城市轨道交通车辆电气牵引系统基础
- 格式:pptx
- 大小:3.00 MB
- 文档页数:17
城市轨道交通牵引供电系统分析摘要:近年来,轨道交通的运输规模不断增加,给人们的出行带来更加便捷体验的同时,也引起了很多人的担忧。
因为交通运输规模的增加必然会导致车辆流动量的增加,这也给城市轨道交通牵引供电系统带来了全新的挑战。
这需要不断引进新的技术,不断消化吸收,努力进行创新和再创新,同时对轨道交通建设的标准与质量的认识也不断提高,所以对于其关键技术进行研究是有必要的。
关键词:城市;轨道交通;牵引供电系统1地铁车辆供电系统构成为了保证地铁的顺利运营,我们必须做好地铁供电系统的运行工作。
其关键作用是为地铁及其电气设备供电。
在地铁供电系统中,关键可分为高压电源供电和地铁内部结构供电。
高压电源可以立即应用于市政工程的用电。
在供电的情况下,一般采用混合供电方式、分散供电方式和集中供电方式。
地铁内部结构的供电分为照明供电和牵引供电。
牵引供电的目的是将高压交流电源转换为地铁运营所需的直流稳压电源。
然后根据同轴电缆将其发送到地铁-轨道交通接触网,地铁在用电过程中会立即从轨道交通接触网获得必要的用电。
在地铁照明灯具供电系统中,不仅需要给照明灯具供电,还需要给离心泵和离心风机供电。
该供电系统主要由电源线及其降压配电设备组成。
2牵引供电系统的关键技术2.1 双向变流装置双向变流装置通常由交流开关柜、变压器柜、双向变流器柜、直流开关柜和负极柜组成,整体接线方案与现有二极管整流机组的相一致。
其交流侧通过35kV开关柜被接于牵引变电所内的35 kV母线段;直流侧正极通过1500V直流开关柜被接于牵引变电所内的直流母线段正极,负极仍保留直流控制柜内的隔离开关,且被接于牵引变电所内的直流母线段负极。
传统二极管整流机组牵引供电方式中直流侧短路保护主要依赖直流进线柜和直流馈线柜的保护设施。
直流进线柜保护包含大电流脱扣保护和逆流保护;直流馈线柜保护包含大电流脱扣保护、ΔI保护、di/dt保护、过电流保护和双边联跳保护,各种保护相互配合,从而实现牵引网近、中、远端短路的全范围保护。
城市轨道交通供电与牵引系统简介城市轨道交通供电与牵引系统是城市轨道交通运营的核心局部,为城市轨道交通车辆提供稳定可靠的电力供给,并通过牵引系统将电力转化为动力,驱动车辆运行。
本文将对城市轨道交通供电与牵引系统的关键组成局部进行详细介绍。
供电系统城市轨道交通的供电系统主要由供电设备、接触网和供电馈线组成。
供电设备供电设备是城市轨道交通供电系统的核心局部,它主要包括变电站、配电装置和电力传输线路等。
变电站负责将输入的电能进行变压、变流等处理,输出适合城市轨道交通使用的高电压电能。
配电装置用于将变电站输出的电能分配到不同的供电馈线上。
电力传输线路那么将电能从变电站输送到供电馈线。
接触网接触网是城市轨道交通供电系统的另一个重要组成局部,它负责将电能从供电设备传输到行车区域。
接触网通常采用悬挂在轨道上方的导线或导轨,通过接触网与车辆上的供电装置接触,将电能传输给车辆。
供电馈线供电馈线是连接接触网和供电设备的局部,它通过分布在轨道两侧或中央的电缆将电能传输给接触网。
供电馈线主要负责将变电站输出的高电压电能传输到接触网,以供行车区域的车辆使用。
城市轨道交通的牵引系统是将电能转化为动力,驱动车辆运行的关键局部,它主要包括牵引变流器、牵引电机和传动装置等。
牵引变流器牵引变流器是将供电系统提供的直流电转化为交流电,并根据车辆的运行需求控制输出功率和频率的设备。
