2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(三年级)后附答案解析
- 格式:docx
- 大小:103.81 KB
- 文档页数:13
第十五届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学五年级试卷(B 卷)1.计算:______21212121211=+++++.(写成小数的形式,精确到小数点后三位)2.两个标准骰子一起投掷2次,点数之和第一次为7,第二次为10的可能性(概率)为______(用分数表示).3.大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数比如,6的所有因数为1,2,3,6,1+2+3+6=12,6是最小的完美数,是否有无限多个完美数的问题至今仍然是困扰人类的难题之一,研究完美数可以从计算自然数的所有因数之和开始,321的所有因数之和为______.4.吴宇写好了五封信和五个不同地址的信封,要将每封信放入相应的信封中个信封只放入一封信.只有一封信装对,其余全部被错装的情形有______种.5.“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(A=1,J=11,Q=12K=13)通过加减乘除四则运算得出24,最先找到算法者获胜。
游戏规定4张牌扑克都要用到,而且每张牌只能用1次,比如2,3,4,Q ,则可以由算法(2×Q)×(4-3)得到24.海亮在一次游戏中抽到了2,3,13,13,经过思考,他发现13×3-13-2,我们将满足24--=⨯d c b a 的牌组{}d c b a ,,,称为“海亮牌组”,请再写出5组不同的“海亮牌组” _________________________________________________________________________. 填空题Ⅱ(每题10分,共50分)6.在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、王、癸被称为“十天干”,子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥叫作“十二地支”,十天干和十二地支进行循环组合:甲子、乙丑、丙寅、…一直到癸亥,共得到60个组合,称为六十甲子,如此周而复始用来纪年的方法,称为甲子纪年法.在甲子纪年中,以“丑”结尾的年份除了“乙丑”外,还有___________________________________.7.现有5个抽屉,每个抽屉中都放置3个玻璃球(形状大小相同),分别为蓝色、红色与黄色.如果分别从这3个抽屉中各取出一个玻璃球放在一个布袋中,则布袋中的3个玻璃球共有______种不同情况.8.古希腊的数学家们将自然数按照以下方式与多边形联系起来,定义了多边形数:比如,根据图示,三边形数:1,3,6,10,…四边形数:1,4,9,16,…五边形数:1,5,12,22,…六边形数:1,6,15,28,…那么,第6个三边形数,四边形数,五边形数,六边形数分别为_________________. 9.用5个边长为单位长度的小正方形(单位正方形)可以构成如右下图所示的5-联方(在中国又称为伤脑筋十二块).在西方国家,人们用形象的拉丁字母来标记每一个5-联方,其中,既具有中心对称性质又有轴对称性质的5-联方有______;既没有中心对称锉质又 不具备轴对称性质的5-联方有______.10.如下图所示,21∠=∠,43∠=∠,如果︒=∠68A ,那么︒=∠______E1l.索玛立方体组块是丹麦物理学家皮特•海音( Piet hein)发明的7个小立方体组块(如图所示,注意5号与6号组块,这是两个不同的组块).因为利用这7个组块可以恰好组成一个立方体,所以称为索玛立方体组块一个索玛立方体组块如果能够被某个平面分割成形状完全相同的两部分,则称这个组块是可平面平分的.那么,这些组块中有且只有一种不同平面平分方法的组块为__________,不可平面平分组块为__________(填0表示没有)12.有4个自然数,从其中任意选取3个数求和,可以而且只能得到28,29,30,那么,原来的4个自然数分别是__________.13.如果一个长方形能够被分割为若干个边长不等的小正方形,则这个长方形称为完美长方形.已知右面的长方形是一个完美长方形,分割方法如右图所示这是一个长为57,宽为55的完美长方形,用小正方形中心的数字代表其边长,已知两个正方形的边长分别为30与27,那么,图中没有标示边长的小正方形的边长按照从小到大的顺序分别为____________________.___________________14.在放置有若干小球的一排木格中,甲乙两人轮流移动小球,移动的规则为每人每次可以选择某一木格中的任意数目(至少1个)的小球,并将其移动到该木格右边紧邻的那一木格中;当所有小球全部移动到最右端的木格中时,游戏结束,移动最后一个小球的一方获胜面对如图所示的局面(格中的数字代表小球的数目,木格下方的数字表示木格编号),先手有必胜策略,那么,为确保获胜,先手第一步应该移动______号木格中的______个小球.15.任何一个直角三角形都有这样的性质:以两个直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积、这就是著名的勾股定理,在西方又被称为毕达哥拉斯定理勾股定理有着悠悠4000年的历史,出现了数百个不同的证明,魏晋时期的中国古代数学家刘徽给出了如下左图所示的简洁而美妙的证明方法,如下右图则是以这个方法为基础设计的刘徽模式勾股拼图板:如果上图中两个正方形的边长分别为3与4,那么三角形ACE的面积等于______(用分数表示),三角形BCD的面积等于______(用分数表示).。
2015年第十三届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛上海初赛第十三届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛上海初赛小学三年级试卷注意事项:1.考生要按要求在密封线内填好考生的有关信息.2.不允许使用计算器.3.为方便决赛通知,务必填写联系电话.电话:一、填空题(每小题8分,共40分)1.135797992014++++++-= .【分析】486考点:等差数列计算;原式250201425002014486=-=-=.2.在右图的每个方框中填入一个数字,使得乘法竖式成立.那么,这个算式的乘积是.137⨯【分析】407或777考点:乘法数字谜;由乘积个位是7可知乘数的个位与被乘数的乘积是37,进而得到被乘数即为37,如图所示:371377⨯由于乘数的十位与37相乘所得结果为两位数,因此该位置可能是1或2;①如果乘数的十位填入1,结果如下图所示:②如果乘数的十位填入2,结果如下图所示:3711373747⨯37213774777⨯因此这个算式的乘积是407或777.2015年第十三届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛上海初赛3.有一堆红球与白球,球的总数不超过50.已知红球个数是白球个数的3倍,那么,红球最多有个.【分析】36个考点:和差倍问题;由于红球个数是白球个数的3倍,因此球的总数应为白球个数的4倍,可得球的总数一定是4的倍数;红球最多的情况即对应了球的总数最多的情况,而不超过50的最大的4的倍数为48;因此球的总数最多有48个,此时红球最多有484336÷⨯=个.4.一袋奶糖分给几位小朋友,如果每人得8颗,还剩4颗;如果每人得11颗,就有一位小朋友拿不到.一共有位小朋友.【分析】5位考点:盈亏问题;如果每人得11颗,就有一位小朋友拿不到,意味着此时奶糖少了11颗,因此此题为“盈亏”型;小朋友人数:()()4111185+÷-=位.5.数一数,图中共有个三角形.【分析】12个考点:图形计数;如果首先去掉三角形右侧内部的斜线,得到如下图形:此时应有()21228+⨯+=个三角形;之后加上被去掉的线,此时会增加4个三角形,如下图所示:因此原图中一共有8412+=个三角形.2015年第十三届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛上海初赛二、填空题(每小题10分,共50分)6.某小学三年级的部分学生排成一个实心正方形方阵,最外面3层有学生72人,这个方阵共有学生人.【分析】81人考点:间隔与方阵;次外层的人数:72324÷=人;最外层的人数:24832+=人;最外层每边的人数:32419÷+=人;方阵总人数:9981⨯=人.7.把48粒棋子放入9个盒子中,每个盒子至少放1粒,每盒棋子数都不一样,棋子最多的盒子里最多可以放粒棋子.【分析】12粒考点:最值问题;当棋子总数一定时,要使棋子最多的盒子里棋子尽可能的多,另外8个盒子的棋子总数就要尽可能的少;而由于每盒棋子数都不一样,这8个盒子的棋子总数最少为:1234567836+++++++=粒;因此棋子最多的盒子里最多可以放483612-=粒棋子.8.,A B 两地相距1000米,甲从A 地出发,1小时后到达B 地.乙在甲出发后20分钟从B 地出发,40分钟到达A 地.甲、乙二人相遇点距A 地米.【分析】600米考点:行程问题——相遇;由乙40分钟可走1000米,得到乙的速度为10004025÷=米/分钟;甲60分钟可走1000米,而乙60分钟可走25601500⨯=米;由1000与1500的关系不难看出,相同时间内若甲走2份路程,则乙可走3份;现在甲比乙早出发20分钟,即为乙比甲晚出发20分钟;可构造一种情形:乙先向后退20分钟甲再出发,即为乙后退2520500⨯=米;此时甲、乙二人的实际距离为10005001500+=米;甲、乙二人相遇点与A 地的距离即为相遇时甲所走的路程;在二人的路程和1500米当中,甲所走的路程为()1500232600÷+⨯=米;所以甲、乙二人相遇点距A 地600米.9.小明说:“我妈妈比我大24岁,两年前妈妈的年龄是我的4倍.”小明今年岁.【分析】10岁考点:年龄问题;由于2个人年龄差不变,两年前妈妈也比小明大24岁;因此两年前小明的年龄是:()24418÷-=岁;所以小明今年的年龄是:8210+=岁.2015年第十三届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛上海初赛10.将数字1~9放入图中的小方格中,每格一个数,可得到四条线上三个数的和都相等,请问*应该是.【分析】8考点:数阵图;由于在图中只有1,4,2这三个数字位于其中的两条线上,各被重复计算过一次;因此图中四条线的总和是:12345678914252+++++++++++=;得到每条线上三个数的和应为:52413÷=;由*所在的线可得:*13148=--=.三、填空题(每小题12分,共60分)11.右图是可以一笔画出的,一共有种不同的一笔画法(起点、终点或顺序只要有一样不同,就算不同的画法).【分析】12种考点:一笔画;首先将图中各点命名如下:由于,A B 两点均为奇点,因此画法必定是从A 开始到B 结束,或是从B 开始到A 结束,且不难想到这两种画法的种类数相同;下面以从A 开始到B 结束为例:如果先从A 画到B ,则接下来剩余的正方形只有顺时针和逆时针2种画法,即ABCADB 和ABDACB ;如果先从A 画到C ,那么接下来必定画到B ,之后会有2种选择:一是先直接画到A ,再从D 画到B ,即ACBADB ;二是经过D 画到A ,再从A 画到B ,即ACBDAB ;如果先从A 画到D ,根据图形的对称性其种类数应与先从A 画到C 相同,也是2种;综上所述,从A 开始到B 结束的画法一共有2226++=种,类似的从B 开始到A 结束的画法也有6种;因此该图形一共有6612+=种不同的一笔画法.2015年第十三届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛上海初赛12.有五个互不相等的非零自然数,最小的一个数是7.如果其中一个减少20,另外四个数都加5,那么得到的仍然是这五个数.这五个数的和是.【分析】85考点:等差数列;由于7不可能是减少20的数,因此这五个数当中一定有7512+=;同理这五个数当中一定还有12517+=和17522+=;如果减少20的数是22,那么这五个数当中一定有22202-=,但27<不满足条件;因此这五个数当中一定还有22527+=,此时27205-=满足条件;即这五个数是7,12,17,22,27,它们的和是71217222785++++=.13.一个正方体的6个面分别标着,,,,,A B C D E F 六个字母,从3个不同角度看正方体如图所示,字母C 的对面是字母.【分析】D考点:图形规律;由图1和图2可得字母D 与字母,,,A B E F 均为邻面,因此其对面为字母C ;另:类似可得字母A 的对面是字母E ,字母B 的对面是字母F .14.24点游戏:用加、减、乘、除、括号等运算符号把4,4,10,10这四个数连起来,使结果等于24,.【分析】()10104424⨯-÷=考点:24点计算;过程略.的方格表内有四个筹码,这些筹码一面为白色另一面为黑色.每一次操作可以任选一个筹码跳15.在15过一个、二个或三个筹码到空位上,但不可以用走动的.被跳过的筹码都必须翻面,但跳的筹码不翻面.现欲经过六次的操作,将下左图的情况变成下右图的情况.如果依次将跳动的筹码跳动前所在位置的号码记录下来,就可以得到一个六位数.请给出可能完成任务的一个六位数.(填出一个即可).【分析】251425或152415考点:操作性问题;251425操作如下:152415操作如下:。
