振动力学(梁的横向振动)
- 格式:ppt
- 大小:1.47 MB
- 文档页数:7
梁的横向弯曲振动试验原理
梁的横向弯曲振动试验的原理是:
1. 将梁的两端固定,使其形成简支梁。
2. 在梁的中部施加一个短时的冲击力,使梁产生横向弯曲振动。
3. 根据牛顿第二定律,力的冲击会使梁发生位移和振动。
4. 梁的振动属于强迫谐振,振动周期取决于其本身的质量和刚度分布。
5. 通过测量梁的振动周期,可以计算出其横向振动的固有频率。
6. 调节激励力的参数,可以获得梁在不同激励下的响应规律。
7. 使用传感器测量梁的位移、应变等,结合信号分析,可以确定梁的动态特性和模态参数。
8. 控制梁的边界条件,使其接近理想的简支状态。
9. 进行多次试验取平均,可以提高结果准确性。
10. 试验符合梁横向弯曲振动的工程动力学理论。
通过该试验可以研究梁的动力学行为,获得其横向弯曲振动的动态特性。
工程力学中的振动力学分析振动力学是工程力学中的一个重要分支,研究物体在受到外力或扰动作用下,产生周期性的振荡运动的力学现象和规律。
在工程设计和实际应用中,对于机械、结构、电路等系统的振动性能进行分析是非常关键的,既可以用于确保系统的稳定性和可靠性,也可以用于优化系统的性能和寿命。
本文将从振动力学的基本概念、振动系统的建模与分析方法、振动控制等方面进行阐述。
1. 振动力学的基本概念振动力学研究的基础是力学和数学,涵盖了力学中的动力学和弹性力学以及数学中的微分方程和线性代数等基础知识。
振动力学分析主要涉及以下几个重要概念:1.1 自由振动:物体在无外界干扰的情况下,受到初位移或初速度激发后,以一定的频率和振幅沿某个方向进行振荡的现象。
1.2 强迫振动:物体在受到外界作用力驱动下,产生周期性振动。
1.3 阻尼:振动系统中由于与外界介质的相互作用,能量逐渐耗散而减小振幅的现象。
1.4 谐振:当外力频率与振动系统的固有频率相等或非常接近时,系统振幅达到最大值。
2. 振动系统的建模与分析方法振动系统的建模是研究振动问题的关键步骤之一,常用的建模方法包括单自由度系统、多自由度系统和连续系统。
其中,单自由度系统是最简单的模型,通常用弹簧和阻尼器模拟物体的弹性和阻尼特性。
2.1 单自由度系统: 单自由度系统是指只有一个独立的振动自由度,常用的模型是弹簧质点系统和单摆系统。
通过施加外力,可以分析系统的自由振动、强迫振动和阻尼振动。
2.2 多自由度系统: 多自由度系统是指在一个系统中存在多个相互独立的振动自由度。
常见的多自由度系统包括梁的弯曲振动、桥梁的横向振动等。
通过建立系统的动力学方程,可以求解各个自由度上的位移响应和系统共振频率。
2.3 连续系统: 连续系统是指物体的振动是连续的,例如梁和板的振动。
在连续系统中,可以利用变分原理、模态分析和有限元法等方法进行振动分析。
3. 振动控制振动控制是指通过控制手段,减小或消除系统的振动响应,以提高系统的性能和稳定性。
关于梁的振动结构的损伤首先表现为裂纹的出现和扩展,裂纹损伤是引起大型复杂结构破坏的主要原因之一[1]。
由于早期初始微小裂纹不易被发现,容易被人们忽略,但裂纹的深入扩展往往导致重大灾难性事故的发生,诸如航空灾难、桥梁的断裂坍塌、海洋平台的倒塌、油气管线的断裂泄漏等,给国家和社会造成了巨大的损失。
因此,监测并预示早期裂纹发生的位置与深度,预防重大事故发生,是损伤识别领域的一个重要研究方向。
近年来,结构裂纹损伤监测与识别方法的研究引起了国内外学者的广泛关注,成为工程结构健康诊断和安全评估研究的前沿课题之一。
虽然超声波、电涡流、磁粉、红外识别法等检测方法[2-3]在裂纹检测上取得了一定成就,但这些方法通常只适用于对静态对象的检测2 裂纹梁结构振动分析结构中裂纹的出现引起局部刚度的改变,从而在一定程度上影响了结构整体的动力特性,导致了固有频率的降低和振型的变化,裂纹梁的振动分析对于指导裂纹识别非常有意义。
裂纹梁振动分析的关键是裂纹的处理,常见处理方法有:等效降截面法[5-9];局部柔度法[10-16];一致裂纹梁理论[17-21]。
近年来裂纹梁的非线性特征研究得到了发展[20-25].2.1等效降截面法等效降截面法是发展最早的一种方法。
Kirmsh—el[5]和Thomson[6]是两位研究具有类似切口缺陷局部不连续梁振动特征的先驱,首次对局部缺陷进行了量化分析。
文献[5—6]中使用局部弯矩或降截面模拟切口对结构柔度的影响,并通过试验对结果进行验证,提出了一种等效降截面法。
Petroski[7-8]多次使用Kirmshen和Thomson提出的等效降截面法求解损伤梁的振动问题。