牵引变流器通常由多个晶闸管或功率模块组成,通过调整晶闸管的导通和封锁,实现对电流和电压的控制,从而实现对车辆的驱动力和制动力的控制。
牵引电机牵引电机是城市轨道交通车辆中的动力装置,它根据牵引变流器输出的交流电能,将电能转化为机械能,驱动车辆运行。
常用的牵引电机包括直流电机和交流电机,其中交流电机又包括异步电机和同时电机等。
传动装置是将牵引电机输出的动力传递给车轮的局部,它主要通过减速器和传动轴等组件实现。
传动装置的设计对车辆的运行稳定性、效率和能耗等方面有着重要影响。
城市轨道交通车辆-第章-电力牵引传动系统课件 (一)城市轨道交通车辆是现代城市交通中非常重要的一部分,而他们的电力牵引传动系统就是其运行的核心和动力。
本文将详细介绍城市轨道交通车辆的电力牵引传动系统。
一、电力牵引传动系统的组成电力牵引传动系统由三个组成部分构成:牵引变流器、牵引电机和制动电阻。
1.牵引变流器:牵引变流器是电力牵引的核心和决定因素,它可以将直流电转化为交流电。
牵引变流器能够控制电机的转速和力矩,以达到牵引车辆的目的。
2.牵引电机:城市轨道交通车辆的牵引电机是三相异步电动机或同步电动机。
牵引电机可以将电能转化为机械能,从而提供动力以驱动轨道车辆。
3.制动电阻:制动电阻是在车辆紧急制动时提供制动力的电阻元件。
当电机接通制动电阻电路时,电机旋转速度要逐渐降低,从而达到制动效果。
二、电力牵引传动系统的分类根据使用条件和使用要求的不同,电力牵引传动系统可以分为直流电力牵引传动系统和交流电力牵引传动系统两种类型。
1.直流电力牵引传动系统:直流电力牵引传动系统具有简单、可靠、成熟的技术,对牵引电机的故障诊断和控制较为方便。
同时,直流电力牵引传动系统还具有调速范围大,可靠性高的特点。
2.交流电力牵引传动系统:交流电力牵引传动系统采用AC电机,可以在不同速度下提供更高的牵引力和效率。
此外,交流电力牵引传动系统可以通过能量回馈来降低整车的能耗。
三、电力牵引传动系统的优缺点1.优点电力牵引传动系统具有牵引力大、加速度快、稳定性高和运行平稳等特点。
同时,电力牵引传动系统能够提供更为舒适的乘坐环境,降低噪声和振动。
另外,电力牵引传动系统还能够节能环保,大大减少空气污染和噪声污染。
2.缺点电力牵引传动系统的成本较高,维护和保养也比较复杂。
同时,由于其本身的构造和性能,电力牵引传动系统的动力响应有些慢,无法满足部分应急情况下的需要。
总之,电力牵引传动系统是城市轨道交通车辆运行的核心,也是现代城市交通发展的重要标志之一。
一、车辆电路系统构成城市轨道交通车辆电气系统由牵引系统〔动力系统〕、辅助系统和控制系统等三局部,牵引动力系统属于高压电路,一般为1500V或750V直流供电,辅助系统一般由三相380伏交流电路构成,而控制系统电压通常为110V及以下直流电压,因此,车辆电路系统按其功能及电压上下,可分为高压牵引电路〔主电路〕、辅助电路、控制电路等三局部。
厂家在设计时,通常又对其进行功能细分,如SZP1列车的电路系统按功能级别被分为主电路、牵引制动控制、辅助、监控信息、照明、空调、附属设备、车门控制、车钩电路等9个局部。
1.车辆电气设备配置图1-1 3车单元牵引设备布置根据运量需要,地铁车辆通常采用3辆、4辆、5辆、6辆等几种编组方式。
SZP1列车采用6辆编组,由2组相同的3车单元连挂在一起构成。
图1-1是SZP1列车牵引设备布置简图,除受电弓和避雷器外,所有的车辆高压、牵引和辅助设备分布在车辆底部,大局部牵引设备位于B车和C车车下的两个逆变器箱中,其中,PH箱(牵引和高压)安装在B车,PA 箱(牵引和辅助系统)安装在C车。
