的要求,则取 ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >∃N ∈∀>∃⇔≠∞→00,,0lim ε,有00ε≥-a x n .2. 子列的定义在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{}k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥.注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >∀N ∈∃>∀⇔=∞→,,0lim ε,有ε<-a x k n .注4 ⇔=∞→a x n n lim {}n x 的任一子列{}k n x 收敛于a . 3.数列有界对数列{}n x ,若0>∃M ,使得对N n >∀,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量对数列{}n x ,如果0>∀G ,N n N >∀N ∈∃,,有G x n >,则称{}n x 为无穷大量,记作∞=∞→n n x lim .注1 ∞只是一个记号,不是确切的数.当{}n x 为无穷大量时,数列{}n x 是发散的,即nn x ∞→lim 不存在.注2 若∞=∞→n n x lim ,则{}n x 无界,反之不真.注3 设{}n x 与{}n y 为同号无穷大量,则{}n n y x +为无穷大量. 注4 设{}n x 为无穷大量,{}n y 有界,则{}n n y x ±为无穷大量.注5 设{}n x 为无穷大量,对数列{}n y ,若0>∃δ,,N ∈∃N 使得对N n >∀,有δ≥n y ,则{}n n y x 为无穷大量.特别的,若0≠→a y n ,则{}n n y x 为无穷大量. 5.无穷小量若0lim =∞→n n x ,则称{}n x 为无穷小量.注1 若0lim =∞→n n x ,{}n y 有界,则0lim =∞→n n n y x .注2 若∞=∞→n n x lim ,则01lim=∞→nn x ;若0lim =∞→n n x ,且,N ∈∃N 使得对N n >∀,0≠n x ,则∞=∞→nn x 1lim.6.收敛数列的性质(1)若{}n x 收敛,则{}n x 必有界,反之不真. (2)若{}n x 收敛,则极限必唯一.(3)若a x n n =∞→lim ,b y n n =∞→lim ,且b a >,则N ∈∃N ,使得当N n >时,有n n y x >.注 这条性质称为“保号性”,在理论分析论证中应用极普遍.(4)若a x n n =∞→lim ,b y n n =∞→lim ,且N ∈∃N ,使得当N n >时,有n n y x >,则b a ≥.注 这条性质在一些参考书中称为“保不等号(式)性”.(5)若数列{}n x 、{}n y 皆收敛,则它们和、差、积、商所构成的数列{}n n y x +,{}n n y x -,{}n n y x ,⎭⎬⎫⎩⎨⎧n n y x (0lim ≠∞→nn y )也收敛,且有()=±∞→n n n y x lim ±∞→n n x lim n n y ∞→lim ,=⋅∞→n n n y x lim ⋅∞→n n x lim n n y ∞→lim ,=∞→nnn y x lim n n nn y x ∞→∞→lim lim (0lim ≠∞→n n y ).7. 迫敛性(夹逼定理)若N ∈∃N ,使得当N n >时,有n n n z x y ≤≤,且n n y ∞→lim a z n n ==∞→lim ,则a x n n =∞→lim .8. 单调有界定理单调递增有上界数列{}n x 必收敛,单调递减有下界数列{}n x 必收敛. 9. Ca uch y收敛准则数列{}n x 收敛的充要条件是:N m n N >∀N ∈∃>∀,,,0ε,有ε<-m n x x .注 Cau chy 收敛准则是判断数列敛散性的重要理论依据.尽管没有提供计算极限的方法,但它的长处也在于此――在论证极限问题时不需要事先知道极限值. 10.B olzano Weierstr as s定理 有界数列必有收敛子列.11. 7182818284.211lim ==⎪⎭⎫⎝⎛+∞→e n nn12.