(优选)中国邮递员问题
- 格式:ppt
- 大小:1.86 MB
- 文档页数:10
中国邮递员问题摘要:一名邮递员带着要分发的邮件从邮局出发,经过要分发的每个街道,送完邮件后又返回邮局.如果他必须至少一次走过他管辖范围内的每一条街道,如何选择投递路线,使邮递员走尽可能少的路程.这个问题是由我国数学家管梅谷先生(山东师范大学数学系教授)在1962年首次提出的,因此在国际上称之为中国邮递员问题本文主要介绍了中国邮递员问题的基本分析、求解中国邮递员问题的方法以及有关欧拉回路的算法实现。
关键词:中国邮递员欧拉图欧拉回路一、中国邮递员问题的分析中国投递员问题是1960年我们从生产实际中提出的一个数学问题,它是从下述实际问题中抽象出来的:“一个投递员应该怎么选择一条线路,才能既把所有由他负责的信件都送到,而所走的路程又最短”。
在我们开始研究中国投递员问题以前,国外有人研究过所谓旅行售货员的问题,即:“一个售货员要到n个城市去售货,问他应该选择怎样的一条线路,才能既走遍所有城市,并且走的路程最短”。
这是一个著名的难题.当n较大时,即使使用大型电子计算机,也很难解决。
投递员面临的问题显然可以归纳为旅行售货员问题,事实上,只要把投递员必须送的每一个地点看成是一个城市就行了.但是一般来说,投递员每次要到约二、三百个地点送信,如果归纳为旅行售货员问题来解决,将是一个规模很大的问题,是无法解决的.但是,在仔细分析了投递员面临的问题后,我们发现这个问题具有一定的特点,即需要送信的地点一般都是比较密集的排列在街道上的,因此,实际上,我们称这个问题为“最短投递线路问题”,1965年后国外称之为“中国投递员问题”(这个问题是我国数学家管梅谷先生在20世纪60年代提出来的)用图论的语言来描述就是在一个带权图G中,能否找到一条回路C,使C包含G的每条边至少一次且C的长度最短?如若他所管辖的街道构成一欧拉回路,则这欧拉回路便是所求路径。
如若不然,即存在度数为奇数的顶点,必然有些街道需要多走至少一遍,这时用中国邮路问题算法可求出最短路径。
§4.中国邮递员问题(Chinese Postman Problem)1.问题的提出例5. 一个邮递员从邮局出发投递信件, 然后再返回邮局, 如果他必须至少一次地走过他负责投递范围内的每条街道, 街道路线如下图所示, 问选择怎样的路线才能使所走的路为最短?5 6 78问题的图论表述:在赋权G=[V, E]上找一条经每条边至少一次的权最小的圈。
1960年山东师范学院管梅谷教授首先提出此问题,并设计了一个“奇偶点表上作业法”,后来发现此法不是多项式算法,1973年,Edmonds和Johnson给出一个多项式算法。
2.哥尼斯堡七桥问题18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,如下图所示。
城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。
3.Euler圈Euler圈:经图G的每条边的简单圈Euler图:具有Euler圈的图Euler图非Euler图下面讨论的图G允许有重边,且重边被认为是有区别的边。
伪Euler 圈:经图G 的每条边至少一次的圈点v 的次:与点V 关联的边的数目奇(偶)点:该点的次为奇(偶)数命题1:G 的奇点个数为偶数命题2:G 中有伪Euler 圈 ⇔ G 无奇点中国邮递员问题可表述为:在图G 中找一条权最小的伪Euler 圈。
对于邮递员来说,有些街道可能会重复走,原问题便转化为尽可能少走重复的 街道。
我们将这些重复的边组成的集合称可行集,即找最小的可行集。
命题3:E *是最小可行集 ⇔ωωμμμ()()()()*()*()e e e E E E e E E ≤∑∑∀μ∈∩∈∩\初等圈重复的边 非重复的边4.算法思路由命题1,简单图G 的奇点个数为偶数,可设为v 1 , v 2 , …, v 2k , 对每个1≤ i ≤k, 找v 2i − 1 至v 2i 的链p i ,将p i 的边重复一次。
1 问题一:“请你自我介绍一下”,你为什么加入中国邮政?| 思路: 1、这是面试的必考题目。