2017年第十五届“走美杯”小数数学竞赛上海赛区初赛试卷(五年级)一、填空题(共5小题,每小题8分,满分40分)1.(8分)1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98= .2.(8分)数学测试满分100分,第二个小组的平均分为86分,明明考了98分,若明明加入第二小组,第二小组平均分将变为88分,第二小组原有人.3.(8分)有一种六位数,从左向右第三位数字开始,每一个数字都是它前面两个数字的和,这样的六位数共有个.4.(8分)24点游戏,用适当的运算符号(包括括号)把3,3,8,8这四个数组成一个算式,使结果等于24..5.(8分)m,n,p是三个不同的正整数,它们除以13的余数分别是3,6,11那么(m+n﹣p)(2m﹣n+p)除以13的余数是.二、解答题(共5小题,满分50分)6.(10分)给定四个正整数9、9、9、17,把他们写在正方形的四个角上,在正方形外面画一个外接正方形,并且连续操作下去,层层嵌套(如图),把这个正方形的角上相邻的两个数相减(以大减小),得到的四个差数分别写在这两个数之间的外接正方形的角上,经过若干次操作,得到的正方形的四个角上的数字之和最小,这个最小值为.7.(10分)从1、2、3、4、5、6、7、8、9这9个数中选出6个不同的数,分别写在一个正方体的6个面上,使任意相邻的面上所写的两个数的差不小于2,这6个数之和最小为.8.(10分)若干个棱长为1的正方体木块组成一个立体图形,从正面看如图1,从侧面看如图2,这组木块最少有个,最多有个.9.(10分)一堆桃子堆在树下,总数为奇数,估计不少于360个,也不会超过400个,一群猴子排队等候猴王分桃,分桃的规则是,若桃子有偶数个,分桃的猴子可以分走一半;若桃子有奇数个,猴王就从树上摘一个桃子放入桃堆,分桃的猴子也分走一半,当剩下1个桃子时就停止分桃,第9个猴子分桃后只剩下了一个桃子,在分桃的过程中,猴王一共摘了7个桃子,这堆桃子原有个.10.(10分)长方形内有2017个点,连同长方形的4个顶点在内,共有2021个点,任意3个点都不在同一条直线上,以这2021个点中的某三点为顶点,可作出个互不重叠的三角形.三、解答题(共5小题,满分60分)11.(12分)一个长方形,长、宽、高均为整数厘米(长>宽>高),已知宽为8厘米,且长方体的三个相邻面的面积值恰好成等差数列,这个长方体的表面积最小为平方厘米.12.(12分)甲、乙、丙、丁四人进行围棋比赛,任意两人都赛一场,胜一场得3分,平一场各得1分,负者不得分,比赛结束,甲得2分,乙和丙都得4分,丁得分.13.(12分)每个小正方体的质量为100克,由125个小正方体组成大正方体,从这个大正方体中抽出一组小正方体,抽的方法是:从一个面到其对面所涉及到的小正方体都要抽掉,如图中涂色部分就是抽出后的情形,抽出这些小正方体后的几何体的质量是克.14.(12分)现有1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)(如图),分别有6块、11块、10块,从这些积木中选出若干个,拼成3×3×3的实心正方体,至多可以拼出个3×3×3的实心正方体,写出这几个正方体的拼法分别所用的A、B、C的个数(如1A+7B+1C):15.(12分)0、1、2、3、4、5、6、7这八个数字可以组成两个四位数M和N,如果M+N的和是一个末三位数字相同、千位数字为0的五位数,这个五位数是,M×N的积的不同取值共有种.2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(五年级)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98= 70 .【分析】在算式中,这些数具有一定的特点:相加的数是1﹣﹣99之间的所有奇数,相减的数是10﹣﹣98之间的所有偶数.在1﹣﹣99之间只有1﹣﹣9这一数段中只有1、3、5、7、9这些奇数,而没有2、4、6、8这些偶数.其余的10﹣﹣19、20﹣﹣29、30﹣﹣39一直到90﹣﹣99这9个数段中都是所有的奇数和偶数.我们还知道相邻的2个自然数之间相差着1.所有把10﹣﹣99之间这些没间断的奇数和偶数运用加法的交换律进行计算,把相邻的2个自然数组成一组.这样每个数段的10个数就组成5组,共5×9=45组.1、3、5、7、9单独组成一个特别的组,再进行计算.【解答】1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98=1+3+5+7+9+11﹣10+13﹣12+…+99﹣98=(1+3+5+7+9)+(11﹣10)+(13﹣12)+…+(99﹣98)=(1+9)+(3+7)+5+1×(5×9)=10+10+5+45=25+45=70【点评】解题的关键是看出这些数的特点,发现其中的规律.特别是怎样分数段,每个数段中有几个组合,它们的差都是1.2.(8分)数学测试满分100分,第二个小组的平均分为86分,明明考了98分,若明明加入第二小组,第二小组平均分将变为88分,第二小组原有 5 人.【分析】首先求出明明的数学测试成绩和第二个小组后来的平均分的差是多少;然后用它除以第二小组后来的平均分比原来的平均分多的分数,求出第二小组原有多少人即可.【解答】解:(98﹣88)÷(88﹣86)=10÷2=5(人)答:第二小组原有5人.故答案为:5.【点评】此题主要考查了平均数问题,考查了分析推理能力的应用,要熟练掌握,解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数.3.(8分)有一种六位数,从左向右第三位数字开始,每一个数字都是它前面两个数字的和,这样的六位数共有 4 个.【分析】可以从首位为1开始算起,1+0=1,故有101123,1+1=2,故有112358,2+0=2,故有202246,3+0=3,故有303369,一共有4个.【解答】解:根据分析,从首位为1开始算起,1+0=1,故有101123;1+1=2,故有112358;2+0=2,故有202246;3+0=3,故有303369,这样的六位数分别是:101123、112358、202246、303369,故答案是:4.【点评】本题考查了数字问题,突破点是:从首位1开始算起,利用数字和求得六位数的个数.4.(8分)24点游戏,用适当的运算符号(包括括号)把3,3,8,8这四个数组成一个算式,使结果等于24.8÷(3﹣8÷3).【分析】首先分析数字题中的有2个搭档,同时组合过程中不容易找到,那么可以分析除法中的特殊情况.【解答】解:依题意可知;8÷(3﹣8÷3)=8÷(3﹣)=8÷=24满足条件.故答案为:8÷(3﹣8÷3)【点评】本题考查对填符号组算式的理解和运用,关键是找到特殊的除法计算.问题解决.5.(8分)m,n,p是三个不同的正整数,它们除以13的余数分别是3,6,11那么(m+n﹣p)(2m﹣n+p)除以13的余数是 4 .【分析】根据“具有同一模的两个同余式,两边分别相加减,仍得同一模的另一同余式”;以及“具有同一模的两个同余式,两边分别相乘,仍得同一模的另一同余式”解答即可.【解答】解:(m+n﹣p)(2m﹣n+p)=(3+6﹣11)×(2×3﹣6+11)=﹣22﹣22(mod )=﹣2×13+4(mod13)=4(mod13)所以,(m+n﹣p)(2m﹣n+p)除以13的余数是4.故答案为:4.【点评】本题考查了孙子定理,关键是明确孙子定理的两个性质定理.二、解答题(共5小题,满分50分)6.(10分)给定四个正整数9、9、9、17,把他们写在正方形的四个角上,在正方形外面画一个外接正方形,并且连续操作下去,层层嵌套(如图),把这个正方形的角上相邻的两个数相减(以大减小),得到的四个差数分别写在这两个数之间的外接正方形的角上,经过若干次操作,得到的正方形的四个角上的数字之和最小,这个最小值为0 .【分析】按照题目所要求的规则依次写出后一层正方形的四个顶点的数字就可以得出结果【解答】解:把四个数字按照顺时针的顺序依次写成(9,9,9,17),外层正方形顶点上的数字依次为:⇒(0,0,8,8)⇒(0,8,0,8),如下图:…再往后推算得到:⇒(8,8,8,8)⇒(0,0,0,0).此时四个数的和最小,为0,故本题答案为:0.【点评】理解清楚题目的处理规则,依据规则进行运算,就不难得出结果.7.(10分)从1、2、3、4、5、6、7、8、9这9个数中选出6个不同的数,分别写在一个正方体的6个面上,使任意相邻的面上所写的两个数的差不小于2,这6个数之和最小为27 .【分析】根据题目要求的数字和最小,首先应考虑1和2为对面,然后考虑它们相邻面的第二组对面的数字情况,进而推断第三组对面.【解答】解:要使六个数之和最小,应有1、2,且1、2不能相邻,只能对面,此时2的四个相邻面中的数不能有3,最小为4、5、6、7;若4、5对面,另两个面中不能出现6,最小为7、8,故满足条件的6个数之和最小为(1+2)+(4+5)+(7+8)=27(括号内的两数对面).故答案为:27.【点评】本题的突破口在于步步推进,首先从最小的数对开始,一步步推出三组对面数字.8.(10分)若干个棱长为1的正方体木块组成一个立体图形,从正面看如图1,从侧面看如图2,这组木块最少有8 个,最多有26 个.【分析】从正面看和从侧面(左侧)看都有4列,可以在4×4的方格中进行摆放,分别看最多和最少可摆放多少方块【解答】解:在如下图所示的4×4方格中,进行摆放方块,来使这堆方块从正面、侧面看起来的画面满足要求,摆放方块最少的情况如下图:最少共需要:3+1+2+2=8块,摆放方块最多的情况如下图:最多需要:26块.故答案为:8;26.【点评】本题需要一定的空间想象能力,要求对摆放的方块的正面和侧面视图进行分析.9.(10分)一堆桃子堆在树下,总数为奇数,估计不少于360个,也不会超过400个,一群猴子排队等候猴王分桃,分桃的规则是,若桃子有偶数个,分桃的猴子可以分走一半;若桃子有奇数个,猴王就从树上摘一个桃子放入桃堆,分桃的猴子也分走一半,当剩下1个桃子时就停止分桃,第9个猴子分桃后只剩下了一个桃子,在分桃的过程中,猴王一共摘了7个桃子,这堆桃子原有 385 个.【分析】首先分析题意,本题可用二进制的方法来解决.若有16个桃子化成二进制的数字是(10000)2,是一个五位数的二进制数字,每次均分,数位减少一个,均分4次以后余数是1个桃子,且不需要从树上摘.继续推理即可.【解答】解:依题意可知:本题可用二进制的方法来解决.若有16个桃子化成二进制的数字是(10000)2,是一个五位数的二进制数字,每次均分,数位减少一个,均分4次以后余数是1个桃子,且不需要从树上摘.((10000)2,(1000)2,(100)2,(10)2,12)看13个桃子13=(1101)2.则在第一次和第二次分桃时从树上各摘一个桃子,即(1101)2+(11)2=(10000)2.看本题中设原来有N 个桃子,则(100000000)2<N <(1000000000)2N 为奇数化为二进制数字后应为9位数,且末尾数字是1,首位数字是1,即是十进制中的256,分桃过程中又摘了7个桃子,第一次必摘,即末尾必加1,中间的7位数有6需要加1,即6个0.只有1个1.因为360<N<400,所以N=256+1+128=385.故答案为:385.【点评】本题考查对二进制的理解和运用,关键问题是找到二进制的数字的表示方法,问题解决.10.(10分)长方形内有2017个点,连同长方形的4个顶点在内,共有2021个点,任意3个点都不在同一条直线上,以这2021个点中的某三点为顶点,可作出4036 个互不重叠的三角形.【分析】这个题如果直接考虑这2021个点的话,会无从下手,可以先只考虑长方形的四个点,可以组成2个三角形,再向长方形内部一个一个的添加点.【解答】解:如图,长方形ABCD的四个顶点,连接BD,可以组成两个三角形:△ABD和△BCD,然后向长方形内部添加点E,连接周围顶点后,现在△BCD被分成3个三角形,相当于多出2个三角形,以此类推,…每添加一个点,三角形数量增加2,共添加2017个点,则三角形的数量为:2+2017×2=4036,故本题答案为:4036.【点评】本题重点在于找到逐一向长方形内部添加点这一思路,化繁为简,找到规律.三、解答题(共5小题,满分60分)11.(12分)一个长方形,长、宽、高均为整数厘米(长>宽>高),已知宽为8厘米,且长方体的三个相邻面的面积值恰好成等差数列,这个长方体的表面积最小为432 平方厘米.【分析】根据题意可设长方形的长、宽、高分别为a、b、c(a>b>c),根据题意可列出a、b、c之间的等量关系,由于均为整数,可将等式凑成乘积的形式结合分解质因数进行求解.【解答】解:设长方形的长、宽、高分别为a、b、c(a>b>c),则长方形的三个相邻面的面积由大到小的顺序为ab、ac、bc,则根据题意可得2ac=ab+bc,其中b=8,则ac=4a+4c,凑成乘积的形式可得(a﹣4)×(c﹣4)=16=16×1=8×2,则a﹣4=16或8,c﹣4=1或2,可得a=20,b=8,c=5或a=12,b=8,c=6.则长方体的表面积=2×(ab+ac+bc)=2×(160+100+40)=600平方厘米或2×(96+72+48)=432平方厘米,因此这个长方体的表面积最小为432平方厘米.故答案为:432.【点评】本题的关键在于能想到画成乘积的形式用分解质因数进行求解,稍有难度.12.(12分)甲、乙、丙、丁四人进行围棋比赛,任意两人都赛一场,胜一场得3分,平一场各得1分,负者不得分,比赛结束,甲得2分,乙和丙都得4分,丁得6分或5 分.【分析】每人恰好都比赛三场,甲得2分,一定是平2场负1场,乙丙都得4分,一定是胜1场平1场负1场,依此推断,丁有两种情形,再分类计算求得丁的得分.【解答】解:根据分析,每人恰好都比赛三场,甲得2分,一定是平2场负1场,乙丙都得4分,一定是胜1场平1场负1场,依此推断,丁有两种情形,如下图(箭头指向负者,线段表示平局);故丁的得分为6分或5分.(图示只为情形之一)故答案是:6分或5分.【点评】本题考查了逻辑推理,突破点是:根据已知,逻辑推理,分析得出丁的得分.13.(12分)每个小正方体的质量为100克,由125个小正方体组成大正方体,从这个大正方体中抽出一组小正方体,抽的方法是:从一个面到其对面所涉及到的小正方体都要抽掉,如图中涂色部分就是抽出后的情形,抽出这些小正方体后的几何体的质量是8000 克.【分析】可以先算出抽出的小正方体的个数,共抽出了3×5+4×5+5×5﹣(2+4)﹣(3×3)=45个小正方体,余下的几何体含有的小正方体个数为:125﹣45=80个,不难求得余下的几何体的质量.【解答】解:根据分析,算出抽出的小正方体的个数,因为抽小正方体的时候上下表面和左右表面以及前后表面共同的小正方体个数有:4+5+6=15个,故共抽出了:3×5+4×5+5×5﹣(4+5+6)=45个小正方体,余下的几何体含有的小正方体个数为:125﹣45=80个,质量为:80×100=8000g,故答案是:8000.【点评】本题考查剪切和拼接,突破点是:先算抽出的小正方体的个数,再求余下的几何体含有的小正方体的个数.14.(12分)现有1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)(如图),分别有6块、11块、10块,从这些积木中选出若干个,拼成3×3×3的实心正方体,至多可以拼出 3 个3×3×3的实心正方体,写出这几个正方体的拼法分别所用的A、B、C的个数(如1A+7B+1C):2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C【分析】首先计算出1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)能提供的总块数为85,3×3×3的实心正方体需要的积木块数为27,85÷27=3…4,因此首先可以判断至多能拼出3个3×3×3的实心正方体,然后根据奇偶性判断A、B、C各自所用的块数,据此解答.【解答】解:6块、11块、10块A、B、C积木总共能提供的块数是2×6+3×11+4×10=85,一个3×3×3的实心正方体需要的块数为27,因此最多拼成3个,且剩下块数为85﹣27×3=4,可以为2个A积木或1个C积木.27=2A+3B+4C,考虑27为奇数,因此B必须为奇数,因此B只能为1,3,5,7,B的总块数为11,因此3个实心正方体所用B的数目可以为1,5,5或1,3,7.