Wendtland同样用切口模拟缺陷,使用了文献[5—6]提出的等效降截面法分析缺陷截面柔度,并通过试验研究比较不同几何形状及不同边界条件下裂纹梁固有频率的变化,在结论中清晰指出:等效降截面法不大适合分析真实裂纹,仅仅适合于切口的振动分析。
梁横向振动的近似解法弹性体的固有振动有两种提法,一种是微分方程的特征值问题,另一种是泛函的驻值问题。
从精确解得角度看,两者完全等价,从近似解得角度看,求泛函驻值问题比求微分方程的近似解容易。
精确解法主要是分离变量法,此处略去不谈。
一方程的建立假设:梁的各截面中心主惯性轴在同一平面,外载也在同一平面,梁在该平面内的横向振动引起弯曲变形,低频振动时可以忽略剪切变形及截面绕中性轴转动惯量的影响。
∂2∂x 2 EJ ∂2y ∂x 2 +ρA ∂2y ∂t 2=p x,t −∂∂xm x,t (1) p(x,t),m(x,t)分别为单位长度梁上分布的外力和外力矩。
假设:y(x,t)=Y(x)bsin(ωt +ϕ)代入(1)式的齐次形式,有:(EJY ′′)′′−ω2ρAY =0 (2)上式改写成:(EJY ′′i )′′=ω2ρAY i上式两边同时乘以Y i 并在全梁上积分,i ,j 互换得到两个式子并相减等于0可以得到主振型的关于质量和刚度正交性,并且可以得到相应的频率p378。
固有频率的变分式命题:这个式子与边界条件的组合所确定的特征值ω2及相应的特征函数Y(x) 等价于下列泛函所取驻值及相应的自变函数,该自变函数满足位移边界条件P389。
ω2=st EJ(Y ′′)2dx l 0ρAY 2dx l 0 (3)证明:1,(3)式各驻值及相应的函数Y(x)是(2)式的的特征值和特征函数。
驻值时,一阶变分等于0,δ(ω2)=0展开后,得到三个item 相加得0:EJY ′′ ′′−ω2ρAY δYdx − EJY ′′ ′l0δY ︱0l +EJY ′′δY ‘︱0l=0 (∗) 由δY 的任意性,第一个item 等于0,可以得到(2)式,由第二、三项可以得到Y(x)的边界条件。
2,(3)式加(2)式后反过来可以得到δ(ω2)=0。
从而证明泛函的驻值问题与微分方程的特征值问题完全等价。
另外,可以由泛函(3)证明主振型的正交性。
第20卷第6期2022年12月动力学与控制学报JOURNALOFDYNAMICSANDCONTROLVol.20No.6Dec.2022文章编号:1672 6553 2022 20(6) 101 05DOI:10.6052/1672 6553 2022 047 2022 08 20收到第1稿,2022 09 28收到修改稿.国家自然科学基金资助项目(12172281,11972284),基础加强173计划基金项目(2021 JCJQ JJ 0565),陕西省科技创新团队资助(2022TD 61)和陕西高校青年教师创新团队资助 通信作者E mail:wphu@nwpu.edu.cn轴向运动功能梯度梁横向振动问题的保结构分析刘涛1 周洋忻2 胡伟鹏2(1.榆林市城市投资经营集团有限公司,榆林 719000)(2.西安理工大学土木建筑工程学院,西安 710048)摘要 轴向运动速度和材料的非均匀性对轴向运动功能梯度梁振动问题分析提出了严峻挑战.本文在简要回顾轴向运动功能梯度梁横向振动动力学模型基础上,基于无限维动力学系统的对称破缺理论和广义多辛分析方法,构造了横向振动模型的保结构数值格式,并在给定材料参数时给出了数值格式具有良好保结构性能的条件.分别采用微分求积法、复模态法和保结构方法分析横向振动模型的前六阶频率,发现保结构方法得到的频率结果与复模态法得到的结果吻合较好,在此基础上分析了微分求积法的主要误差来源,以指导微分求积法的改进,并为复杂动力学系统的数值求解提供了新途径.关键词 保结构, 轴向运动功能梯度梁, 对称破缺, 广义多辛, 横向振动中图分类号:O302文献标志码:A引言功能梯度材料由于控制界面的成分和组织连续变化,使材料的热应力大为缓和,而在航空航天、机械工程、生物医药等领域应用广泛[1 3].智慧建造[4]这一全新概念的提出,使得传统单一均匀材料无法满足建筑设计工程的需求,因此,功能梯度材料将是未来实现很多智慧建造特殊功能的不二选择.作为智慧建造中的基本力学构件,功能梯度梁的动力学行为分析尤为重要.特别是在装配式智慧建造过程中,功能梯度梁运输及吊装过程的横向振动特性对运输和吊装过程的稳定性影响显著.Sankar[5]基于Euler Bernoulli梁理论,得到了横向载荷作用下功能梯度梁弹性范围内的解.Reddy[6]基于vonKarman几何非线性理论,建立了功能梯度梁的非线性Euler Bernoulli梁模型和Timoshenko梁模型.