SZP1列车采用直流1500伏架空接触网供电,每个3车单元设一台受电弓,受电弓位于B车II端顶部,由接触网送来的直流1500V高压电流经受电弓直接进入PH箱。
PH 箱由高压系统和MCM〔电机逆变器〕组成,高压系统包括线路断路器、隔离接地开关、带接触器的车间电源插座、熔断器和去耦二极管等高压设备。
MCM由三相逆变器、控制板和保护元件等设备组成。
位于C车的PA箱主要由一个MCM和一个ACM〔辅助逆变器〕组成,此外还包括充电电路、EMI 电容器、三相辅助滤波器、辅助变压器〔三相电压〕等。
BCM〔蓄电池充电机〕和蓄电池位于A车,负责向全列车提供直流110V控制电压。
2.电路系统构成由2动1拖组成的3车单元的车辆电路原理图如图1-2所示。
图中,车辆通过受电弓〔Q1〕从接触网取得1500V直流电源。
F1是避雷器,负责对车辆进行网侧过电压保护。
城市轨道交通电力牵引复习资料第一章牵引理论基础1、目前,绝大多数城市轨道交通车辆属于钢轮钢轨式,运行的任何一种工况,都依赖于车轮和钢轨的相互作用力。
在钢轮钢轨式城市轨道交通车辆中,牵引动力由牵引电动机通过传动机构,传递给动车的动力轮对(动轮),由车轮和钢轨的相互作用,产生使车辆运动的反作用力。
2、空转:因驱动转矩过大,破坏粘着关系,使轮轨间出现相对滑动的现象,称为“空转”。
3、粘着:由于正压力而保持动轮与钢轨接触处相对静止的现象称为“粘着”。
4、蠕滑:在动轮正压力的作用下,轮轨接触处产生弹性变形,形成椭圆形的接触面。
从微观上看,两接触面是粗糙不平的。
由于切向力的作用,动轮在钢轨上滚动时,车轮和钢轨的粗糙接触面产生新弹性变形,接触面间出现微量滑动,即“蠕滑”。
5、蠕滑速度:由于蠕滑的存在,牵引时动轮的波动圆周速度将比其前进速度高,速度差称为蠕滑速度,用蠕滑率表示。
,式中—动轮的前进速度;—动轮的转动角速度。
6、论述:粘着系数与改善粘着的方法。
(P5)(一)影响粘着系数的重要因素:①动轮踏面与钢轨表面状态;②线路质量;③车辆运行速度和状态;④动车有关部件的状态。
(二)改善粘着的方法:①修正轮轨表面接触条件,改善轮轨表面不清洁状态;②试法改善轨道车辆的悬挂系统,以减轻轮对减载带来的不利影响。
常用的措施:撒沙、清洗轨道、打磨钢轨,改进匝瓦材料如用增粘匝瓦,改善车辆悬挂减少轴重转移。
7、制动方法分为三类:①摩擦制动:包括闸瓦制动和盘式制动;②电气制动:包括电阻制动和再生制动;③电磁制动:包括磁轨制动和涡流制动。
8、电磁制动的最大优点是所产生的制动力不受轮轨间的粘着条件限制。
9、摩擦制动和电气制动都是通过轮轨粘着产生制动力的。
10、当动轮对的牵引力大于最大粘着力时,轮对就发生空转。
11、轨道交通车辆在设计时,充分考虑了轮轨之间的粘着利用,但是没有粘着控制系统的轨道车辆动车只能靠其自然特性运行,难以运用到粘着极限。
城市轨道交通车辆电气控制功能及原理浅析摘要:轨道交通车辆作为城市轨道交通的重要组成部分,承担着载客的重要角色,车辆的电气控制具有控制复杂、安全系数高等特点,对轨道交通运营的安全有着重要的影响。
本文结合城市轨道交通车辆电气控制的特点,针对车辆电气控制的功能及原理进行了分析。
关键词:城市轨道交通车辆电气控制1 引言城市轨道交通车辆电气控制系统包括车辆上的各种电气设备及其控制电路。
按其作用和功能可分为主电路控制系统、辅助电路控制系统、电气牵引控制系统等组成。
本文结合城市轨道交通车辆的特点,针对车辆电气控制功能及原理进行了分析。