①所用B的数目可以为1,5,5:拼法1:1B拼法2:4A+5B+1C拼法3:2A+5B+2C则拼法1中已经没有积木A可用,不符合题意;①所用B的数目可以为1,3,7:拼法1:2A+1B+5C(或4A+1B+4C)拼法2:1A+3B+4C拼法3:1A+7B+1C两种方法均符合题意.因此这几个正方形的拼法可以是 2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C.故答案为:3;2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C.【点评】本题考查拼接方法,需要掌握这种题的答题技巧,难度较大.15.(12分)0、1、2、3、4、5、6、7这八个数字可以组成两个四位数M和N,如果M+N的和是一个末三位数字相同、千位数字为0的五位数,这个五位数是10333或10666 ,M×N的积的不同取值共有64 种.【分析】按题意,这8个数字的和为28,组成的两个四位数相加和为五位数,相加时至少进位一次,所以这个五位数的数字之和只能是19或10或1,显然五位数10000不合题意,数字和为10时,这个五位数为10333或10666,进一步根据数字的组合情况可求得M、N取值的不同情形,进而求解.【解答】解:根据分析,这8个数字的和为28,组成的两个四位数相加和为五位数,相加时至少进位一次,所以这个五位数的数字之和只能是19或10或1,显然五位数10000不合题意.当数字和为10时,这个五位数为10333,两个四位数相加时若个位和为13,则十位数字和为2,只能选2和0,则数字和为3无法选数字,故不符合要求,同理十位和为13也不符合要求,因此只能个位和为3,十位和为3,百位和为13,千位和为9,对应的数字M和N分别有2×2×2×2×=32种情况,M ×N的积有32÷2=16种不同情形;当数字和为19时,这个五位数为10666,此时两个四位数相加时个、十、百位的和都只能是6(0+6,1+5,2+4),千位数相加和为10(3+7),共有6×4×2=48种不同情形,所以M×N的积共有16+48=64种.故答案是:10333或10666,64.【点评】本题考查了数字问题,突破点是:数字进位和数字之和的性质,可以推测出五位数及不同的取值.。
2017年第十五届“走美杯”小数数学竞赛上海赛区初赛试卷(三年级)一、填空题(共5小题,每小题8分,满分40分)1.(8分)17×19﹣1001÷77= .2.(8分)根据下面数列的规律填空2,4,8,16,32,,128,…2,4,6,8,10,,14,…3.(8分)一箱苹果60个,第一天大家一起吃了17个,以后我每天吃1个,过了几天发现只剩下16个,苹果怎么少这么快?有人告诉我,小张每天都去偷偷地拿2个.请你算一算:这几天小张共拿了个苹果.4.(8分)24点游戏:用适当的运算符号(包括括号)把3,4,8,9这四个数组成一个算式,使结果等于24..5.(8分)从 1,3,5,7,9,11,13,15,17这九个数中,任取3个不同的数(不分先后)组成一组,使该组的平均数为9,共有种取法.二、填空题(共5小题,每小题10分,满分50分)6.(10分)每个月的周一、周二、周三、周四、周五、周六、周日都有4天或5天.某个月,周六、周日恰好有5天,而每个工作日都是4天,这个月1日是星期.7.(10分)从1,2,3,4,5,6,7,8,9,10中选出6个不同的数,填入如图的员圆圈中,满足下面的数是上面用线连接的两数之和,最下面的圆圈内的数最大时有种不同填法.(对称的填法看做同一种,比如1+3=4和3+1=4卡安卓相同的一种填法)8.(10分)甲、乙两人相距3020米,同时出发相向而行,甲每分钟行50米,乙每分钟行60米,甲出发后不久因故耽误了10分钟,然后继续向前行进,与乙相遇时,乙共行进了米.9.(10分)将一个正方形纸片沿虚线向上对折,再向右对折后得到一个正方形,然后剪下一个角(如图),将这个纸片展开后的形状应该是.10.(10分)2017除以9余1,2017年的每一天都可以用一个八位数表示.比如2017年1月8日可以表示为20170108,这个数除以9余1.2017年全年都用八位数表示,其中除以9余1的共有天.三、填空题(共5小题,每小题12分,满分60分)11.(12分)如图正方形与阴影长方形的边分别平行,正方形边长为8,图中四边形ABCD的面积为36,阴影长方形的面积是.12.(12分)A、B两个纸片都被分成了4个区域,用黄、蓝、红三种颜色分别给它们涂色,要求相邻的区域涂色不能相同,A,B两个纸片中的涂法较多,有种不同的涂法.13.(12分)一个宝库有9个藏宝室,成九宫格状排列,但只有一个进口和一个出口分别开在如图所示的藏宝室,每个藏宝室至多只能进去一次,相邻的藏宝室之间都有门相通,每个藏宝室中的宝贝价值已标在图中,大盗买通守护,夜间进入宝库,他能带走的宝物价值最多是.14.(12分)一个圆圈上排列着8个黑球,10个白球(如图),将任意两个球交换位置称为一次变换,至少经过次变换,可以使任意两个黑球不再相邻.15.(12分)现有1×1×2的积木3块,1×1×3的积木3块,1×2×2的积木5块(如图),从这些积木中选出若干个,拼出一个3×3×3的实心正方体,1×1×2的积木最少需要块,在你的拼法中还需要1×1×3的积木块,1×2×2的积木块.2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(三年级)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)17×19﹣1001÷77= 310 .【分析】可以将1001分解质因数,再运算,最后得出原式的结果.【解答】解:根据分析,原式=17×19﹣1001÷77=17×(20﹣1)﹣7×11×13÷77=17×20﹣17﹣77×13÷77=340﹣17﹣13=340﹣(17+13)=340﹣30=310.故答案是:310.【点评】本题考查了四则运算的巧算,突破点是:分解质因数,四则运算巧算,最后求得结果.2.(8分)根据下面数列的规律填空2,4,8,16,32,64 ,128,…2,4,6,8,10,12 ,14,…【分析】(1)4÷2=2,8÷4=2,16÷8=2,32÷16=2,后一个数是前一个数的2倍,由此求解.(2)4﹣2=2,6﹣4=2,8﹣6=2,后一个数比前一个数大2,由此求解.【解答】解:(1)32×2=64;(2)10+2=12;故答案为:64;12.【点评】数列中的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.3.(8分)一箱苹果60个,第一天大家一起吃了17个,以后我每天吃1个,过了几天发现只剩下16个,苹果怎么少这么快?有人告诉我,小张每天都去偷偷地拿2个.请你算一算:这几天小张共拿了18 个苹果.【分析】可以先用总数减去大家吃的苹果数和剩下的苹果数,再除以我每天吃的苹果数和小张偷的苹果数之和,就能求得天数,就能知道小张偷了几天,不难求得小张偷拿了多少苹果.【解答】解:根据分析,先求得小张偷拿苹果的天数,故有:(60﹣17﹣16)÷(2+1)=9(天),小张共偷了:9×2=18个.故答案是:18.【点评】本题考查等差数列,突破点是:先求得小张偷苹果的天数,再求苹果数.4.(8分)24点游戏:用适当的运算符号(包括括号)把3,4,8,9这四个数组成一个算式,使结果等于24.(3+9)÷4×8=24或者(3×4﹣9)×8=24或者3+4+8+9=24 .【分析】首先分析数字和为正好为24.【解答】解:依题意可知:(3+9)÷4×8=24或者(3×4﹣9)×8=24或者3+4+8+9=24.故答案为:(3+9)÷4×8=24或者(3×4﹣9)×8=24或者3+4+8+9=24.【点评】本题考查填符号组算式的理解和运用,关键从数字和开始分析,问题解决.5.(8分)从 1,3,5,7,9,11,13,15,17这九个数中,任取3个不同的数(不分先后)组成一组,使该组的平均数为9,共有8 种取法.【分析】首先分析数字和的平均数是9,那么可以理解为数字和为27,考虑幻和为27的幻方填写规律即可.【解答】解:依题意可知:满足幻和为9×3=27即可.中间数的3倍就是幻和,那么中间数字就是9.因为数字是等差数列可根据1﹣9的填写规律填写即可.共三行三列再加上两条对角线共8种.故答案为:8【点评】本题考查对幻方的理解和运用,关键问题是找到幻和,根据数字规律填写即可.问题解决.二、填空题(共5小题,每小题10分,满分50分)6.(10分)每个月的周一、周二、周三、周四、周五、周六、周日都有4天或5天.某个月,周六、周日恰好有5天,而每个工作日都是4天,这个月1日是星期六.【分析】分析天数可知共30天.继续分析即可求解.【解答】解:依题意可知:该月周一至周五都是4天,周六周日是5天,这个月共有30天.说明开始的第一天是周六,最后一天是周日.故答案为:六【点评】本题考查对周期问题的理解和运用,关键问题是找到天数和开始时间,问题解决.7.(10分)从1,2,3,4,5,6,7,8,9,10中选出6个不同的数,填入如图的员圆圈中,满足下面的数是上面用线连接的两数之和,最下面的圆圈内的数最大时有 3 种不同填法.(对称的填法看做同一种,比如1+3=4和3+1=4卡安卓相同的一种填法)【分析】首先根据题目推知最下面的圆圈最大时为10,然后根据上面圆圈的特点列出等量关系,讨论即可.【解答】解:最下面的数最大为10,第一行的三个数若依次为a、b、c,则10=a+2b+c.b=1时,a+c=8=2+6=3+5;b=2时,a+c=6=1+5;b≥3时,a+c≤4不成立.因此有3种不同填法.故答案为:3.【点评】本题的突破口是能根据第一行和第二行的圆圈关系列出等量关系,进而分类讨论.8.(10分)甲、乙两人相距3020米,同时出发相向而行,甲每分钟行50米,乙每分钟行60米,甲出发后不久因故耽误了10分钟,然后继续向前行进,与乙相遇时,乙共行进了1920 米.【分析】根据题意,我们知道“甲出发后不久因故耽误了10分钟”,实际上就相当于甲在他们相遇的路程中少走了10分钟的路程.也就是说甲再加上10分钟的路程,才是他们同时出发没有意外情况下的总路程3020+50×10=3520米.用总路程÷他们的速度和=他们相遇用时(实际上是相遇时乙行程所用时间).有了时间就可求乙的行程了.注:题中所带的解法,与以上分析思路一样,只是把甲和乙调换了一下.【解答】解:(3020+50×10)÷(60+50)=32(分钟)32×60=1920(米)答:乙共行进了1920米.【点评】此题中只要搞明白:甲在他们相遇时所走总路程中,少走了10×50=500米或者是乙多走了10×60=600米.注意你清楚:你求的是谁行程的用时才行.9.(10分)将一个正方形纸片沿虚线向上对折,再向右对折后得到一个正方形,然后剪下一个角(如图),将这个纸片展开后的形状应该是 D .【分析】首先分析剪去的地方是边缘还是中间,不难发现是中间的部分,继续观察即可.【解答】解:依题意可知:按照折图顺序,可知剪去的是中间的部分.这是个对称问题,依对折顺序恢复即可得到图中的D图.故选:D【点评】本题考查对三视图的理解和运用,关键问题是找到剪去的位置,问题解决.10.(10分)2017除以9余1,2017年的每一天都可以用一个八位数表示.比如2017年1月8日可以表示为20170108,这个数除以9余1.2017年全年都用八位数表示,其中除以9余1的共有40 天.【分析】首先分析2017除以9余数为1,那么后面的4个数字和就是9的倍数即可,枚举法简单易懂.【解答】解:依题意可知:2017除以9余数为1,那么后面的4个数字和就是9的倍数.按照月份枚举即可:0108,0117,0126;0207,0216,0225;0306,0315,0324;0405,0414,0423;0504,0513,0522,0531;0603,0612,0621,0630;0702,0711,0720,0729;0801,0810,0819,0828;0909,0918,0927;1008,1017,1026;1107,1116,1125;1206,1215,1224;共40个.故答案为:40【点评】本题考查对数的整除特性的理解和运用,关键问题是找到数字和是9的倍数同时不能大于12月.问题解决.三、填空题(共5小题,每小题12分,满分60分)11.(12分)如图正方形与阴影长方形的边分别平行,正方形边长为8,图中四边形ABCD的面积为36,阴影长方形的面积是8 .【分析】根据题意可知四边形ABCD的周围四个直角三角形的面积的和为8×8﹣36=28,因此四边形ABCD内的四个空白直角三角形的面积和也是28,因此阴影长方形的面积是36﹣28=8.据此解答.【解答】解:四边形ABCD的周围四个直角三角形的面积的和8×8﹣36=64﹣28=28阴影长方形的面积36﹣28=8答:阴影长方形的面积是8.故答案为:8.【点评】本题也可用四边形ABCD的面积的2倍减去正方形的面积来求.12.(12分)A、B两个纸片都被分成了4个区域,用黄、蓝、红三种颜色分别给它们涂色,要求相邻的区域涂色不能相同,A,B两个纸片中 B 的涂法较多,有12 种不同的涂法.【分析】A的涂色区域只能是最上方区域和左下方区域图同色,其排列数为;图B的涂色区域中涂同色的区域有2类,一是最上方区域和左下方区域;二是最上方区域和右下角区域,涂色种类数为+.【解答】解:图A的涂色方法有=3×2×1=6(种)图B的涂色方法有+=6+6=12(种)故:B的涂法多,有12种不同涂法.【点评】此题的解题关键是能否想到合并能涂同色的区域,而且要把这种情况找全.13.(12分)一个宝库有9个藏宝室,成九宫格状排列,但只有一个进口和一个出口分别开在如图所示的藏宝室,每个藏宝室至多只能进去一次,相邻的藏宝室之间都有门相通,每个藏宝室中的宝贝价值已标在图中,大盗买通守护,夜间进入宝库,他能带走的宝物价值最多是39 .【分析】本题首先能想到根据染色问题进行分析,可将房间黑白相间染色,根据进口和出口所染颜色不同可知大盗应该经过了偶数个房间,因此最多经过8个房间,据此解答.【解答】解:借助染色解题,给3×3的方格黑白相同染色(如图),进口为黑格,若全部走完9个方格,出口应为黑格,而图中出口为白格,故至少有一个黑格不能走到,标数最小的(进口除外)应为6,即标6的房间无法进入,所以大盗能带走的宝物最多是45﹣6=39.故答案为:39.【点评】本题的突破口在于能用染色的方法进行解题,难度较大.14.(12分)一个圆圈上排列着8个黑球,10个白球(如图),将任意两个球交换位置称为一次变换,至少经过 3 次变换,可以使任意两个黑球不再相邻.【分析】首先给19个球进行编号,其中5个连续的黑球至少选2个和白球互换,2个连续的黑球可选一个和白球互换,据此解答.【解答】解:首先给18个球进行编号,由于是最少的变换次数,则1﹣5中最少需要变换2号和4号,可将2号和14互换,4号和12号互换,8号和7号互换,因此最少经过3次变换,可以使任意两个黑球不再相邻.故答案为:3.【点评】本题白球的数目比黑球多,互换难度较小,属于较简单试题.15.(12分)现有1×1×2的积木3块,1×1×3的积木3块,1×2×2的积木5块(如图),从这些积木中选出若干个,拼出一个3×3×3的实心正方体,1×1×2的积木最少需要 1 块,在你的拼法中还需要1×1×3的积木 3 块,1×2×2的积木 4 块.【分析】题目考查最少需要的块数,首先可以考虑1×1×2的积木块数为0,3×3×3的实心正方体需要块数27,1×1×3的积木3块可以提供的块数分别是3、6、9,1×2×2的积木5块可以提供的块数分别是4、8、12、16、20,若只用1×1×2和1×1×3的积木,则无法凑成27块,因此接着考虑1×1×2的积木块数为1的情况,27=1×2+3×3+4×4,即1×1×2的积木为1块时可以拼出3×3×3的正方体,据此可解.【解答】解:如图:其中红色部分为1×1×2的积木,有1块;蓝色部分为1×2×2的积木,在红色部分的后面还有一块,有4块;白色部分为1×1×3的积木,共3块.答:1×1×2的积木最少需要1块,在你的拼法中还需要1×1×3的积木3块,1×2×2的积木4块.故答案为:1,3,4.【点评】本题主要考查了学生的空间想象能力,在拼时的方法可能不同,但有的块数是一定的.。