丁虎[7]、王忠民等[8]轴向运动功能梯度梁振动模型,并分别采用伽辽金法和微分求积法分析其振动特性,为本文分析功能梯度梁横向振动过程奠定了基础.刘金建等[9]基于Euler梁理论研究了轴向运动功能梯度粘弹性梁横向振动的稳定性问题.Balireddy和Pitchaimani[10]分析了时变轴向载荷作用下功能梯度梁振动特性及稳定性.从本质上讲,功能梯度梁的材料非均匀性和梁式结构的轴向运动均属于动力学对称破缺[11]因素.对于含有对称破缺因素的动力学系统,本课题组基于多辛分析方法,建立了广义多辛分析方法[12]这一保结构理论框架,并解决了一系列复杂动力学问题[13 16].因此,本文将基于保结构思想,分析轴向运动功能梯度梁的横向振动频率特性,为功能梯度梁的横向振动控制提供参考.1 轴向运动功能梯度梁横向振动模型本节参考文献[8,9],简要回顾轴向运动功能梯度梁横向振动动力学模型的建立过程.考虑一轴向运动的简支功能梯度矩形截面梁(图1),梁长度为L,横截面宽度为b、高为h,轴向运动速度为定常速度,大小为η.为了刻画材料特性沿界面高度方向的梯度,假定功能梯度材料有效杨氏模量和有效Copyright ©博看网. All Rights Reserved.动 力 学 与 控 制 学 报2022年第20卷密度均为z坐标的函数,即E(z)和ρ(z).图1 轴向运动功能梯度梁的物理模型Fig.1 Physicalmodeloffunctionallygradedbeamwithanaxialvelocity以含两种组分(如金属材料和陶瓷材料)的功能梯度材料为例,其有效材料参数可表述为:E(z)=(Ec-Em)(z/h+1/2)k+Em =Em[(βE-1)(z/h+1/2)k+1]ρ(z)=(ρc-ρm)(z/h+1/2)k+ρm =ρm[(βρ-1)(z/h+1/2)k+1](1)其中Ec,Em,ρc,ρm分别为两种材料组分的物理参数,βE=Ec/Em,βρ=ρc/ρm,k为梯度指标.需要说明的是,从式(1)即可推导出功能梯度梁的中性层与几何对称中心重合.基于Euler Bernoulli梁基本假设,依据文献[8],功能梯度梁上任意点的位移可由梁轴线上任意点的轴向位移u(x,t)和横向位移w(x,t)表述:ux(x,z,t)=u(x,t)-z xw(x,t)+ηtuz(x,z,t)=w(x,t)(2)功能梯度梁上任意点的正应变分量和正应力分量分别为:εx= xu-z xxwσx=E(z)εx=E(z)( xu-z xxw)(3)由其描述的梁的应变能可表述为:U=12∫L0∫AσxεxdAdx =12∫L0[D1( xu)2-2D2 xu xxw+ D3( xxw)2]dx(4)其中,A为梁的横截面面积,并且:(D1,D2,D3)=∫AE(z)(1,z,z2)dA功能梯度梁上任意点两个方向的速度分量分别为:vx= tux(x,z,t) = tu(x,t)-z txw(x,t)+ηvz= tw(x,t)+η xw(x,t)(5)由此描述的梁的动能可表述为:K=12∫L0∫Aρ(z)(v2x+v2z)dAdx= 12∫L0{I1[( tu)2+η2+2η tu+( tw)2+ η2( xw)2+2η tw xw]-2I2η txw- 2I2 tu txw+I3( txw)2}dx(6)其中(I1,I2,I3)=∫Aρ(z)(1,z,z2)dA由哈密顿原理,忽略梁的轴向惯性力及其由轴向惯性力诱导的横向分布载荷项,并消去轴向位移项,得到轴向运动功能梯度梁横向振动方程:(D3-D22D1) xxxxw-(I3-I2D2D1) ttxxw+ I1( ttw+η2xxw+2η txw)=0withw(0,t)=0w(L,t)=0xxw(0,t)=0 xxw(L,t)={0(7)2 振动模型的近似对称形式及保结构离散引入如下中间变量: tw= xψ=D1φ-D1I1χD2I2-D1I3, xw=φ, xχ=φ,并定义状态向量:z=(w,φ,χ,ψ,φ)T,轴向运动功能梯度梁横向振动方程(不含边界条件)可以写成如下近似一阶对称形式:M tz+K xz= zS(z)+τ(z)(8)其中,M,K∈R5×5为反对称矩阵:M=00001000000000000000-10000,K= 0D3-D22D1001D22D1-D30000000I2D2D1-I3000I3-I2D2D10000010拟哈密顿函数为:S(z)=-12[I1η2w2+(D3-D22D1)φ2-201Copyright ©博看网. All Rights Reserved.