几个重要不等式(1) ,222ab b a ≥+ .1 sin ≤x . sin x x ≤ (2) 算术-几何-调和平均不等式:对,,,,21+∈∀R n a a a 记,1)(121∑==+++=ni i n i a n n a a a a M (算术平均值) ,)(1121nni i n n i a a a a a G ⎪⎪⎭⎫⎝⎛==∏= (几何平均值) .1111111)(1121∑∑====+++=ni in i ini a n a n a a a na H (调和平均值)有均值不等式: ),( )( )(i i i a M a G a H ≤≤等号当且仅当n a a a === 21时成立. (3) B ernoul li 不等式: (在中学已用数学归纳法证明过) 对,0x ∀> 由二项展开式 23(1)(1)(2)(1)1,2!3!nn n n n n n x nx x x x ---+=+++++)1(,1)1(>+>+⇒n nx x n(4)Ca uchy -Sc hwa rz 不等式: k k b a ,∀(n k ,,2,1 =),有≤⎪⎭⎫⎝⎛∑=21n k k k b a ≤⎪⎭⎫ ⎝⎛∑=21n k k k b a ∑=n k k a 12∑=nk kb12(5)N n ∈∀,nn n 1)11ln(11<+<+ 13. O . Stol z公式二、典型例题 1.用“N -ε”“N G -”证明数列的极限.(必须掌握) 例1 用定义证明下列各式:(1)163153lim22=+-++∞→n n n n n ; (2)设0>n x ,a x n n =∞→lim ,则a x n n =∞→lim;(97,北大,10分) (3)0ln lim=∞→αn nn )0(>α证明:(1)0>∀ε,欲使不等式ε<=<-<+--=-+-++n nn n n n n n n n n n n 6636635616315322222 成立,只须ε6>n ,于是,0>∀ε,取1]6[+=εN ,当N n >时,有ε<<-+-++n n n n n 616315322 即 163153lim22=+-++∞→n n n n n . (2)由a x n n =∞→lim ,0>n x ,知N n N >∀N ∈∃>∀,,0ε,有εa a x n <-,则<+-=-ax a x a x n n n ε<-aa x n于是,N n N >∀N ∈∃>∀,,0ε,有<-a x n ε<-aa x n ,即 a x n n =∞→lim.(3)已知n n ln >,因为<⎪⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡<=<αααααααn n n n n n 1ln 2ln 2ln 022≤⎪⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡αααn n 122≤⋅αααnn ][2222244αααααn n n =⋅, 所以,0>∀ε,欲使不等式=-0ln αn n≤αnn ln εαα<24n 成立,只须ααε24⎪⎭⎫ ⎝⎛>n .于是,0>∀ε,取=N 142+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛ααε,当N n >时,有=-0ln αn n≤αnn ln εαα<24n ,即 0ln lim =∞→αn nn .评注1 本例中,我们均将a x n -做了适当的变形,使得ε<≤-)(n g a x n ,从而从解不等式ε<)(n g 中求出定义中的N .将a x n -放大时要注意两点:①)(n g 应满足当∞→n 时,0)(→n g .这是因为要使ε<)(n g ,)(n g 必须能够任意小;②不等式ε<)(n g 容易求解.评注2 用定义证明a x n →)(∞→n ,对0>∀ε,只要找到一个自然数)(εN ,使得当)(εN n >时,有ε<-a x n 即可.关键证明N ∈)(εN 的存在性.评注3 在第二小题中,用到了数列极限定义的等价命题,即: (1)N n N >∀N ∈∃>∀,,0ε,有εM a x n <-(M 为任一正常数). (2)N n N >∀N ∈∃>∀,,0ε,有k n a x ε<-)(N k ∈.例2 用定义证明下列各式: (1)1lim=∞→n n n ;(92,南开,10分)(2)0lim =∞→n kn an ),1(N k a ∈>证明:(1)(方法一)由于1>n n (1>n ),可令λ+=1n n (0>λ),则()>++-++=+==n n nnn n n n n λλλλ 22)1(1)1(22)1(λ-n n (2>n ) 当2>n 时,21n n >-,有 >n >-22)1(λn n 2222)1(44-=nn n n λ 即 nn n210<-<.0>∀ε,欲使不等式=-1n n ε<<-nn n 21成立,只须24ε>n .于是,0>∀ε,取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=2,14max 2εN ,当N n >时,有 1-nn ε<<n 2,即 1lim =∞→nn n .(方法二)因为n n n n n n n n n n n n n212211)111(112+<-+=++++≤⋅⋅⋅⋅⋅=≤- 个, 所以1-nn n2<,0>∀ε,欲使不等式=-1n n ε<<-nn n 21成立,只须24ε>n .