定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
第十二届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛注意事项:1.请在密封线内填好有关信息. 总分2.不允许使用手机、计算器等电子设备.小学三年级试卷(A 卷)填空题I(每题8 分,共40 分)1. 2⨯(99981+19⨯38)=2. 3 个人排成一排,有种不同的排法?3. 我们知道0,1,2,3,……叫做自然数,只能被1 和自身整除的大于1 的自然数叫做质数或素数,比如2,3,5,7,11 等,按照从小到大的顺序,第8 个质数是.4. “24 点”游戏时很多人熟悉的数学游戏,游戏过程如下:任意从52 张扑克牌(不含大小王)中抽取4 张,用这4 张扑克牌上的数字(从1 到13,其中A=1,J=11,Q=12,K=13)通过加减乘除四则运算法则运算得出 24,最先找到算法的人获胜。
游戏规定 4 张扑克牌都要用到,而且每张牌只能用一次,比如2,3,4,Q,则可以由算法(2⨯Q)⨯(4 -3)得到24. 如果在一次游戏中恰好抽到了 4,8,8,8,则你的算法是:.5. 自然数1,2,…,50 中,被3 除余1 的数有个。
填空题II(每题10 分,共50 分)6. 下图中有个正方形。
7. 将一根长80 厘米的细绳对折一次后,用剪刀在中点处剪开,其中最长的一段绳长是厘米。
8. 将一个面积为36 平方厘米的正方形纸片按照下图所示方式折叠两次后对折,沿对折线剪开,得到的长方形纸片中面积最大的为平方厘米。
9. 古希腊的数学家们将自然数据按照以下方式与多边形联系起来,定义了多边形数:三边形数:1,3,6,10,15,…… 四边形数:1,4,9,16,25,…… 五边形数:1,5,12,22,35,…… 六边形数:1,6,15,28,45,…………则按照上面的顺序,第8 个三边形数为10. 将下图中的圆圈染色,要求有连线的两个相邻的圆圈染不同的颜色,则至少需要种颜色。
填空题III(每题12 分,共60 分)11. 2015 年1 月1 日是星期四,根据这一信息,可以算出2015 年2 月1 日是星期.12. 用1 颗红珠子,2 颗蓝珠子,2 颗绿珠子串成一个手链,可以串成种不同的手链。
第1页 共四页 第2页 共四页CADEFB绝密★启用前世界青少年奥林匹克数学竞赛(中国区)选拔赛初赛试卷注意事项: 1、考生按要求用黑色、蓝色圆珠笔或钢笔在密封线内填好考生的相关信息。
2、考试时间90分钟。
3、本试卷共4页,满分100分。
4、不得在答卷上做任何标记。
5、考生超出答题区域答题将不得分。
6、考生在考试期间不得作弊,否则试卷记零分处理。
小学三年级试题一、选择题。
(把相应答案的序号填在括号里,每题5分,共25分)1. 有一个里程碑的编号是一个三位数,现有五个三位数:145、956、473、385、270.其每一个数与里程碑的编号恰好有一个位置的数字完全相同,那么里程碑的编号是( )。
(5分)A 、975B 、480C 、249D 、 9472. 91+1+92+2+93+3+94+4+95+5+96+6+97+7+98+8+99+9的结果是( )。
(5分)A 、850B 、900C 、950D 、1000 3. 以一条直线上的5个点为端点的不同线段有( )条。
(5分)A 、4B 、5C 、10D 、20 4. 数一数,包含字母A 的正方形有( )个。
(5分)A 、1B 、6C 、10D 、145. 如图,一张街道平面图,甲、乙两人分别A 、B 出发,以相同的速度走遍所有街道,最后到达C ,两人谁先到达?( )。
(5分)A 、甲B 、乙C 、同时到达D 、不确定二、填空题。
(每题6分,共30分)1. 875-364-236= ; 5942-1557-443-942= ;1995+1996+1997+1998+1999= 。
(6分)2. 算式14÷ = ...... 中,不相同的余数有 个。
(6分)3. 有一栋12层的大楼,由于停电电梯停开。
某人从一层走到三层需要32秒,以同样的速度,从三层走到12层,需要 秒。
(6分)4. 有两只船一共运木板9800块,其中第一只船比第二只船运的少1400块,那么第一只船运木板 块;第二只船运木板 块。
2015年第13届“走美杯”小学数学竞赛试卷(三年级初赛B卷)一、填空题(共5小题,每小题8分,满分40分)1.(8分)计算:2×(999999+5×379×4789)=.2.(8分)甲、乙、丙、丁、戊5个人排成一队,甲乙必须相邻,则一共有种不同排法.3.(8分)现有1克,2克,3克和5克的砝码各一枚,能够称出1至11克的重量,某些重量可以有不止一种称量方法.比如3克,可以用3克的砝码称量,也可以用1克与2克的砝码称量.那么,至少需要用到3个砝码才能够称出的重量是(克).4.(8分)我们知道0,1,2,3…叫做自然数.只能被1和自身整除的大于1的自然数叫做质数或素数.比如2,3,5,7,11等,能够整除2015的所有质数之和为.5.(8分)一个班有30名学生,学生平均身高为140厘米,其中男生18人,男生的平均身高为144厘米,则女生平均身高是厘米.二、填空题(共5小题,每小题10分,满分50分)6.(10分)如图所示的多面体叫做正十二面体,是5个柏拉图立体(正多面体)中的一个,这个多面体由20个面(正三角形)围成,条棱.7.(10分)“24点游戏”是很多人熟悉的数字游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(从1到13,其中A=1,J=11,Q=12,K=13)通过加减乘除四则运算得出24,最先找到算法者获胜,游戏规定4张扑克牌都要用到,而且每张牌只能用1次,比如2,3,4,Q,则可以由算法(2×Q)×(4﹣3)得到24.如果在一次游戏中恰好抽到了7,9,Q,Q,则你的算法是.8.(10分)将一个面积为36平方厘米的正方形纸片按照下面所示方式对折两次后,再按对角线折叠出对角折痕,并沿折痕剪开,得到的纸片中面积最大为平方厘米.9.(10分)标准骰子六个面上点数的分布规律是相同的,请根据以下骰子能够观察到的点数信息,确定标准骰子点数的分布,并计算这5个骰子向下的面上的点数之和.10.(10分)用长9厘米、宽3厘米同样的长方形摆成如图形状,得到的图形的周长是厘米.三、填空题(共5小题,每小题12分,满分60分)11.(12分)满足被7除余3,被9除余4,并且小于100的自然数有.12.(12分)时钟在整1点钟敲1下,2点钟敲2下,3点钟敲3下,…,照这样敲下去,从1点到12点,再从13点钟开始敲1下,14点钟敲2下,…,这样一天到24点,时钟共敲了下.13.(12分)三年级有50名学生,他们都选择订阅甲、乙、丙三种杂志中的一种、二种或三种,则至少有名学生订阅的杂志种类相同.14.(12分)如图是一个街道的示意图,实线表示道路,从B到A,只能向右或向上或斜上方沿着道路前进,则一共有种不同的走法.15.(12分)在下面的6个圆圈中分别填入1,2,3,4,5,6,每个数字只能用一次,使各边上的三个数字和相等,称这个和为三角形边幻和,这样的三角形边幻和可以取到的值分别为.2015年第13届“走美杯”小学数学竞赛试卷(三年级初赛B卷)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)计算:2×(999999+5×379×4789)=20150308.【分析】先算括号里的乘法,把999999看作1000000﹣1简算,最后算括号外面的乘法.【解答】解:2×(999999+5×379×4789)=2×(999999+9075155)=2×(1000000+9075155﹣1)=2×10075154=20150308故答案为:20150308.【点评】计算四则混合运算时,要按照运算顺序,先算乘除,后算加减,有括号的先算括号里面的,再算括号外面的,如果既含有小括号又含有中括号,要先算小括号里面的,再算中括号里面的.能简算的要简算.2.(8分)甲、乙、丙、丁、戊5个人排成一队,甲乙必须相邻,则一共有48种不同排法.【分析】甲乙必须相邻,把甲乙捆绑,然后和其他3人全排即可.【解答】解:.=2×4×3×2×1=48(种)答:一共有48种不同排法.故答案为:48.【点评】“捆绑法”和“隔板法”是排列组合问题中较为重要的一种方法,本题就是“捆绑法”的综合应用,这种方法用于解决元素分组问题;灵活运用隔板法和捆绑法能处理一些较复杂的排列组合问题.3.(8分)现有1克,2克,3克和5克的砝码各一枚,能够称出1至11克的重量,某些重量可以有不止一种称量方法.比如3克,可以用3克的砝码称量,也可以用1克与2克的砝码称量.那么,至少需要用到3个砝码才能够称出的重量是9或10或11(克).【分析】任意取3个砝码有4种情形:1+2+3=6克,1+3+5=9克,1+2+5=8克,2+3+5=10克,其中6=1+5,8=5+3,两个砝码即可称,由此即可解决问题.【解答】解:任意取3个砝码有4种情形:1+2+3=6克,1+3+5=9克,1+2+5=8克,2+3+5=10克,四个砝码全部用上,1+2=3+5=11克.其中6=1+5,8=5+3,两个砝码即可称,所以至少需要用到3个砝码才能够称出的重量是9克或10克或11克.故答案为9或10或11.【点评】本题考查最大与最小、排列组合问题等知识,解题的关键是灵活运用所学知识解决问题,学会利用排列组合的思想解决问题.4.(8分)我们知道0,1,2,3…叫做自然数.只能被1和自身整除的大于1的自然数叫做质数或素数.比如2,3,5,7,11等,能够整除2015的所有质数之和为49.【分析】首先是对2015进行分解质因数,然后把所有的质数相加即可.【解答】解:将2015分解质因数,2015=5×13×31,因数和为13+31+5=49.故答案为:49.【点评】本题的关键是分解质因数,首先是5的倍数先除以5,2015÷5=403,对403分解尝试7,13,17等质数.5.(8分)一个班有30名学生,学生平均身高为140厘米,其中男生18人,男生的平均身高为144厘米,则女生平均身高是134厘米.【分析】先求出30名学生身高的总数量,再求出所有男生身高的总数量,然后再把两者相减求出所有女生身高的总数量,再除以女生的总人数就是女生的平均身高.【解答】解:(140×30﹣18×144)÷(30﹣18)=(4200﹣2592)÷12=1608÷12=134(厘米)答:女生平均身高是134厘米.故答案为:134.【点评】本题考查了平均数问题,解答依据是:平均数=总数量÷总份数.二、填空题(共5小题,每小题10分,满分50分)6.(10分)如图所示的多面体叫做正十二面体,是5个柏拉图立体(正多面体)中的一个,这个多面体由20个面(正三角形)围成,30条棱.【分析】可以根据多面体顶点数V,面数F,棱数E之间的关系式V+F﹣E=2,而V=12,F=20,不难求得E的值.【解答】解法一:根据分析,这个多面体有12个顶点,根据多面体顶点数V,面数F,棱数E之间的关系式,V+F﹣E=2,可以得知这个多面体的棱数:E=V+F﹣2=12+20﹣2=30.解法二:20个面,每个面有3条棱,每条棱被2个三角形共用,则棱数:×20×3=30故答案是:30.【点评】本题考查组合图形的计数,本题突破点是:利用多面体顶点数V,面数F,棱数E之间的关系式V+F﹣E=2,不难求得棱数.7.(10分)“24点游戏”是很多人熟悉的数字游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(从1到13,其中A=1,J=11,Q=12,K=13)通过加减乘除四则运算得出24,最先找到算法者获胜,游戏规定4张扑克牌都要用到,而且每张牌只能用1次,比如2,3,4,Q,则可以由算法(2×Q)×(4﹣3)得到24.如果在一次游戏中恰好抽到了7,9,Q,Q,则你的算法是9×12﹣7×12=24.【分析】Q=12,即用7、9、12、12组成24点,因为24=12×2,所以只要把7和9通过计算能够得出2即可,很明显9﹣7=2,然后根据乘法分配律拆开即可得解.【解答】解:根据分析可得,9×12﹣7×12=(9﹣7)×12=2×12=24故答案为:9×12﹣7×12=24.【点评】横式数字谜问题是指算式是横式形式,并且只给出了部分运算符号或数字,有些数字或运算符号“残缺”,只要我们根据运算法则,进行判断、推理,从而把“残缺”的算式补充完整.8.(10分)将一个面积为36平方厘米的正方形纸片按照下面所示方式对折两次后,再按对角线折叠出对角折痕,并沿折痕剪开,得到的纸片中面积最大为18平方厘米.【分析】按题意,将一个面积为36平方厘米的正方形纸片对折两次后,再按对角线折叠出对角折痕,并沿折痕剪开,因每次折叠都是折成一半,最后一次按对角线折叠,剪开便产生不同面积的图形,最大的面积为原来正方形的面积的一半.【解答】解:根据分析,因每次折叠都是折成一半,故折痕分成的图形的面积相同,最后一次按对角线折叠,剪开便产生不同面积的图形,但最大的面积不会超过原来正方形的面积的一半,故得到的纸片中面积为:×36=18平方厘米.故答案是:18.【点评】本题考查了剪切和拼接,突破点是:利用折叠前后的面积,求得结果.9.(10分)标准骰子六个面上点数的分布规律是相同的,请根据以下骰子能够观察到的点数信息,确定标准骰子点数的分布,并计算这5个骰子向下的面上的点数之和14.【分析】首先发现数字4,5,6是邻面,对面构成数字和为7,看见上面的数字可知下面的数字.【解答】解:首先发现骰子对面数字和为7,点数4,5,6是邻面.