2 主电路控制系统主电路由牵引电机及与其相关的电气设备和连接导线组成,其作用是将电网的电能转变为车辆运行所需的牵引力,当在电气制动时将车辆的动能转换为电制动力。
它是车辆上的高电压、大电流、大功率动力回路。
高压电器箱是车辆电气牵引系统主电路的前级构成部分,包含三位置隔离开关、高速断路器、库用电源插座、直流接触器、快速熔断器、反向隔断整流管等器件组成。
三位置隔离开关是用于车辆牵引电路、辅助电路、库用电源电路中高压主电路的接通与接地、隔离。
高速断路器用于主电路的故障保护;熔断器用于主电路的短路保护。
DC1500V电源从受受流器经过三位置开关、高速断路器送到高压电器箱,然后经差分电流传感器、充电接触器、充电电阻、线路接触器,送到后面的线路电抗器和牵引逆变器。
主要功能有:(1)给逆变器充电:列车运行时,控制高速断路器闭合,接受到方向指令后,充电接触器闭合,DC1500V电源经充电电阻给牵引逆变器内直流支撑电容器充电,充电完成后线路接触器闭合,然后牵引逆变器启动工作。
(2)续流、接地功能:当车辆处于牵引工况时,直流供电能量经高压箱进入牵引逆变器;当车辆处于再生制动工况时,负载能量经高压箱反馈回电网,或者由制动电阻消耗掉。
(3)差分电流检测功能:当差分电流传感器检测系统1500V正线与1500V 负线差值大于1A时,差分电流传感器会发出报警信号给DCU,当差分电流传感器检测系统1500V正线与1500V负线差值大于50A时,差分电流传感器会发出报警信号给DCU。
城市轨道交通牵引供电系统简介城市轨道交通牵引供电系统是城市轨道交通运行的重要组成部分,负责向轨道交通车辆提供电力供应。
它不仅直接影响着轨道交通的运营效率和电力消耗情况,还与乘客的乘坐舒适度和安全性息息相关。
本文将介绍城市轨道交通牵引供电系统的基本原理、组成结构以及未来发展趋势。
基本原理城市轨道交通牵引供电系统的基本原理是将电源通过接触网供应给轨道交通车辆。
具体来说,电源会通过接触网上的触网集电装置传送给牵引系统。
牵引系统由主变压器、牵引变流器和牵引电动机组成,负责将电能转换为机械能,驱动轨道交通车辆运行。
组成结构城市轨道交通牵引供电系统由多个组成部分构成,包括接触网、辅助设备和车辆终端设备。
接触网接触网是城市轨道交通牵引供电系统的核心部分,通常安装在轨道上方。
它由导线、吊杆、挂装件等组成,用于提供电力给牵引系统。
接触网一般采用带电架空式供电,即以高架的方式悬挂在轨道上方,通过接触网上的触网集电装置与车辆终端设备连接。
辅助设备城市轨道交通牵引供电系统还包括一系列辅助设备,用于确保供电系统的正常运行。
辅助设备主要包括配电变压器、开关设备、保护和监控装置等。
配电变压器用于将高压电源转换为适合牵引系统使用的低压电源;开关设备用于控制电能的分配和传输;保护和监控装置则用于监测供电系统的运行状态,及时处理故障和异常情况。
车辆终端设备车辆终端设备是城市轨道交通车辆上的设备,用于接收来自接触网的电能,并将其转换为机械能,驱动车辆行驶。
未来发展趋势随着城市轨道交通的不断发展,牵引供电系统也在不断创新和改进。
以下是一些未来发展趋势:高效能源利用未来的城市轨道交通牵引供电系统将更加注重能源的高效利用。
通过采用先进的能量回收技术,如再生制动系统、能量储存装置等,将能源回收再利用,减少能源的浪费。
无线供电技术无线供电技术有望成为未来城市轨道交通牵引供电系统的重要发展方向。
通过利用无线传输技术,可以不再依赖接触网,实现轨道交通车辆的无线供电,提高供电系统的稳定性和可靠性。