于是,0>∀ε,取142+⎥⎦⎤⎢⎣⎡=εN ,当N n >时,有1-nn ε<<n2,即 1lim=∞→nn n .(2)当1=k 时,由于1>a ,可记λ+=1a (0>λ),则>++-++=+=n n n n n n a λλλλ 22)1(1)1(22)1(λ-n n (2>n ) 当2>n 时,21nn >-,于是有<<n a n 02242)1(λλn n n n <-. 0>∀ε,欲使不等式0-n a n <<n a n ελ<24n 成立,只须24ελ>n . 对0>∀ε,取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=2,14max 2ελN ,当N n >时,有0-n a n <<n anελ<24n . 当1>k 时,11>k a (1>a ),而=n ka n kn k a n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(1.则由以上证明知N n N >∀N ∈∃>∀,,0ε,有ε<<nka n )(01,即kn k a n ε<<0,故 0lim =∞→n kn an .评注1 在本例中,0>∀ε,要从不等式ε<-a x n 中解得N 非常困难.根据n x 的特征,利用二项式定理展开较容易.要注意,在这两个小题中,一个λ是变量,一个λ是定值. 评注2 从第一小题的方法二可看出算术-几何平均不等式的妙处. 评注3 第二小题的证明用了从特殊到一般的证法.例 用定义证明:0!lim =∞→n a nn (0>a )(山东大学) 证明:当10≤<a 时,结论显然成立.当1>a 时,欲使[][][][]ε<⋅<⋅⋅+⋅⋅⋅⋅=-n a a a n a a a a a a a n a a n !1210! 成立, 只须>n [][]ε!1a a a +.于是0>∀ε,取=N [][]1!1+⎥⎦⎤⎢⎣⎡+εa a a ,当N n >时,有[][]ε<⋅<-n aa a n a a n !0!即 0!lim =∞→n a nn . 例 设1<α,用“N -ε”语言,证明:0])1[(lim =-+∞→ααn n n .证明:当0≤α时,结论恒成立. 当10<<α时,0>∀ε,欲使<-+=--+]1)11[(0)1(ααααn n n n εαα<=-+-11)111(nn n只须>n αε-111.于是0>∀ε,取=N 1111+⎥⎥⎦⎤⎢⎢⎣⎡-αε,当N n >时,有 <--+0)1(ααn n εα<-11n即 0])1[(lim =-+∞→ααn n n .2.迫敛性(夹逼定理)n 项和问题可用夹逼定理、定积分、级数来做,通项有递增或递减趋势时考虑夹逼定理.n n n z x y ≤≤,b y n →,c z n →}{n x ⇒有界,但不能说明n x 有极限.使用夹逼定理时,要求n n z y ,趋于同一个数.例 求证:0!lim =∞→n a nn (a 为常数).分析:na m a m a a a a n a n ⋅⋅+⋅⋅⋅⋅⋅= 1321!,因a 为固定常数,必存在正整数m ,使1+<≤m a m ,因此,自1+m a 开始,11<+m a ,12<+m a ,1,<n a,且∞→n 时,0→na. 证明:对于固定的a ,必存在正整数m ,使1+<m a ,当1+≥m n 时,有≤⋅⋅+⋅⋅⋅⋅⋅=≤n a m a m a a a a n an1321!0nam am⋅!,由于∞→n lim0!=⋅na m am,由夹逼定理得0!lim=∞→n ann ,即 0!lim =∞→n a nn . 评注 当极限不易直接求出时,可将求极限的变量作适当的放大或缩小,使放大、缩小所得的新变量易于求极限,且二者极限值相同,直接由夹逼定理得出结果. 例 若}{n a 是正数数列,且02lim21=+++∞→nna a a nn ,则0lim 1=⋅⋅⋅∞→n n n a a n .证明:由()()()n n na a a ⋅⋅⋅ 2121nna a a n+++≤212,知n n na a a n ⋅⋅⋅⋅ 21!nna a a n+++≤212即nn a a a ⋅⋅⋅ 21n n n n na a a !1221⋅+++≤.于是,n n a a a n ⋅⋅⋅<210nnn nna a a !1221⋅+++≤,而由已知02lim21=+++∞→nna a a nn 及∞→n lim0!1=nn故 ∞→n lim0!1221=⋅+++nnn nna a a由夹逼定理得 0lim1=⋅⋅⋅∞→n n n a a n .评注1 极限四则运算性质普遍被应用,值得注意的是这些性质成立的条件,即参加运算各变量的极限存在,且在商的运算中,分母极限不为0. 