第一个上面是6下面就是1;第二个上面是5下面就是2;第三个上面是2下面就是5;第四个上面是3下面就是4;第五个上面是5下面就是2;数字和为:1+2+5+4+2=14故答案为:14【点评】本题考查对数字规律的理解和运用,关键是找到数字和的规律同时发现数字4,5,6是邻面.问题解决.10.(10分)用长9厘米、宽3厘米同样的长方形摆成如图形状,得到的图形的周长是180厘米.【分析】观察图形可得:组成图形周长的线段中,由小长方形的12条宽,16条长组成由此即可求出图形的周长.【解答】解:组成图形周长的线段中,由小长方形的12条宽,16条长,所以图形的周长是:16×9+12×3=144+36=180(厘米)答:得到的图形的周长是180厘米.故答案为:180.【点评】解决本题关键是找清楚组成图形的周长是由哪些部分,不要多数或漏数.三、填空题(共5小题,每小题12分,满分60分)11.(12分)满足被7除余3,被9除余4,并且小于100的自然数有31、94.【分析】先写出100以内满足被9除余4,然后再找出同时被7除余3的数即可.【解答】解:100以内满足被9除余4的数有:4、13、22、31、40、49、58、67、76、85、94,其中满足被7除余3的数有:31、94;答:满足被7除余3,被9除余4,并且小于100的自然数有31、94.故答案为:31、94.【点评】本题考查了剩余定理,可以先用列举法先写出满足一个条件的数,再从中找到满足第二个条件的数.12.(12分)时钟在整1点钟敲1下,2点钟敲2下,3点钟敲3下,…,照这样敲下去,从1点到12点,再从13点钟开始敲1下,14点钟敲2下,…,这样一天到24点,时钟共敲了156下.【分析】据加法的意义可知,将每次时钟敲的次数相加即得从1点到12点这12个小时内时钟共敲了多少下:1+2+3+…+12.此算式中的加数构成一个公差为1的等差数列,然后根据高斯求和公式计算即可:等差数列和=(首项+末项)×项数÷2;从13时到24时敲的下数与从1时到12时是相同的,所以再乘2即可.【解答】解:1+2+3+…+12=(1+12)×12÷2,=13×12÷2,=78(下)78×2=156(下)答:时钟共敲了156下.故答案为:156.【点评】等差数列相关公式为:末项=首项+(项数﹣1)×公差,项数=(末项﹣首项)÷公差+1,首项=末项﹣(项数﹣1)×公差.13.(12分)三年级有50名学生,他们都选择订阅甲、乙、丙三种杂志中的一种、二种或三种,则至少有8名学生订阅的杂志种类相同.【分析】订阅杂志中的一种有3种选法、订阅二种有3种选法、订阅三种有1种选法,共有3+3+1=7(种);把7种选法看作7个抽屉,把订阅杂志的人数(50)看元素,从最不利情况考虑,每个抽屉先放7个元素,共需要49个,还余1个,无论放在那个抽屉里,总有一个抽屉里至少有7+1=8个,所以至少要8名学生订阅的杂志种类相同;据此解答.【解答】解:3+3+1=7(种);50÷7=7(人)…1(人),7+1=8(名);答:至少要8名学生订阅的杂志种类相同.故答案为:8.【点评】抽屉原理问题的解答思路是:要从最不利情况考虑,准确地建立抽屉和确定元素的总个数,然后根据“至少数=元素的总个数÷抽屉的个数+1(有余数的情况下)”解答.14.(12分)如图是一个街道的示意图,实线表示道路,从B到A,只能向右或向上或斜上方沿着道路前进,则一共有28种不同的走法.【分析】可以用标数法,将每点的走法都一一标出,利用加法原理,不难求得总的不同的走法.【解答】解:根据分析,如图,将每点的走法都一一标出,由加法原理可得:从B到A的总共走法=22+6=28种,故答案是:28.【点评】本题考查了排列组合,突破点是:利用加法原理,将每点的走法都一一标出.15.(12分)在下面的6个圆圈中分别填入1,2,3,4,5,6,每个数字只能用一次,使各边上的三个数字和相等,称这个和为三角形边幻和,这样的三角形边幻和可以取到的值分别为9、10、11、12.【分析】设顶点上的三个数分别是a、b、c,则幻和可以表示为(a+b+c+1+2+3+4+5+6)÷3=(a+b+c)÷3+7;因为幻和是整数,所以a+b+c的和一定是3的倍数,就此求出a+b+c的和即可.【解答】解:设顶点上的三个数分别是a、b、c,则幻和可以表示为(a+b+c+1+2+3+4+5+6)÷3=(a+b+c)÷3+7;因为幻和是整数,所以a+b+c的和一定是3的倍数,所以a+b+c=6、9、12、15,所以幻和是:(a+b+c)÷3+7=6÷3+7=9,(a+b+c)÷3+7=9÷3+7=10,(a+b+c)÷3+7=12÷3+7=11,(a+b+c)÷3+7=15÷3+7=12;答:这样的三角形边幻和可以取到的值分别为9、10、11、12.故答案为:9、10、11、12.【点评】本题考查了幻方问题,这个类型的问题,幻和与公共顶点(或幻方中心数)是解决问题的突破口,本题由于是求幻和,不用求出顶点数的具体数值,只要求出三个数的和即可.。
(一)三年级数学竞赛试卷一、想想、算算、填填。
(21分)(1)18乘516写作(),还可以读作(),表示()个()连加的和是多少。
(2)5□4×6≈3000,□里可以填(),3□91÷5≈700,□里可以填()。
(3)从1921年7月1日中国共产党诞生,到1949年10月1日中华人民共和国成立,经过了()个月。
(4)新华书店上午9∶00开始营业,下午5∶30停止营业,全天营业时间是()小时()分。
(5)小冬买了20米长的铁丝,20米指的是铁丝的()。
一块三合板2平方米,2平方米指的是三合板的()。
(6)一个正方形和一个长方形的周长相等,()的面积大。
(7)□×△=36,□÷△=4,□=(),△=()。
(8)某年的9月有5个星期日,这一年的9月1日不是星期日,它是星期()。
(9)如果每人的步行速度相同,3个人一起从甲地走到乙地,要2小时,那么,6个人一起从甲地走到乙地要()小时。
(10)甲乙两队进行篮球比赛,结果两队总分之和是100分,现在知道甲队加上7分,就比乙队多1分,那么甲队原来得()分,乙队得()分。
二、巧添符号。
(12分)(1)6○6○6○6=1 (2)6○6○6○6=2(3)6○6○6○6=3 (4)6○6○6○6=4三、画一画,分一分,拼一拼。
(10分)(1)把一块地(如右图)分给5个种植小组,每组分得的土地形状和大小要Array相同。
应该怎样分?(画图表示)(2)有12个边长为1厘米的小正方形,拼成一个长方形,怎样拼才能使长方形的周长最长?(画图)六、想一想,再列式解答。
(44分)(2)小红家养了一些鸡,黄鸡比黑鸡多13只,比白鸡少18只。
白鸡的只数是黄鸡的2倍。
白鸡、黄鸡、黑鸡一共有多少只?(8分)(3)三年级数学竞赛获奖的同学中,男同学获奖的人数比女同学多2人,女同学比男同学获奖人数的一半多2人。
男、女同学各有几人获奖?(8分)(4)庆祝“六一”儿童节,5个女同学做纸花,平均每人做5朵,已知每个同学做的数量各不相同,其中有一个人做得最快,她最多做多少朵?(简要说出算理)(10分)(5)一串珠子,按照3颗黑珠、2棵白珠,3颗黑珠、2颗白珠……的顺序排列。
走美杯三年级试题及答案一、选择题(每题2分,共10分)1. 下列哪个词是形容颜色的?A. 快乐B. 红色C. 高兴D. 蓝色答案:B2. 以下哪个选项是正确的数学运算?A. 2 + 2 = 5B. 3 × 3 = 9C. 4 ÷ 2 = 2D. 5 - 5 = 10答案:B3. 哪个是正确的英文单词?A. catB. doggC. cattD. doog答案:A4. 哪个季节是收获的季节?A. 春天B. 夏天C. 秋天D. 冬天答案:C5. 以下哪个是正确的句子?A. 我吃饭了。
B. 我吃饭。
C. 吃饭了我。
D. 吃饭了。
答案:A二、填空题(每空1分,共10分)6. 我们有______个季节。
答案:四7. 一个星期有______天。
答案:七8. 一年有______个月。
答案:十二9. 1小时等于______分钟。
答案:六十10. 一个正方形有______条边。
答案:四三、简答题(每题5分,共20分)11. 请描述一下你最喜欢的动物。
答案:我最喜欢的动物是狗,因为它们忠诚、友好,并且能够给人们带来快乐。
12. 请解释一下“团结”这个词的意思。
答案:团结是指人们为了共同的目标而共同努力,相互支持和协作。
13. 请列举三个你最喜欢的水果。
答案:我最喜欢的水果是苹果、香蕉和橙子。
14. 请简述一下你最喜欢的运动。
答案:我最喜欢的运动是游泳,因为它是一项全身运动,可以锻炼身体,同时也可以放松心情。
四、阅读理解题(每题5分,共30分)阅读以下短文,并回答问题。
小兔子和大灰狼在一个阳光明媚的早晨,小兔子在森林里玩耍。
突然,一只大灰狼出现了。
小兔子害怕极了,它飞快地跑回了家。
大灰狼没有追上小兔子,只好失望地离开了。
15. 小兔子在做什么?答案:小兔子在森林里玩耍。
16. 大灰狼出现后,小兔子是怎么做的?答案:小兔子飞快地跑回了家。
17. 大灰狼最后怎么样了?答案:大灰狼失望地离开了。
18. 这个故事告诉我们什么道理?答案:这个故事告诉我们要勇敢面对困难,不要轻易放弃。
第15届走美杯考试试题2017年第15届走美杯考试试题“走美杯”是始创于2003年的一门数学竞赛,其中“走美”是“走进美妙的数学花园”简称。
下面是店铺整理的关于走美杯考试试题,希望大家认真练习!和倍问题一、知识要点:已知两个数的和与两个数间的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做和倍问题。
要想顺利地解答和倍应用题,最好的方法就是根据题意,画出线段图,使数量关系一目了然,从而正确列式解答。
解答和倍应用题,关键是要找出两数的和以及与其对应的倍数和,从而先求出1倍数,再求出几倍数。
数量关系可以这样表示:两数和÷(倍数+1)=小数(1倍数)小数×倍数=大数(几倍数)两数和-小数=大数二、精讲精练例1 学校将360本图书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两个年级各分得多少本图书?练习一1、小红和小明共有压岁钱800元,小红的钱数是小明的3倍。
小红和小明各有压岁钱多少元?2、学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本。
二、三年级各得图书多少本?例2 小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青给小宁多少枝后,小宁的圆珠笔芯枝数是小青的8倍?练习二1、红红有邮票80张,佳佳有邮票60张,要使红红的邮票张数是佳佳的4倍,那么佳佳必须给红红多少张邮票?2、甲水池有水69吨,乙水池有水36吨,如果甲水池中的.水以每分钟2吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?例3 被除数与除数的和为320,商是7,被除数和除数各是多少?练习三1、被除数和除数和为120,商是7,被除数和除数各是多少?2、被除数、除数、商的和为79,商是4,被除数、除数各是多少?例4 两数相除商为17余6,被除数、除数、商和余数的和是479。
被除数和除数分别为多少?练习四1、两个整数相除商14余2,被除数、除数、商和余数的和是243,被除数比除数大多少?2、在一个减法算式里,被减数、减数与差的和等于240,而减数是差的5倍。
2017年上海15届走美杯答题技巧讲解1对照法如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。
根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
例2:判断题:能被2除尽的数一定是偶数。
这里要对照“除尽”和“偶数”这两个数学概念。
只有这两个概念全理解了,才能做出正确判断。
2公式法运用定律、公式、规则、法则来解决问题的方法。
它体现的是由一般到特殊的演绎思维。
公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。
但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
例3:计算59×37+12×59+5959×37+12×59+59=59×(37+12+1)…………运用乘法分配律=59×50…………运用加法计算法则=(60-1)×50…………运用数的组成规则=60×50-1×50…………运用乘法分配律=3000-50…………运用乘法计算法则=2950…………运用减法计算法则3比较法通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
一、填空题I(每题8分,共40分)1.计算:______2812345679=⨯.2.一个自然数被3除余2,被5除余4,并且这个数大于100且小于125,那么这个数是______.3.现有3个抽屉,每个抽屉中都放置3个玻璃球(形状大小相同),分别为蓝色、红色与黄色,如果分别从这3个抽屉中各取出一个玻璃球放在一个布袋中,则布袋中的3个玻璃球共有______种不同情况.4.如果某年某月的日期中,第一天与最后一天都是星期二,那么这个月是______月,这一年有______天.5.“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(A=1,J=l1l ,Q=12,K=13)逦过加减乘除四则运算得出24,先找到算法者获胜.游戏规定4张牌扑克都要用到,而且每张牌只能用1次,比如2,3,4,Q ,则可以由算法(2×Q)×(4-3)得到24.如果在一次游戏中恰好抽到了以下两组排,请分别写出你的算法:(1)2,2,9,10,你的算法是_______________________;(2)8,8,8,10,你的算法是_______________________.二、填空题Ⅱ(每题10分,共50分)6.用直线刀型可以一刀将一个圆形大饼最多分成2份,两刀最多分成4份(如下图所示),那么,要分成10份至少需要______刀.7.将下图中的圆圈染色,要求有连线的两个相邻的圆圈染不同的颜色,则最少需要______种颜色.8.下图是历史上著名的5个柏拉图立体,它们的顶点数数分别为______.9.150015最多可以写成______个大于1的不同自然数的乘积,这些自然数分别为______.10.将一个面积为36平方厘米的正方形纸片按照下图所示方式折叠两次后对折沿如图所示水平对折线剪开,得到的长方形纸片中周长最小为______厘米.11.将一个给定的大于或等于1的自然数连续进行如下运算:(1)若是奇数,就把这个数乘以3再加1;(2)若是偶数,就把这个数除以2.这样运算下去,如果能够得到1,则停止继续做运算,而这时所做运算的次数称为该数的回归数.例如,显然,1的回归数为0;2的回归数为1:对3而言有3→10→5→16→8-4→2→1,所以3的回归数为7.那么,不超过10的自然数当中______的回归数最大,这个最大的回归数为______.12.如右图所示,正方形ABCD 有4条对称轴(虚线s n m l ,,,),用这些对称轴可以做对称变换:关于对称轴对称的两点互换位置.那么,如果要将A 变换到B ,B 变换到C ,C 变换到D ,D 变换到A ,则至少需要做______次对称变换,这几次对称变换的对称轴依次为______.13. 日常生活中经常使用十进制来表示数,要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要用两个数码0和1正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到以下自然数的十进制与二进制表示对照表:十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1+1=10,十进制的3在二进制中变成了10+l=11,……那么,十进制中的“1023”用二进制表示是______.14.古希腊数学家们将一些自然数按照以下方式与正方形联系起来:并将这些数称为正方形数1770年,法国数学家拉格朗日证明:任何一个自然数都可以表示为最多4个正方形数的和,比如2=1+1,7=1+1+1+4等.请将80表示为最多4个正方形数的和的所有可能情形____________________.___15.将自然数1到16排成4×4的方阵,每行每列以及对角线上数的和均相等,这样的方阵称为4阶幻方.南宋数学家杨辉是最早系统研究幻方的中国古代数学家.请根据下面已经给出的数字,填出两个不同的4阶幻方:。