第6期刘涛等:轴向运动功能梯度梁横向振动问题的保结构分析 I1χ2+(I3-I2D2D1)ψ2]余项为:τ(z)=[-2I1ηψ,0,φ,0,0]T.与标准的多辛形式不同,近似对称形式含有如下对称破缺因素[11]:①系数矩阵M,K及哈密顿函数S(z)显含空间变量;②哈密顿函数梯度存在余项τ(z);③系数矩阵M非严格地反对称,因此将其分解K=K+K⌒0D3-D22D1001/2D22D1-D30000000I2D2D1-I3000I3-I2D2D10-1/2-1/2001/20+00001/2000000000000001/21/2001/20 ①和③两个对称破缺因素引起的横向振动模型多辛结构残差和局部能量耗散均可以参照文献[11]显式给出,第②个对称破缺因素在模拟仿真中的处理方式可参照参考文献[17]进行.为避免与已有工作重复,在此不给出详细表达式和具体处理步骤,只在模拟结果中给出离散的多辛结构残差,以间接证明后续构造算法的有效性和保结构性能.在梁长度方位内(0≤x≤L)采用空间步长进行均匀划分单元,并对系统采用时间步长进行Preissmann离散,得到保结构差分格式:Mδ+tzji+1/2+Kδ+xzj+1/2i= zS(zj+1/2i+1/2)+τ(zj+1/2i+1/2)(9)其中:zj+1/2i+1/2=14(zji+zji+1+zj+1i+zj+1i+1),δ+x,δ+t均为一阶前向差分.限于篇幅,格式的展开形式和消参后的形式不再给出,同时,离散的多辛结构残差和离散的局部能量耗散项也不再列出.需要强调的是,多辛结构残差是衡量格式保结构性能的重要依据,后续在数值结果中会详细讨论.3 数值算例为了将结果与文献[8,9]的部分结果进行对比,材料参数取值如下:Ec=390GPa,Em=210GPa,ρc=3960kg/m3,ρm=7800kg/m3.为保证数值格式的保结构性能,依照广义多辛理论[12],需要选取合适的时间步长使得在每一时间步内,离散的多辛结构绝对残差不超过差分格式的数值截断误差,即Δi≤o(Δt,Δx),其中o(Δt,Δx)为格式的数值截断误差.为了计算方便,忽略高阶项并取Δt/Δx=0.5后,可以将数值截断误差上限估计值近似取为:o(Δt,Δx)≤[o]=7Δt2(10)在考虑梯度指标取值较大的情形下,确定容许的最大时间步长.取k=105,将时间步长取值从Δt=0.001s逐渐增大,当式(10)刚好严格满足时,得到最大允许时间步长为Δt=0.064s,此时的多辛结构残差与数值截断误差上限估计值之间的关系如图2所示.因此,在后续模拟过程中,取时间步长为Δt=0.05s,空间步长为Δx=0.1m,就能保证所构造的格式具有良好的保结构性能.分别取k=0.001,100两种梯度指标,分别采用微分求积法(DQM)[8]、复模态法(CMM)[9]和保结构方法(SPM)模拟轴向运动功能梯度梁的横向振动过程,得到梁的前六阶频率值如表1所示.从表1中不难发现,采用保结构分析方法得到的结果与复模态法得到的结果整体吻合较好.随着频率阶次升高,复模态法和保结构方法得到的频率结果明显低于微分求积法得到的结果.考察微分求积法的求解过程,可知微分求积法得到的结果产生以上偏差的主要原因在于以下两个方面:①在进行微分求积运算之前,将偏微分方程化为常微分方程过程中,只考虑了方程解的一阶频率分301Copyright ©博看网. All Rights Reserved.动 力 学 与 控 制 学 报2022年第20卷量而忽略了高阶频率分量;②微分求积法采用非均匀网格离散,无法判断每一时间步内不等式(Δi≤o(Δt,Δx))的满足情况,不具有评价其保结构性能的条件.复模态法在一定程度上克服了上述两方面的问题,故得到的结果与本文保结构方法得到的结果吻合较好.上述结果表明,复模态法和保结构方法在分析轴向运动功能梯度梁横向振动问题中均具有较好的数值精度.图2 轴向运动功能梯度梁的物理模型Fig.2 Evolutionoftheabsoluteresidualofthemulti symplecticstructure表1 前六阶频率结果对比(Hz)Table1 Comparisionofthefirstsixfrequencies(Hz)kModeNo.DQMCMMSPM1st18.038518.038518.03852nd72.580172.533972.53390.0013rd161.1975160.0018160.00184th289.8806286.2147286.21425th458.9380452.7311452.70966th666.2039659.9018659.30891st9.78499.78499.78482nd32.909132.228632.22591003rd80.361078.439278.42984th148.1315144.3618143.81005th237.2027231.2156230.90356th346.7738338.8033338.32714 结论基于动力学系统的对称破缺理论和广义多辛分析方法,本文针对轴向运动功能梯度梁横向振动的动力学模型,发展了保结构分析方法,并用于分析轴向运动功能梯度梁横向振动的频率分布情况.