评注2 对一些基本结果能够熟练和灵活应用.例如: (1)0lim =∞→nn q (1<q ) (2)01lim=∞→an n (0>a )(3)1lim=∞→nn a (0>a ) (4)1lim =∞→n n n(5)0!lim =∞→n a n n (0>a ) (6)∞→n lim 0!1=n n 例 证明:若a x n n =∞→lim (a 有限或∞±),则a nx x x nn =+++∞→ 21lim(a 有限或∞±).证明:(1)设a 为有限,因为a x n n =∞→lim ,则11,,0N n N >∀N ∈∃>∀ε,有2ε<-a x n .于是=-+++a n x x x n21()()()na x a x a x n -++-+- 21+-++-+-≤nax a x a x N 121 nax a x n N -++-+ 1121εε+<-+<n A n N n n A . 其中a x a x a x A N -++-+-=121 为非负数.因为0lim=∞→nAn ,故对上述的22,,0N n N >∀N ∈∃>ε,有2ε<n A .取},m ax {21N N N =当N n >时,有εεε=+<-+++2221a n x x x n即 a nx x x nn =+++∞→ 21lim.(2)设+∞=a ,因为+∞=∞→n n x lim ,则11,,0N n N G >∀N ∈∃>∀,有G x n 2>,且0121>+++N x x x .于是=+++nx x x n21 ++++n x x x N 121 n x x n N +++ 11G nN G n N n G nx x nN 11122)(21-=->++>+取12N N =,当N n >时,G G nN <12,于是 G G G nx x x n=->+++221 .即 +∞=+++∞→nx x x nn 21lim(3)-∞=a 时证法与(2)类似.评注1 这一结论也称Cauchy 第一定理,是一个有用的结果,应用它可计算一些极限,例如:(1)01211lim=+++∞→nn n (已知01lim =∞→n n );(2)1321lim3=++++∞→nnn n (已知1lim =∞→n n n ). 评注2 此结论是充分的,而非必要的,但若条件加强为“}{n x 为单调数列”,则由a nx x x nn =+++∞→ 21lim可推出a x n n =∞→lim .评注3 证明一个变量能够任意小,将它放大后,分成有限项,然后证明它的每一项都能任意小,这种“拆分方法”是证明某些极限问题的一个常用方法,例如:若10<<λ,a a n n =∞→lim (a 为有限数),证明:λλλλ-=++++--∞→1)(lim 0221aa a a a n n n n n . 分析:令0221a a a a x nn n n n λλλ++++=-- ,则01101221)()()()1(a a a a a a a a x n n n n n n n n +-----++-+-+=-λλλλλ .只须证 0)()()(101221→-++-+----a a a a a a nn n n n λλλ (∞→n )由于a a n n =∞→lim ,故N n N >∀N ∈∃,,有ε<--1n n a a .于是)()()(101221a a a a a a n n n n n -++-+----λλλ101111221a a a a a a a a a a n N n N n N N n N n N n n n n -++-+-++-+-≤---+-+----λλλλλ 再利用0lim =∞→n n λ(10<<λ)即得.例 求下列各式的极限: (1))2211(lim 222nn n nn n n n n +++++++++∞→ (2)n n n1211lim +++∞→ (3)nn nn 2642)12(531lim⋅⋅⋅⋅-⋅⋅⋅⋅∞→解:(1)≤+++++++++≤+++++n n n n n n n n n n n n 2222221121 1212+++++n n n∵∞→n lim nn n n +++++221 ∞→=n lim 212)1(2=+++n n n n n , ∞→n lim 1212+++++n n n ∞→=n lim 2112)1(2=+++n n n n , 由夹逼定理, ∴21)2211(lim 222=+++++++++∞→nn n n n n n n n (2)n n n n n=+++≤+++≤11112111 ∵1lim=∞→nn n ,由夹逼定理,∴11211lim =+++∞→n n n. (3)∵121243212642)12(531212212452321<-⋅⋅⋅=⋅⋅⋅⋅-⋅⋅⋅⋅=⋅--⋅⋅⋅≤nn n n n n n n , ∴12642)12(53121<⋅⋅⋅⋅-⋅⋅⋅⋅≤⋅n n nn n n.