第1页 共四页 第2页 共四页CADEFB绝密★启用前世界青少年奥林匹克数学竞赛(中国区)选拔赛初赛试卷注意事项: 1、考生按要求用黑色、蓝色圆珠笔或钢笔在密封线内填好考生的相关信息。
2、考试时间90分钟。
3、本试卷共4页,满分100分。
4、不得在答卷上做任何标记。
5、考生超出答题区域答题将不得分。
6、考生在考试期间不得作弊,否则试卷记零分处理。
小学三年级试题一、选择题。
(把相应答案的序号填在括号里,每题5分,共25分)1. 有一个里程碑的编号是一个三位数,现有五个三位数:145、956、473、385、270.其每一个数与里程碑的编号恰好有一个位置的数字完全相同,那么里程碑的编号是( )。
(5分)A 、975B 、480C 、249D 、 9472. 91+1+92+2+93+3+94+4+95+5+96+6+97+7+98+8+99+9的结果是( )。
(5分)A 、850B 、900C 、950D 、1000 3. 以一条直线上的5个点为端点的不同线段有( )条。
(5分)A 、4B 、5C 、10D 、20 4. 数一数,包含字母A 的正方形有( )个。
(5分)A 、1B 、6C 、10D 、145. 如图,一张街道平面图,甲、乙两人分别A 、B 出发,以相同的速度走遍所有街道,最后到达C ,两人谁先到达?( )。
(5分)A 、甲B 、乙C 、同时到达D 、不确定二、填空题。
(每题6分,共30分)1. 875-364-236= 275 ; 5942-1557-443-942= 3000 ;1995+1996+1997+1998+1999= 9985 。
(6分)2. 算式14÷ = ...... 中,不相同的余数有 6 个。
(6分)3. 有一栋12层的大楼,由于停电电梯停开。
某人从一层走到三层需要32秒,以同样的速度,从三层走到12层,需要 144 秒。
(6分)4. 有两只船一共运木板9800块,其中第一只船比第二只船运的少1400块,那么第一只船运木板 4200 块;第二只船运木板 5600 块。
2017年第十五届“走美杯”小数数学竞赛初赛试卷(五年级B卷)-学生用卷一、填空题共15题,共120 分1、计算:(写成小数的形式,精确到小数点后三位)。
2、两个标准骰子一起投掷次,点数之和第一次为,第二次为的可能性(概率)为/(先填分子,再填分母)。
3、大于的自然数,如果满足所有因数之和等于它自身的倍,则这样的数称为完美数或完全数。
比如,的所有因数为,,,,,是最小的完美数。
是否有无限多个完美数的问题至今仍然是困扰人类的难题之一。
研究完美数可以从计算自然数的所有因数之和开始,的所有因数之和为。
4、昊宇写好了五封信和五个不同地址的信封,要将每封信放入相应的信封中,一个信封只放入一封信。
只有一封信装对,其余全部被装错的情形有种。
5、“点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从张扑克牌(不包括大小王)中抽取张,用这张扑克牌上的数字(,,,)通过加减乘除四则运算得出,最先找到算法者获胜。
游戏规定张扑克牌都要用到,而且每张牌只能用次,比如,,,,则可以由算法得到,海亮在一次游戏中抽到了,,,,经过思考,他发现,我们将满足的牌组称为“海亮牌组”,请再写出组不同的“海亮牌组”。
6、在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫作“十二地支,;十天干和十二地支进行循环组合:甲子、乙丑、丙寅。
一直到癸亥,共得到个组合,称为六十甲子。
如此周而复始用来纪年的方法,称为甲子纪年法。
在甲子纪年中,以“丑”结尾的年份除了“乙丑”外,还有。
7、现有个抽屉,每个抽屉中都放置个玻璃球(形状大小相同),分别为蓝色、红色与黄色。
如果分别从这个抽屉中各取出一个玻璃球放在一个布袋中,则布袋中的个玻璃球共有种不同情况。
8、古希腊的数学家们将自然数按照以下方式与多边形联系起来,定义了多边形数:比如,根据图示,三边形数:,,,,四边形数:,,,,五边形数:,,,,六边形数:,,,,那么,第个三边形数,四边形数,五边形数,六边形数分别为。
2017年第十五届“走美杯”小数数学竞赛初赛试卷(四年级B卷)一、填空题(共5小题,每小题8分,满分40分)1.(8分)计算:四十二亿九千四百九十六万七千二百九十七除以六百七十万零四百一十七等于(用数字作答).2.(8分)将一个周角平均分成6000份,其中的一份作为角的度量单位,则可以得到一种新的度量角的单位:密位.显然,360°=6000密位,那么45°=密位,1050密位= °.3.(8分)两个标准骰子一起投掷1次,点数之和恰好为10的可能性(概率)为(用分数表示).4.(8分)大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,78的所有因数之和为.5.(8分)“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(A=l,J=11,Q=12,K=13)通过加减乘除四则运算得出24,先找到算法者获胜.游戏规定4张牌扑克都要用到,而且每张牌只能用1次,比如2,3,4,Q,则可以由算法(2×Q)×(4﹣3)得到 24.如果在一次游戏中恰好抽到了以下两组排,请分别写出你的算法:(1)5,5,9,9,你的算法是(2)4,5,8,K,你的算法是.二、填空题(共5小题,每小题10分,满分50分)6.(10分)用5个边长为单位长度的小正方形(单位正方形)可以构成如图所示的5﹣联方(在中国又称为伤脑筋十二块).在西方国家,人们用形象的拉丁字母来标记每一个5﹣联方.其中,既不是中心对称图形也不是轴对称图形的5﹣联方为:既是中心对称图形又是轴对称图形的5﹣联方为.7.(10分)将图中的圆圈染色,要求有连线的两个相邻的圆圈染不同的颜色,则最少需要种颜色.8.(10分)在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥叫作“十二地支,;十天干和十二地支进行循环组合:甲子、乙丑、丙寅.一直到癸亥,共得到60个组合,称为六十甲子.如此周而复始用来纪年的方法,称为甲子纪年法在甲子纪年中,以“丑”结尾的年份除了“乙丑”外,还有.9.(10分)在印度河畔的圣庙前,一块黄铜板上立着3根金针,针上穿着很多金盘.据说梵天创世时,在最左边的针上穿了由大到小的64片金盘,他要求人们按照“每次只能移动一片,而且小的金盘必须永远在大的金盘上面”的规则,将所有的64 片金盘移动到最右边的金盘上面.他预言,当所有64片金盘都从左边的针移动到右边的时候,宇宙就会湮(yan)灭.现在最左边金针(A)上只有6片金盘,如图(1)所示,要按照规则,移动成图(2)的状态,至少需要移动步.10.(10分)用3颗红色的珠子,2颗蓝色的珠子,1颗绿色的珠子串成圆形手链,一共可以串成种不同的手链.三、填空题(共5小题,每小题12分,满分60分)11.(12分)索玛立方体组块是丹麦物理学家皮特•海音(Piet Hein)发明的7个小立方体组块(如图所示,注意5号与6号组块,这是两个不同的组块).因为利用这7个组块可以恰好组成一个立方体,所以称为索玛立方体组块.一个索玛立方体组块如果能够被某个平面分割成形状完全相同的两部分,则称这个组块是可平面平分的.那么,这些组块中有而且只有1种分割方法的可平面平分组块为,不可平面平分组块为(填0表示没有).12.(12分)在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN.每一个格点多边形都能够很容易地划分为若干个本原格点三角形.那么,图中的格点四边形的面积为,可以划分为个本原格点三角形.13.(12分)如果一个长方形能够被分割为若干个边长不等的小正方形,则这个长方形称为完美长方形.已知下面的长方形是一个完美长方形,分割方法如图所示,已知其中最小的三个正方形的边长分别为1,2,7,那么,图中没有标示边长的小正方形的边长按照从小到大的顺序分别为.14.(12分)如果两个不同自然数的积被5除余1,那么我们称这两个自然数互为“模5的倒数”.比如,3×7=21,被5除余1,则3和7互为“模5的倒数”.即3与7都是有“模5的倒数”的数.那么8,9,10,11,12中有“模5的倒数”的数为,最小的“模5的倒数”分别为.15.(12分)将自然数1到16排成4×4的方阵,每行每列以及对角线上数的和相等,这样的方阵称为4阶幻方.幻方起源于中国,在世界上很多地方也都有发现.下面的4阶幻方是在印度耆那神庙中发现的,请将其补充完整:2017年第十五届“走美杯”小数数学竞赛初赛试卷(四年级B卷)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)计算:四十二亿九千四百九十六万七千二百九十七除以六百七十万零四百一十七等于641 (用数字作答).【分析】首先要把数四十二亿九千四百九十六万七千二百九十七和六百七十万零四百一十七写出来,然后计算即可.【解答】解:四十二亿九千四百九十六万七千二百九十七写作:4294967297六百七十万零四百一十七写作:67004174294967297÷6700417=641【点评】本题考查的数的读写,正确写出数,进行计算即可.2.(8分)将一个周角平均分成6000份,其中的一份作为角的度量单位,则可以得到一种新的度量角的单位:密位.显然,360°=6000密位,那么45°= 750 密位,1050密位= 63 °.【分析】根据题意可知1°=密位,1密位=°,据此解答即可.【解答】解:1°=密位,1密位=°,45°=45×=750密位,1050密位=1050×=63°【点评】本题考查的是单位换算,根据题意算出1°=密位,1密位=°,是解答本题的关键.3.(8分)两个标准骰子一起投掷1次,点数之和恰好为10的可能性(概率)为(用分数表示).【分析】每个骰子的点数分别是1、2、3、4、5、6,所以投掷两个骰子的点数之和可能有:6×6=36种情况,其中相加等于10的有(4,6)、(6,4)、(5,5)这3种情况,据此解答即可.【解答】解:投掷两个骰子的点数之和可能有:6×6=36种情况,其中相加等于10的有(4,6)、(6,4)、(5,5)这3种情况.则点数之和恰好为10的可能性(概率)为:3÷36=【点评】本题考查的是概率问题,正确得出投掷两个骰子的点数之和可能情况一共有多少种是关键.4.(8分)大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,78的所有因数之和为168 .【分析】要想求一个数的所有因数的和,首先要把这个数分解质因数,然后利用求一个数的所有的因数之和的公式解答即可.【解答】解:78=2×3×13所以78的所有的因数之和是:(1+2)×(1+3)×(1+13)=168【点评】本题考查的是如何求一个数的所有因数的和.把一个自然数M分解质因数,M=a b×c d×e f××…×m n,则自然数M的所有因数的和是(1+a1+a2+…+a b)×(1+c1+c2+…+c d)×()…×(1+m1+m2+…+m n),据此解答即可.5.(8分)“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(A=l,J=11,Q=12,K=13)通过加减乘除四则运算得出24,先找到算法者获胜.游戏规定4张牌扑克都要用到,而且每张牌只能用1次,比如2,3,4,Q,则可以由算法(2×Q)×(4﹣3)得到 24.如果在一次游戏中恰好抽到了以下两组排,请分别写出你的算法:(1)5,5,9,9,你的算法是5×5﹣9÷9=24(2)4,5,8,K,你的算法是4×8+5﹣K=24 .【分析】本题考查“24点游戏”,细心解答即可.【解答】解:(1)因为24=25﹣1,所以5×5﹣9÷9=24(2)4×8+5﹣K=24【点评】本题难度较低,细心解答即可.二、填空题(共5小题,每小题10分,满分50分)6.(10分)用5个边长为单位长度的小正方形(单位正方形)可以构成如图所示的5﹣联方(在中国又称为伤脑筋十二块).在西方国家,人们用形象的拉丁字母来标记每一个5﹣联方.其中,既不是中心对称图形也不是轴对称图形的5﹣联方为F、L、N、P、Y :既是中心对称图形又是轴对称图形的5﹣联方为I、X .【分析】按题意,可以根据图形的对称性不难看出来,只有F、L、N、P、Y既不是中心对称图形也不是轴对称的图形,I、X既是中心对称图形又是轴对称图形.【解答】解:根据分析,可以根据图形的对称性不难看出来,只有F、L、N、P、Y既不是中心对称图形也不是轴对称的图形,I、X既是中心对称图形又是轴对称图形.故答案是:FLNPY,IX【点评】本题考查了图形的变换和对称性,突破点是:利用图形的对称性,不难看出符合题意的图形.7.(10分)将图中的圆圈染色,要求有连线的两个相邻的圆圈染不同的颜色,则最少需要 4 种颜色.【分析】要保证使用的颜色最少,则两个相邻的圆圈的颜色要尽可能多的相同,尝试2种颜色和3种颜色都不行,需要4种颜色,据此解答即可.【解答】解:尝试2种颜色和3种颜色都不行,需要4种颜色,如下图:【点评】本题考查染色问题.8.(10分)在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥叫作“十二地支,;十天干和十二地支进行循环组合:甲子、乙丑、丙寅.一直到癸亥,共得到60个组合,称为六十甲子.