研究结果表明:本文构造的数值求解算法在求解步长满足给定条件时具有良好的保结构性能,得到的前六阶频率值与复模态法得到的结果吻合较好,同时分析了微分求积法得到的结果与保结构方法和复模态法得到的结果有明显差距的原因,为微分求积法的进一步改进指明了方向,也为轴向运动功能梯度梁横向振动这类复杂动力学问题的求解提供了新途径.参 考 文 献1ReddyJN,ChinCD.Thermomechanicalanalysisoffunctionallygradedcylindersandplates.JournalofTher malStresses,1998,21(6):593~6262NaebeM,ShirvanimoghaddamK.Functionallygradedmaterials:areviewoffabricationandproperties.AppliedMaterialsToday,2016,5:223~2453BartlettNW,TolleyMT,OverveldeJTB,etal.A3D printed,functionallygradedsoftrobotpoweredbycom bustion.Science,2015,349(6244):161~1654TuanAN,AielloM.Energyintelligentbuildingsbasedonuseractivity:asurvey.EnergyandBuildings,2013,56:244~2575SankarBV.Anelasticitysolutionforfunctionallygradedbeams.CompositesScienceandTechnology,2001,61(5):689~6966ReddyJN.Microstructure dependentcouplestresstheo riesoffunctionallygradedbeams.JournaloftheMechan icsandPhysicsofSolids,2011,59(11):2382~23997DingH,ChenLQ.Galerkinmethodsfornaturalfre quenciesofhigh speedaxiallymovingbeams.JournalofSoundandVibration,2010,329(17):3484~34948姚晓莎,王忠民,赵凤群.轴向运动功能梯度梁的横向振动.机械工程学报,2013,49(23):117~122(YaoXS,WangZM,ZhaoFQ.Transversevibrationofaxiallymovingbeammadeoffunctionallygradedmateri als.JournalofMechanicalEngineering,2013,49(23):117~122(inChinese))9刘金建,蔡改改,谢锋,等.轴向运动功能梯度粘弹性梁横向振动的稳定性分析.动力学与控制学报,2016,14(6):533~541(LiuJJ,CaiGG,XieF,etal.Stabilityanalysisontransversevibrationofaxiallymovingfunctionallygradedviscoelasticbeams.JournalofDynamicsandControl,2016,14(6):533~541(inChi nese))10BalireddySN,PitchaimaniJ.Stabilityanddynamicbehaviourofbi directionalfunctionallygradedbeamsubjec tedtovariableaxialload.MaterialsTodayCommunica tions,2022,32:10404311HuW,WangZ,ZhaoY,etal.Symmetrybreakingofinfinite dimensionaldynamicsystem.AppliedMathematicsLetters,2020,103:106207401Copyright ©博看网. All Rights Reserved.