∵∞→n lim121=⋅nnn,由夹逼定理,∴12642)12(531lim=⋅⋅⋅⋅-⋅⋅⋅⋅∞→nn nn .评注nn 212-的极限是1,用此法体现了“1”的好处,可以放前,也可放后.若极限不是1,则不能用此法,例如:)12(53)1(32+⋅⋅⋅+⋅⋅⋅=n n x n ,求n n x ∞→lim .解:∵0>n x ,{}n x 单调递减,{}n x 单调递减有下界,故其极限存在. 令a x n n =∞→lim ,∵3221++⋅=+n n x x n n ∴=+∞→1lim n n x n n x ∞→lim ∞→n lim322++n n , a a 21=, ∴0=a ,即 0lim =∞→n n x .)2112111(lim nn +++++++∞→ (中科院) 评注 拆项:分母是两项的积,111)1(1+-=+n n n n插项:分子、分母相差一个常数时总可以插项.1111111+-=+-+=+n n n n n 3单调有界必有极限 常用方法:①n n x x -+1;②nn x x 1+;③归纳法;④导数法. )(1n n x f x =+ 0)(>'x f )(x f 单调递增12x x > )()(12x f x f > 23x x > 12x x < )()(12x f x f < 23x x <0)(<'x f )(x f 单调递减 12x x > )()(12x f x f < 23x x <12x x < )()(12x f x f > 23x x >不解决决问题.命题:)(1n n x f x =+,若)(x f 单调递增,且12x x >(12x x <),则{}n x 单调递增(单调递减). 例 求下列数列极限: (1)设0>A ,01>x ,)(211nn n x Ax x +=+;(98,华中科大,10分) (2)设01>x ,nnn x x x ++=+3331;(04,武大)(3)设a x =0,b x =1,221--+=n n n x x x ( ,3,2=n ).(2000,浙大) 解:(1)首先注意A x A x x A x x nn n n n =⋅⋅≥+=+221)(211,所以{}n x 为有下界数列. 另一方面,因为0)(21)(211≤-=-+=-+n nn n n n n x x Ax x A x x x .(或()121)1(21221=+≤+=+A Ax A x x nn n )故{}n x 为单调递减数列.因而n n x ∞→lim 存在,且记为a .由极限的四则运算,在)(211n n n x A x x +=+两端同时取极限∞→n ,得)(21aA a a +=.并注意到0>≥A x n ,解得A a =.(2)注意到33)1(333301<++=++=<+nn n n n x x x x x ,于是{}n x 为有界数列.另一方面,由)24)(3()3(2333333333333311211121121-------+++-=++-⎪⎪⎭⎫⎝⎛++-=+-=-++=-n n n n n n n n n n n n n n x x x x x x x x x x x x x x )2)(3(31121---++-=n n n x x x 知=---+11n n n n x x x x 02133)2)(3(311211121>+=+-++-------n n n n n n x x x x x x . 即n n x x -+1与1--n n x x 保持同号,因此{}n x 为单调数列,所以n n x ∞→lim 存在(记为a ).由极限的四则运算,在n n n x x x ++=+3331两端同时取极限∞→n ,得aaa ++=333.并注意到30<<n x ,解得3=a .(3)由于nn n n n n n n n n a b x x x x x x x x x x x )2()2()2(2201112111--=--=--==--=-+=----+ , 又=+-=∑-=+0101)(x x x x n m m m n a a b a a b x nn m mn +-----=+--=∑-=)21(1)21(1)()2(1)(10,所以 n n x ∞→lim 323)(2)21(1)21(1lim)(a b a a b a a b nn +=+-=+-----=∞→. 评注1 求递归数列的极限,主要利用单调有界必有极限的原理,用归纳法或已知的一些基本结果说明数列的单调、有界性.在说明递归数列单调性时,可用函数的单调性.下面给出一个重要的结论:设)(1n n x f x =+( ,2,1=n )I x n ∈,若)(x f 在区间I 上单调递增,且12x x >(或12x x <),则数列{}n x 单调递增(或单调递减).