2、介绍内容要与个人简历相一致。
3、表述方式上尽量口语化。
4、要切中要害,不谈无关、无用的内容。
5、条理要清晰,层次要分明。
6、事先最好以文字的形式写好背熟。
回答:尊敬的领导你们好!中国邮政具有百年的历史,邮政品牌具有极大的竞争力因为我的母亲也在邮政部门工作,从小我就对邮政怀有特殊的感情,绿色的制服、穿绿衣的邮递员、绿色的邮筒、绿色门面的邮局、不管是在家乡,还是在外求学见到他们都倍感亲切,邮政能为员工提供良好的发展的机会,能给我一个施展才华的平台,能够很好的锻炼我的能力。
本人性格开朗,,热爱微笑,善于交际,工作中,认真负责,诚实守信,绝不逃避责任,我相信,这一切将成为我在邮政工作中最大的财富.。
在大学的学习中,我学习了本专业及相关专业的实际知识,并以优异的成绩完成了相关的课程,取得了英语四级及机算机二级证书。
为以后的实践任务打下了坚实的基础,从报刊上了解到,邮政已进行了公司化改革,现已到了超常规发展时期,实现了从传统邮政到现代邮政的飞跃,这是一支富有活力的队伍.我非常渴望能够在为其中的一员。
? 题二:“谈谈你的缺点” 思路: 1不宜说自己没缺点。
2、不宜把那些明显的优点说成缺点。
3、不宜说出严重影响所应聘工作的缺点。
4、不宜说出令人不放心、不舒服的缺 5?可以说出一些对于所应聘工作“无关紧要”的缺点,甚至是一些表面上看是缺点,从工作的角度看却是优点的缺点。
? 回答:我觉得我的缺点就是超爱笑,所以有时候给别人感觉就是我不太正经,其实这只是我排解压力的一中方式而已,压力太大的时候我就喜欢笑,这样我会轻松点。
我刚刚毕业,可能缺乏实践经验,社会阅历也较浅, ? 问题三:“你为什么选择我们邮政?”? 思路:?1、面试官试图从中了解你求职的动机、愿望以及对此项工作的态度。
?2、?建议从行业、企业和岗位这三个角度来回答。
§4.中国邮递员问题(Chinese Postman Problem)1.问题的提出例5. 一个邮递员从邮局出发投递信件, 然后再返回邮局, 如果他必须至少一次地走过他负责投递范围内的每条街道, 街道路线如下图所示, 问选择怎样的路线才能使所走的路为最短?5 6 78问题的图论表述:在赋权G=[V, E]上找一条经每条边至少一次的权最小的圈。
1960年山东师范学院管梅谷教授首先提出此问题,并设计了一个“奇偶点表上作业法”,后来发现此法不是多项式算法,1973年,Edmonds和Johnson给出一个多项式算法。
2.哥尼斯堡七桥问题18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,如下图所示。
城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。
3.Euler圈Euler圈:经图G的每条边的简单圈Euler图:具有Euler圈的图Euler图非Euler图下面讨论的图G允许有重边,且重边被认为是有区别的边。
伪Euler 圈:经图G 的每条边至少一次的圈点v 的次:与点V 关联的边的数目奇(偶)点:该点的次为奇(偶)数命题1:G 的奇点个数为偶数命题2:G 中有伪Euler 圈 ⇔ G 无奇点中国邮递员问题可表述为:在图G 中找一条权最小的伪Euler 圈。
对于邮递员来说,有些街道可能会重复走,原问题便转化为尽可能少走重复的 街道。
我们将这些重复的边组成的集合称可行集,即找最小的可行集。
命题3:E *是最小可行集 ⇔ωωμμμ()()()()*()*()e e e E E E e E E ≤∑∑∀μ∈∩∈∩\初等圈重复的边 非重复的边4.算法思路由命题1,简单图G 的奇点个数为偶数,可设为v 1 , v 2 , …, v 2k , 对每个1≤ i ≤k, 找v 2i − 1 至v 2i 的链p i ,将p i 的边重复一次。
中国邮递员问题摘要:一名邮递员带着要分发的邮件从邮局出发,经过要分发的每个街道,送完邮件后又返回邮局.如果他必须至少一次走过他管辖范围内的每一条街道,如何选择投递路线,使邮递员走尽可能少的路程.这个问题是由我国数学家管梅谷先生(山东师范大学数学系教授)在1962年首次提出的,因此在国际上称之为中国邮递员问题本文主要介绍了中国邮递员问题的基本分析、求解中国邮递员问题的方法以及有关欧拉回路的算法实现。