第6期刘涛等:轴向运动功能梯度梁横向振动问题的保结构分析12HuWP,DengZC,HanSM,etal.Generalizedmulti symplecticintegratorsforaclassofhamiltoniannonlinearwavePDEs.JournalofComputationalPhysics,2013,235:394~40613宋明哲,邓子辰,赵云平,等.含弱阻尼空间结构的耦合动力学保结构分析.动力学与控制学报,2019,17(5):419~424(SongMZ,DengZC,ZhaoYP,etal.Couplingdynamicstructure perseveringanalysisofspatialstructurewithweakdamping.JournalofDynamicsandControl,2019,17(5):419~424(inChinese))14HuW,HuaiY,XuM,etal.Mechanoelectricalflexiblehub beammodeloflonic typesolvent freenanofluids.MechanicalSystemsandSignalProcessing,2021,159:10783315HuW,XuM,SongJ,etal.Couplingdynamicbehaviorsofflexiblestretchinghub beamsystem.MechanicalSystemsandSignalProcessing,2021,151:10738916HuW,XuM,ZhangF,etal.Dynamicanalysisonflexiblehub beamwithstep variablecross section.Mechani calSystemsandSignalProcessing,2022,180:10942317HuWP,DengZC,WangB,etal.Chaosinanembeddedsingle walledcarbonnanotube.NonlinearDynamics,2013,72(1 2):389~398STRUCTURE PRESERVINGANALYSISONTRANSVERSEVIBRATIONOFFUNCTIONALLYGRADEDBEAMWITHANAXIALVELOCITYLiuTao1 ZhouYangxin2 HuWeipeng2(1.YulinCityInvestmentConstructionDevelopmentCo.,Ltd.,Yulin 719000,China)(2.SchoolofCivilEngineeringandArchitecture,Xi’anUniversityofTechnology,Xi’an 710048,China)Abstract Theaxialvelocityandthematerial’sheterogeneityintroducethegreatchallengeonthevibrationanalysisofthefunctionallygradedbeamwithanaxialvelocity.Inthiswork,thedynamicmodelofthetransversevibrationofthefunctionallygradedbeamwithanaxialvelocityisreviewedinbrieffirstly.Basedonthedynamicsymmetrybreakingtheoryandthegeneralizedmulti symplecticmethodfortheinfinite dimensionalsystem,astructure preservingnumericalschemeforthedynamicmodelisdeveloped.Inthenumericalsimulation,thecriti calsteplengthsatisfyingthegeneralizedmulti symplecticconditionisobtainedwiththegivenmaterialparame