如此周而复始用来纪年的方法,称为甲子纪年法在甲子纪年中,以“丑”结尾的年份除了“乙丑”外,还有丁丑,己丑,辛丑,癸丑.【分析】首先分析题中的丑经过12年出现一次,共60年出现5次.枚举法即可.【解答】解:依题意可知:第一个是乙丑,丑出现时经过12+2=14年.24+2=26年,36+2=38年,48+2=50年.经过14,26,38,50年对应的天干是丁,己,辛,癸.故答案为:丁丑,己丑,辛丑,癸丑【点评】本题考查对周期问题的理解和掌握,关键是找到对应的数字.问题解决.9.(10分)在印度河畔的圣庙前,一块黄铜板上立着3根金针,针上穿着很多金盘.据说梵天创世时,在最左边的针上穿了由大到小的64片金盘,他要求人们按照“每次只能移动一片,而且小的金盘必须永远在大的金盘上面”的规则,将所有的64 片金盘移动到最右边的金盘上面.他预言,当所有64片金盘都从左边的针移动到右边的时候,宇宙就会湮(yan)灭.现在最左边金针(A)上只有6片金盘,如图(1)所示,要按照规则,移动成图(2)的状态,至少需要移动24 步.【分析】这是一个汉诺塔的变形问题,根据汉诺塔的推理结果,把n个盘从一个柱子上全部转移到另一个柱子上需要的步数是2n﹣1,据此解答即可.【解答】解:设6片金盘从小到大的编号依次是①、②、③、④、⑤、⑥,由图可知,图(2)中A上是③和④号金盘,C上是①、②、⑤、⑥金盘.第一次:把①、②、③、④4个金盘全部转移到图(2)B上,需要24﹣1=15(步)第二次:把⑤、⑥2个金盘全部转移到图(2)C上,需要22﹣1=3(步)第三次:把图(2)B上的①、②2个金盘全部转移到图(2)C上,需要22﹣1=3(步)第四次:把图(2)B上的③、④2个金盘全部转移到图(2)A上,需要22﹣1=3(步)综上所述:需要的步数是:15+3×3=24(步)【点评】本题考查的汉诺塔问题,重点是要理解有关汉诺塔的公式:把n个盘从一个柱子上全部转移到另一个柱子上需要的步数是2n﹣110.(10分)用3颗红色的珠子,2颗蓝色的珠子,1颗绿色的珠子串成圆形手链,一共可以串成 5 种不同的手链.【分析】因为是圆形手链,所以旋转和翻转相同的只能算一种,因为红色的珠子有3颗,所以可以让3颗红色的珠子相邻,也可以让2个红色的珠子相邻,也可以让红色的珠子不相邻这三种情况考虑,据此解答即可.【解答】解:①3颗红色的珠子相邻,则只有2种;②只有2颗红色的珠子相邻,有2种;③3颗红色的珠子都不相邻,有1种;2+2+1=5(种)答:一共可以串成5种不同的手链.【点评】本题考查的排列组合问题.三、填空题(共5小题,每小题12分,满分60分)11.(12分)索玛立方体组块是丹麦物理学家皮特•海音(Piet Hein)发明的7个小立方体组块(如图所示,注意5号与6号组块,这是两个不同的组块).因为利用这7个组块可以恰好组成一个立方体,所以称为索玛立方体组块.一个索玛立方体组块如果能够被某个平面分割成形状完全相同的两部分,则称这个组块是可平面平分的.那么,这些组块中有而且只有1种分割方法的可平面平分组块为5、6 ,不可平面平分组块为7号(填0表示没有).【分析】对1~7号组块进行逐一分析,看每一个组块有几种方法分割成两个完全相同的部分.【解答】解:1号有如下两种分割方法:2号有如下两种分割方法:3号有如下两种分割方法:4号有如下两种分割方法:5号只有如下一种分割方法:6号只有如下一种分割方法:7号不能分割成完全相同的两部分.故答案为:5、6;7号.【点评】对各个组块进行分析,易错点是7号不能分割成两个完全相同的部分.12.(12分)在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN.每一个格点多边形都能够很容易地划分为若干个本原格点三角形.那么,图中的格点四边形的面积为7.5 ,可以划分为15 个本原格点三角形.【分析】根据皮克公式:设格点多边形的面积是S,该多边形各边上的格点个数为a个,内部格点个数为b个,则S=a+b﹣1,即可求出图中的格点四边形的面积.【解答】解:皮克公式:S=a+b﹣1图中的格点四边形中,各边上的格点数a=5,内部的格点数b=6,所以格点四边形的面积是:×5+6﹣1=7.5根据题意,本原格点三角形内部没有格点,那么S=×3+0﹣1=0.5,所以7.5÷0.5=15(个),故答案为7.5,15.【点评】本题考查皮克公式的灵活运用.13.(12分)如果一个长方形能够被分割为若干个边长不等的小正方形,则这个长方形称为完美长方形.已知下面的长方形是一个完美长方形,分割方法如图所示,已知其中最小的三个正方形的边长分别为1,2,7,那么,图中没有标示边长的小正方形的边长按照从小到大的顺序分别为9、11、13、21、22、24、36、37、44 .【分析】本题考察平面图形的计算.【解答】解:剩下的小正方形的编号分别是从①到⑨,如下图:正方形①的边长是:2+7=9正方形②的边长是:9+2=11正方形③的边长是:11+2=13正方形④的边长是:9+11+1=21正方形⑤的边长是:21+1=22正方形⑥的边长是:22+1=23正方形⑦的边长是:23+13=36正方形⑧的边长是:9+21+7=37正方形⑨的边长是:37+7=44.故填:9、11、13、21、22、24、36、37、44.【点评】本题较为繁琐,可操作性低,难度也低.14.(12分)如果两个不同自然数的积被5除余1,那么我们称这两个自然数互为“模5的倒数”.比如,3×7=21,被5除余1,则3和7互为“模5的倒数”.即3与7都是有“模5的倒数”的数.那么8,9,10,11,12中有“模5的倒数”的数为8和12 ,最小的“模5的倒数”分别为2和3或1和6 .【分析】因为5的倍数的末尾是0或5,所以被5除余1的数的末尾是1或6,据此解答即可.【解答】解:因为5的倍数的末尾是0或5,所以被5除余1的数的末尾是1或6在8,9,10,11,12这四个数中,只有8×12=96符合要求.因为1×6=6,2×3=6,所以最小的“模5的倒数”分别是2和3或1和6.【点评】本题关键要理解因为5的倍数的末尾是0或5,所以被5除余1的数的末尾是1或6,据此解答即可.15.(12分)将自然数1到16排成4×4的方阵,每行每列以及对角线上数的和相等,这样的方阵称为4阶幻方.幻方起源于中国,在世界上很多地方也都有发现.下面的4阶幻方是在印度耆那神庙中发现的,请将其补充完整:【分析】首先算出1+2+3+4+…+16的和,从而求出每行、每列以及对角线上4个数的和,然后再根据幻方的“模块特性”求出空缺的数,据此解答即可.【解答】解:(1+2+3+4+…+16)÷4=34幻方的“模块特性”取出任意一个2×2的小正方形,4个数之和也是34,则有:【点评】本题考查的是幻方以及幻方的一些性质.。
2017-2018年度美国“数学大联盟杯赛”(中国赛区)初赛(三年级)(初赛时间:2017年11月26日,考试时间90分钟,总分200分)学生诚信协议:考试期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论,我确定我所填写的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。
请在装订线内签名表示你同意遵守以上规定。
考前注意事项:1. 本试卷是三年级试卷,请确保和你的参赛年级一致;2. 本试卷共4页(正反面都有试题),请检查是否有空白页,页数是否齐全;3. 请确保你已经拿到以下材料:本试卷(共4页,正反面都有试题)、答题卡、答题卡使用说明、英文词汇手册、草稿纸。
考试完毕,请务必将英文词汇手册带回家,上面有如何查询初赛成绩、及如何参加复赛的说明。
其他材料均不能带走,请留在原地。
选择题:每小题5分,答对加5分,答错不扣分,共200分,答案请填涂在答题卡上。
1. 5 + 6 + 7 + 1825 + 175 =A) 2015 B) 2016 C) 2017 D) 20182.The sum of 2018 and ? is an even number.A) 222 B) 223 C) 225 D) 2273.John and Jill have $92 in total. John has three times as much money as Jill. How muchmoney does John have?A) $60 B) $63 C) $66 D) $694.Tom is a basketball lover! On his book, he wrote the phrase “ILOVENBA” 100 times.What is the 500th letter he wrote?A) L B) B C) V D) N5.An 8 by 25 rectangle has the same area as a rectangle with dimensionsA) 4 by 50 B) 6 by 25 C) 10 by 22 D) 12 by 156.What is the positive difference between the sum of the first 100 positive integers and thesum of the next 50 positive integers?A) 1000 B) 1225 C) 2025 D) 50507.You have a ten-foot pole that needs to be cut into ten equal pieces. If it takes ten secondsto make each cut, how many seconds will the job take?A) 110 B) 100 C) 95 D) 908.Amy rounded 2018 to the nearest tens. Ben rounded 2018 to the nearest hundreds. Thesum of their two numbers isA) 4000 B) 4016 C) 4020 D) 4040 9.Which of the following pairs of numbers has the greatest least common multiple?A) 5,6 B) 6,8 C) 8,12 D) 10,2010.For every 2 pencils Dan bought, he also bought 5 pens. If he bought 10 pencils, how manypens did he buy?A) 25 B) 50 C) 10 D) 1311.Twenty days after Thursday isA) Monday B) Tuesday C) Wednesday D) Thursday12.Of the following, ? angle has the least degree-measure.A) an obtuse B) an acute C) a right D) a straight13.Every student in my class shouted out a whole number in turn. The number the firststudent shouted out was 1. Then each student after the first shouted out a number that is 3 more than the number the previous student did. Which number below is a possible number shouted out by one of the students?A) 101 B) 102 C) 103 D) 10414.A boy bought a baseball and a bat, paying $1.25 for both items. If the ball cost 25 centsmore than the bat, how much did the ball cost?A) $1.00 B) $0.75 C) $0.55 D) $0.5015.2 hours + ? minutes + 40 seconds = 7600 secondsA) 5 B) 6 C) 10 D) 3016.In the figure on the right, please put digits 1-7 in the sevencircles so that the three digits in every straight line add upto 12. What is the digit in the middle circle?A) 3 B) 4 C) 5 D) 617.If 5 adults ate 20 apples each and 3 children ate 12 apples in total, what is the averagenumber of apples that each person ate?A) 12 B) 14 C) 15 D) 1618.What is the perimeter of the figure on the right? Note: Allinterior angles in the figure are right angles or 270°.A) 100 B) 110C) 120 D) 16019.Thirty people are waiting in line to buy pizza. There are 10 peoplein front of Andy. Susan is the last person in the line. How manypeople are between Andy and Susan?A) 18 B) 19C) 20 D) 2120.Thirty-nine hours after 9:00 AM isA) 1:00 AM B) 12:00 PM C) 8:00 PM D) 12:00 AM21.200 + 400 + 600 + 800 = (1 + 2 + 3 + 4) ×?A) 2 B) 20 C) 200 D) 200022.11…11 (the number consisting of 2016 1’s) is not a mult iple ofA) 11 B) 111 C) 1111 D) 1111123.The average of two thousands and two millions isA) 10000 B) 1000000 C) 1001000 D) 111100024.A triangle has the same area as a square. If the length of a base of the triangle is the sameas the side-length of