评注 2 第三小题的方法较为典型,根据所给的11,,-+n n n x x x 之间的关系,得到n n x x -+1与1--n n x x 的等式,再利用错位相减的思想,将数列通项n x 写成级数的表达式.例 设11,b a 为任意正数,且11b a ≤,设11112----+=n n n n n b a b a a ,11--=n n n b a b ( ,3,2=n ),则{}n a ,{}n b 收敛,且极限相同.证明:由≤+=----11112n n n n n b a b a a 111122----n n n n b a b a n n n b b a ==--11,知≤=--11n n n b a b 111---=n n n b b b .则10b b n ≤<,即{}n b 为单调有界数列.又10b b a n n ≤≤<,且=-+=-------1111112n n n n n n n a b a b a a a =+---------111121112n n n n n n n b a b a a b a 0)(11111≥+------n n n n n b a a b a , 所以{}n a 亦为单调有界数列.由单调有界必有极限定理,n n a ∞→lim 与n n b ∞→lim 存在,且分别记为a 与b .在11112----+=n n n n n b a b a a 与11--=n n n b a b 两端同时取极限∞→n ,得ba ab a +=2与ab b =.考虑到11,b a 为任意正数且110b b a a n n ≤≤≤<. 即得0≠=b a .例 (1)设21=x ,nn x x 121+=+,求n n x ∞→lim ;(2)设01=x ,22=x ,且02311=---+n n n x x x ( ,3,2=n ),求n n x ∞→lim .解:(1)假设n n x ∞→lim 存在且等于a ,由极限的四则运算,在nn x x 121+=+两端同时取极限∞→n ,得aa 12+=,即21±=a . 又2>n x ,故21+=a .下面只须验证数列{}a x n -趋于零(∞→n ).由于<-<-=⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=-<+a x a x a x a x a x n n n n n 41121201a x n-⎪⎭⎫ ⎝⎛<141, 而∞→n lim 0411=-⎪⎭⎫⎝⎛a x n,由夹逼定理得=∞→n n x lim 21+=a . (2)由02311=---+n n n x x x ,知=++n n x x 231=+-123n n x x =+--2123n n x x 62312=+=x x , 则 2321+-=+n n x x . 假设n n x ∞→lim 存在且等于a ,由极限的四则运算,得56=a . 下面只须验证数列⎭⎬⎫⎩⎨⎧-56n x 趋于零(∞→n ).由于 =-+-=--56232561n n x x =⎪⎭⎫⎝⎛---56321n x 56325632111⋅⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=--n n x . 显然∞→n lim 056321=⋅⎪⎭⎫⎝⎛-n ,由夹逼定理得56lim =∞→n n x .评注1 两例题中均采用了“先求出结果后验证”的方法,当我们不能直接用单调有界必有极限定理时,可以先假设a x n n =∞→lim ,由递归方程求出a ,然后设法证明数列{}a x n -趋于零.评注 2 对数列{}n x ,若满足a x k a x n n -≤--1( ,3,2=n ),其中10<<k ,则必有a x n n =∞→lim .这一结论在验证极限存在或求解递归数列的极限时非常有用.评注3 本例的第二小题还可用C auc hy 收敛原理验证它们极限的存在性.设1a >0,1+n a =n a +n a 1,证明n 1(04,上海交大)证 (1)要证n 1 ,只要证2lim 12nn a n →∞=,即只要证221lim 1(22)2n nn a a n n+→∞-=+-,即证221lim()2n n n a a +→∞-= (2)因1+n a =n a +n a 1,故110n n n a a a +-=>,1211n n na a a +=+ 2211112211()()112n n n n n n n n n n na a a a a a a a a a a +++++-=-+==++=+ 因此只要证21lim 0n na →∞=,即只要证lim n n a →∞=∞(3)由110n n na a a +-=>知,{}n a 单调增加,假如{}n a 有上界,则{}n a 必有极限a ,由1+n a =n a +n a 1知,a =a +1a ,因此10a=,矛盾. 