ters.Thefirstsixfrequenciesofthetransversevibrationmodelarepresentedemployingthedifferentialquadraturemethod,thecomplexmodalmethodandthestructure preservingmethodrespectively.Fromthenumericalre sults,itcanbefoundthatthefirstsixfrequenciesobtainedbyusingthestructure preservingmethodarehighlyconsistentwiththoseobtainedbyusingthecomplexmodalmethod.Toimprovetheprecisionofthedifferentialquadraturemethod,themainfactorsresultingintheerrorareinvestigated.Themaincontributionofthisworkisproposinganewapproachtoanalyzethecomplexdynamicproblemlikethetransversevibrationofthefunctionallygradedbeamwithanaxialvelocityconsideredinthispaper.Keywords structure preserving, functionallygradedbeamwithanaxialvelocity, symmetrybreaking, generalizedmulti symplectic, transversevibrationReceived20August2022,revised28September2022.TheprojectsupportedbytheNationalNaturalScienceFoundationofChina(12172281,11972284),FoundationStrengtheningProgrammeTechnicalAreaFund(2021 JCJQ JJ 0565),theFundoftheScienceandTechnologyInnovationTeamofShaanxi(2022TD 61)andFundoftheYouthInno vationTeamofShaanxiUniversities CorrespondingauthorE mail:wphu@nwpu.edu.cn501Copyright ©博看网. All Rights Reserved.。
篇《变刚度梁横向自由振动的差分传递矩阵解法》近年来,有关结构工程领域的研究越发引人注目,其中变刚度梁横向自由振动的差分传递矩阵解法备受关注。
本文将深入探讨这一主题,逐步解析其核心概念、理论基础和应用意义。
通过全面评估,相信读者能够深入理解这一领域的专业知识。
一、变刚度梁横向自由振动的概念变刚度梁横向自由振动是指梁在横向受到作用力的情况下产生自由振动的现象。
在工程实践中,这一问题常常涉及到结构的稳定性和振动特性,因此对其进行深入的研究具有重要的理论和应用价值。
1.1 差分传递矩阵的基本原理在探讨变刚度梁横向自由振动的过程中,差分传递矩阵是解决该问题的关键工具之一。
差分传递矩阵是指将传递函数表示成状态向量变化的矩阵,通过差分方程建立其递推关系,从而求解结构的振动响应。
1.2 变刚度梁横向自由振动的特点在研究变刚度梁横向自由振动时,需要充分考虑其特点和规律。
在考虑梁的非线性特性以及外界扰动的情况下,传统的振动方程可能不再适用,因此需要引入新的分析方法。
二、差分传递矩阵解法的理论基础针对变刚度梁横向自由振动问题,差分传递矩阵解法扮演着至关重要的角色。
这一解法基于一系列理论基础,包括但不限于控制理论、结构动力学等。
通过对这些理论的深入理解,我们能够更好地把握差分传递矩阵解法的本质和实质。
2.1 控制理论在结构动力学中的应用控制理论通过对系统的动态行为进行分析和控制,为我们解决结构振动问题提供了理论基础。
在变刚度梁横向自由振动的研究中,控制理论的方法和思想对于理解结构的动态特性和响应具有重要作用。
2.2 结构动力学中的传递矩阵理论结构动力学和传递矩阵理论是解决变刚度梁横向自由振动问题的理论基础。
通过对结构的动态特性和传递矩阵的分析,我们能够建立结构的数学模型,从而得出结构的振动特性和响应。
三、差分传递矩阵解法的应用意义差分传递矩阵解法在实际工程中具有重要的应用意义。
通过该解法,我们能够更准确地预测结构的振动特性和响应,为工程设计和结构优化提供理论指导和技术支持。