关键词:中国邮递员欧拉图欧拉回路一、中国邮递员问题的分析中国投递员问题是1960年我们从生产实际中提出的一个数学问题,它是从下述实际问题中抽象出来的:“一个投递员应该怎么选择一条线路,才能既把所有由他负责的信件都送到,而所走的路程又最短”。
在我们开始研究中国投递员问题以前,国外有人研究过所谓旅行售货员的问题,即:“一个售货员要到n个城市去售货,问他应该选择怎样的一条线路,才能既走遍所有城市,并且走的路程最短”。
这是一个著名的难题.当n较大时,即使使用大型电子计算机,也很难解决。
投递员面临的问题显然可以归纳为旅行售货员问题,事实上,只要把投递员必须送的每一个地点看成是一个城市就行了.但是一般来说,投递员每次要到约二、三百个地点送信,如果归纳为旅行售货员问题来解决,将是一个规模很大的问题,是无法解决的.但是,在仔细分析了投递员面临的问题后,我们发现这个问题具有一定的特点,即需要送信的地点一般都是比较密集的排列在街道上的,因此,实际上,我们称这个问题为“最短投递线路问题”,1965年后国外称之为“中国投递员问题”(这个问题是我国数学家管梅谷先生在20世纪60年代提出来的)用图论的语言来描述就是在一个带权图G中,能否找到一条回路C,使C包含G的每条边至少一次且C的长度最短?如若他所管辖的街道构成一欧拉回路,则这欧拉回路便是所求路径。
如若不然,即存在度数为奇数的顶点,必然有些街道需要多走至少一遍,这时用中国邮路问题算法可求出最短路径。
中国邮递员数学问题
中国邮递员数学问题是一个著名的数学问题,也称为"中国邮递员问题"。
这个问题源于邮递员在担任邮递员工作时,需要沿着不同的街道进行投递。
邮递员必须走遍每一条街道至少一次,然后回到出发地点。
问题的目标是寻找一条最短的路径,使得邮递员能够满足投递的要求。
具体问题描述如下:给定一个城市的街道网络图,每条街道上都有一个正整数表示街道的长度。
邮递员需要从一个特定地点出发,沿着街道网络进行投递,然后回到出发地点。
要求邮递员经过的路径总长度最短。
这个问题属于旅行商问题的变种,是一个NP-完全问题。
因为问题规模较大,难以找到一个最优解。
因此,通常采用近似算法进行求解,如TSP(Traveling Salesman Problem)等。
邮递员问题在实际中有很多应用,比如快递员的路线规划、物流配送等。
解决这个问题可以提高物流效率,减少成本。
中国邮递员问题解法中国邮递员问题是一个著名的组合优化问题,实际上是一个旅行商问题(Traveling Salesman Problem,TSP)的变种。
问题描述:给定一个城市集合和城市之间的距离矩阵,求解一个最短的邮递员路径,使邮递员能够从出发城市出发,经过每个城市恰好一次,最后回到出发城市。
解法:1.暴力搜索暴力搜索是最简单直观的解法。
遍历所有可能的路径,计算每个路径的总距离,最后选择最短的路径。
这种解法的时间复杂度为O(n!),随着城市数量的增加而急剧增加,效率非常低,只适用于小规模问题。
2.动态规划动态规划是一个更高效的解法。
使用一个二维数组dp[i][j]表示从城市i出发经过城市集合j的最短路径长度,其中j是一个二进制数,表示哪些城市已经访问过。
动态规划的转移方程为:dp[i][j] = min{dp[k][j XOR (1 << k)] + distance[i][k]},其中k表示已经访问的最后一个城市。
利用这个递推关系,可以逐步计算出dp[0][1<<n-1],即从城市0出发经过所有城市的最短路径。
最后,将此路径与每个城市的距离相加,得到最终的最短路径长度。
3.贪心算法贪心算法是一种更简单的解法。
首先选择一个起始城市,然后每次选择距离最近且未被访问过的城市,将其加入路径中。
重复此过程,直到访问完所有城市,然后回到起始城市。
这种解法的时间复杂度为O(n^2),但由于贪心策略的局限性(可能会出现回头或死胡同),所以得到的解并不一定是最优解。
以上是三种常用的解决中国邮递员问题的方法,具体可以根据实际情况选择合适的算法进行求解。