这表明{}n a 单调增加、没有上界,因此lim n n a →∞=∞. (证完)4 利用序列的Cau chy 收敛准则例 (1)设21xx =(10≤≤x ),2221--=n n x x x ,求n n x ∞→lim ;(2)设111==y x ,n n n y x x 21+=+,n n n y x y +=+1,求nnn y x ∞→lim ; 解:(1)由21x x =(10≤≤x ),得211≤x .假设21≤k x ,则412≤k x .有=-=+2221k k x x x 21212≤-k x x由归纳法可得 21≤n x . 于是 ⎪⎪⎭⎫ ⎝⎛---=---++22222121n p n n pn x x x x x x 111111212--+--+--+-≤-+=n p n n p n n p n x x x x x x021211111→≤-≤≤-+-n p n x x (∞→n ). 由Cauchy 收敛准则知:n n x ∞→lim 存在并记为a ,由极限的四则运算,在2221--=nn x x x 两端同时取极限∞→n ,得022=-+x a a .注意到21≤n x ,故x a x n n ++-==∞→11lim . (2)设nnn y x a =,显然1>n a . 由于nn n n n n n n a y x y x y x a ++=++==+++1112111,则 111111+++-+=-n n n n a a a a ()()<++-=--1111n n n n a a a a <<-- 141n n a a 12141a a n --. 于是=-+n p n a a n n p n p n p n p n a a a a a a -++-+-+-+-+-++1211 n n p n p n p n p n a a a a a a -++-+-≤+-+-+-++121112124141a a n p n -⎪⎭⎫ ⎝⎛++<--- 12141141141a a p n ---⋅=- 03141121→-⋅<-a a n (∞→n ).由Cauc hy 收敛准则知:n n x ∞→lim 存在并记为a .由极限的四则运算,在nn a a ++=+1111两端同时取极限∞→n ,得22=a . 注意到1>n a ,故=∞→n nn y x lim2lim =∞→n n a . 评注1 Cau chy 收敛准则之所以重要就在于它不需要借助数列以外的任何数,只须根据数列各项之间的相互关系就能判断该数列的敛散性. 本例两小题都运用了Cau chy 收敛准则,但细节上稍有不同.其实第一小题可用第二小题的方法,只是在第一小题中数列{}n x 有界,因此有11111≤+≤-++x x x x p p .保证了定义中的N仅与ε有关.评注2 “对N p ∈∀有()0lim =-+∞→n p n n x x ”这种说法与C auch y收敛准则并不一致.这里要求对每个固定的p ,可找到既与ε又与p 的关的N,当N n >,有ε<-+n p n x x .而C auchy 收敛准则要求所找到的N 只能与任意的ε有关.5 利用St ol z定理计算数列极限例 求下列极限(1)⎪⎪⎭⎫⎝⎛-+++∞→421lim 3333n n n n(2)假设1222...lim ,lim 2n n n n a a na aa a n →∞→∞+++==证明:(00,大连理工,10)(04,上海交大) 证明:S tol z公式121211222212...(2...(1))(2...)limlim(1)(1)lim 212n n n n n n n n a a na a a na n a a a na n n n n a a n +→∞→∞+→∞++++++++++++=+-+==+(3)nn n ln 1211lim +++∞→ (4)nn n n 1232lim++++∞→ (5)n n an 2lim ∞→(1>a )6 关于否定命题的证明 (书上一些典型例题需背)a x n n ≠∞→lim{}n x 发散例 证明:nx n 131211++++= 发散.例 设0≠n a ( ,2,1=n ),且0lim =∞→n n a ,若存在极限l a a nn n =+∞→1lim,则1≤l .(北大,20)3第一讲__数列的极限典型例题7 杂例(1))1(1321211lim+++⋅+⋅∞→nnn(2)(04,武大)2212lim(...),(1)11()1lim()11(1)1nnnnnnaa a an aaa a aa→∞→∞+++>-=-=---(3) )1()1)(1(lim22nnxxx+++∞→(1<x);(4)设31=a,nnnaaa+=+21(,2,1=n),求:⎪⎪⎭⎫⎝⎛++++++=∞→nn aaal111111lim21.。