the square, and the height of the triangle to the base is 4, what is thearea of the square?A) 1/2 B) 2 C) 4 D) 825.When V olta found a field in the shape of an isosceles triangle, she was soexcited that she ran a lap around all three sides. Two sides of the field havelengths of 505 m each, and the third side has a whole-number length.What is the greatest possible distance that V olta might have run in one lap?A) 2016 B) 2017 C) 2018 D) 201926.25 ×66 = 75 ×?A) 22 B) 44 C) 16 D) 3327.The number that has an odd number of whole number divisors isA) 15 B) 16 C) 17 D) 1828.In a sequence of 8 numbers, the average of the 8 terms is 15. If the average of the firstthree terms is 16 and the average of the next two terms is 15, what is the average of thelast three terms?A) 12 B) 13 C) 14 D) 1529.All years between 2000 and 2050 that are divisible by 4 are leap years.No other years between 2000 and 2050 are leap years. How many daysare there all together in the 17 years from 2010 to 2026?A) 6029 B) 6030 C) 5018 D) 501930.The sum of the hundreds digit and the tens digit of 2357 isA) 5 B) 8 C) 10 D) 1231.Which of the expressions below has the greatest value of (quotient × remainder)?A) 27 ÷ 4 B) 47 ÷ 6C) 57 ÷ 8 D) 87 ÷ 1232.I have some dimes and nickels, and together these coins are worth $3. If I replace everynickel with a quarter, I will have $5. How many dimes do I have?A) 10 B) 15 C) 20 D) 2533.I am a lovely cat. When I multiply the digits of a whole numberand the product I get is 9, I put that whole number on my list offavorite numbers. Of the whole numbers from 1000 to 9999, howmany would I put on my list of favorite numbers?A) 5 B) 10 C) 15 D) 2034.The sum of the tens digit and the units digit of the sum 1 + 12 + 123 + 12345+ … + 123456789 isA) 4 B) 5 C) 6 D) 735.The product of all prime numbers between 1 and 10 isA) 210 B) 105C) 1890 D) none of the above36.What is the average of 12, 14, 16, and 18?A) 13 B) 14 C) 15 D) 1637.When Jon shouts out a whole number, Al shouts out the product ofits digits, Barb shouts out the product of the digits of the number Alshouted out, and Cy shouts out the product of the digits of thenumber Barb shouted out. When Cy shouts out 18, what numbermight Jon have shouted out?A) 789 B) 799 C) 899 D) 99938.Each big box contains 3 medium boxes, each medium box contains2 small boxes, and each small box contains 5 apples. How many bigboxes are necessary for 1200 apples?A) 30 B) 40 C) 50 D) 6039.Eighteen years from now, my age will be 4 more than twice my currentage. My age now isA) 12 B) 14 C) 16 D) 1840.Each time Wanda waved her wand, 4 more stars appeared on herdress (which started with no stars). After several waves, Wandamultiplied the total number of stars then on her dress by thenumber of times she had waved her wand. This product cannot beA) 144 B) 256 C) 364 D) 676。
一、拓展提优试题1.有20间房间,有的开着灯,有的关着灯,在这些房间里的人都希望与大多数房间保持一致.现在,从第一间房间的人开始,如果其余19间房间的灯开着的多,就把灯打开,否则就把灯关上,如果最开始开灯与关灯的房间各10间,并且第一间的灯开着.那么,这20间房间里的人轮完一遍后,关着灯的房间有()间.A.0B.10C.11D.202.在一根绳子上依次穿入5颗红珠、4颗白珠、3颗黄珠和2颗蓝珠,并按照此方式不断重复,如果从头开始一共穿了2014颗珠子,那么第2014颗珠子的颜色是色.3.三(1)班同学排成三排做早操,三排人数相等.小红排在中间一排.从左往右数,她是第6个;从右往左数,她是第7个,全班共有个人.4.观察下面各等式的计算规律:第一行1+2+3=6第二行3+5+7=15第三行5+8+11=24…第十二行的算式是.5.观察下列图形,“?”位置对应的图形是()A.B.C.D.6.将一个大三角形分割成36 个小三角形,并且将其中一部分小三角形涂成红色,另一部分涂成蓝色,并且使得两个有公共边的三角形的颜色不同,如果红色的三角形比蓝色的多,那么多()个.A.1B.4C.6D.77.(12分)一次考试有三道题,四个好朋友考完后互相交流了成绩.发现四人各对了3、2、1、0题.这时一个路人问:你们考的怎么样啊?甲:“我对了两道题,而且比乙对的多,丙考的不如丁.”乙:“我全对了,丙全错了,甲考的不如丁.”丙:“我对了一道,丁对了两道,乙考的不如甲.”丁:“我全对了,丙考的不如我,甲考的不如乙.”已知大家都是对了几道题就说几句真话,那么对了2题的人是()A.甲B.乙C.丙D.丁8.亮亮早上8:00从甲地出发去乙地,速度是每小时8千米.他在中间休息了1小时,结果中午12:00到达乙地.那么,甲、乙两地之间的距离是()千米.A.16B.24C.32D.409.小王有8个1分币,4个2分币,1个5分币,他要拼出8分钱来,有种不同的拼法.10.有一种特殊的计算器,当输入一个10~49的自然数后,计算器会先将这个数乘以2,然后将所得结果的十位和个位顺序颠倒,再加2后显示出最后的结果.那么,下列四个选项中,()可能是最后显示的结果.A.44B.43C.42D.4111.甲乙两数的差是144,甲数比乙数的3倍少14,那么甲数是.12.6□4÷3,要使商的中间有一位是0,□里可以填.(几种情况填写完整)13.一个不透明的布袋中有黑、白、黄三种颜色的筷子各10根,最少拿出根筷子就能保证有一双是同样颜色的筷子.14.长方形的周长是48厘米,已知长是宽的2倍,长方形的长是()A.8厘米B.16厘米C.24厘米15.在一道没有余数的除法中,被除数、除数与商三个数的和是103,商是3.被除数是()A.25B.50C.7516.四个海盗杰克、吉米、汤姆和桑吉共分280个金币.杰克说:“我分到的金币比吉米少11个,比汤姆多15个,比桑吉少20个.”那么,桑吉分到了个金币.17.一群鸭子对一群狗说:“我们比你们多2只.”狗对鸭子说:“我们比你们多10条腿.”那么鸭子和狗共只.18.有一个挂钟,每到整点的时候会敲一次,而且几点钟就会敲几下.四点钟时,挂钟用了12秒钟敲完;那么到十二点时,要用秒钟才能敲完.19.今年小春的年龄比他哥哥的年龄小18岁,再过3年小春的年龄将是他哥哥年龄的一半,那么小春今年岁.20.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.6421.观察下面两个算式,□、△各表示一个数字,□□、△△、□□□、△△△各表示一个两位数和三位数,这两个算式是和.□□□×□□×□=152625;△△△×△△×△=625152.22.△=○+○+○,△+○=40,则○=,△=.23.用3、0、8这三个数字可以组成个数字不重复的三位数.24.如图,式中不同的字母表示不同的数字,那么ABC表示的三位数是.25.甲、乙两人今年的年龄和是43岁,4年后,甲比乙大3岁,甲今年岁.26.公园里有一排彩旗,按3面黄旗、2面红旗、4面粉旗的顺序排列,小红看到这排旗子的尽头是一面粉旗.已知这排彩旗不超过200面,这排旗子最多有面.27.54﹣□÷6×3=36,□代表的数是.28.15张乒乓球台上同时有38人正在进行乒乓球比赛,在进行单打的球台有张,在进行双打的球台有张.29.六个数的平均数是24,加上一个数后的平均数是25,加上的这个数是.30.A、B、C、D、E五个盒子中依次有9个、5个、3个、2个、1个小球,第一个同学找到放球最少的盒子,然后从其它盒子中各拿出1个小球放到这个盒子里,第二个同学找到放球最少的盒子,然后从其它盒子中各拿出1个小球放到这个盒子里…;当第199个同学放完后,A、B、C、D、E五个盒子中各有个、个、个、个、个.31.小巧往一个长方形盒子里放玻璃球,她往盒子里放的玻璃球个数每分钟增加1倍,这样下去10分钟正好放满,那么分钟时,恰好放满半个盒子.32.下面有20个点,每相邻的两个点之间距离都相等,将四个点用直线连接起来可以得到一个正方形.用这样的方法,你可以得到个正方形.33.时钟2点敲2下,2秒钟敲完.12点敲了12下,秒可以敲完.34.有10个铅笔盒,其中5个装有铅笔,4个装有钢笔,2个既装有铅笔又有钢笔,空笔盒有个.35.在中,不同的字母代表不同的数字,则A+B+C+D+E+F+G =.36.红星小学组织学生参加演练,一开始只有40个男生参加,后来调整队伍,每次调整减少3个男生,增加2个女生,那么调整次后男生女生人数就相等了.37.古希腊的数学家们将自然数按照以下方式与多边形联系起来,三边形数:1,3,6,10,15,……四边形数:1,4,9,16,25,……五边形数:1,5,12,22,35,……六边形数:1,6,15,28,45,……按照上面的顺序,第8个三边形数为__________.38.只许移动1根火柴棒,使等式成立.39.数一数,图中有个三角形.40.张、李、王三位老师分别来自北京、上海、深圳,分别教数学、语文、英语.根据下面提供的信息,可以推出张老师来自,教;王老师来自,教.①张老师不是北京人,李老师不是上海人;②北京的老师不教英语;③上海的老师教数学;④李老师不教语文.【参考答案】一、拓展提优试题1.解:因为最开始开灯和关灯的各是10间,由于第一间的灯是开着的,所以,第一间人看到的,开灯的9间,关灯的10间,之后,他就关灯,以后无论开灯的出来看,还是关灯的出来看,始终关灯的多,即:一轮结束,灯全部会关闭,故选:D.2.解:5+3+4+2=14(个)2014÷14=143…12,所以第2014颗珠子是第144周期的第12个,是黄颜色;答:第2014颗珠子的颜色是黄色.故答案为:黄.3.解:(6+7﹣1)×3,=12×3,=36(人);答:全班共有36个人.故答案为:36.4.解:由分析可知:第十二行的算式的第一个加数是2×12﹣1=23,第二个加数是3×12﹣1=35,第三个加数是4×12﹣1=47,则第十二行的算式是 23+35+47=105.故答案为:23+35+47=105.5.解:再逆时针旋转90°是.故选:C.6.解:根据分析,按题目要求来涂色的话,只有1 种涂法,如图:红色比蓝色多:(1+2+3+4+5+6)﹣(1+2+3+4+5)=6个.故选:C.7.解:全对的人不会说自己对的题少于3,故只有乙、丁可能全对.若乙全对,则排名是乙、丁、甲、丙,与丙所说的“丁对了2 道”是假话相矛盾;若丁全对,则丙的后两句是假话,不可能是第二名,又由丁的“甲考得不如乙”能知道第二名是乙,故丙全错,甲只有“丙考得不如丁”是真话,排名是丁、乙、甲、丙且4 人的话没有矛盾.所以对了2题的人是乙.故选:B.8.解:12时﹣8时=4小时8×(4﹣1)=8×3=24(千米)答:甲、乙两地之间的距离是24千米.故选:B.9.解:(1)8个1分,(2)4个2分币,(3)2个1分币,3个2分币,(4)4个1分币,2个2分币,(5)6个1分币,1个2分币,(6)3个1分币,1个5分币,(7)1个1分币,1个2分币,1个5分币;所以有7种不同的拼法;故答案为:7.10.解:A:44﹣2=42,颠倒后是24,24÷2=12;12是10~49的自然数,符合要求;B:43﹣2=41,颠倒后是14,14÷2=7,7不是10~49的自然数,不符合要求;C:42﹣2=40,颠倒后是4,4÷2=2,2不是10~49的自然数,不符合要求;D:41﹣2=39,颠倒后是93,93÷2=46.5,46.5不是10~49的自然数,不符合要求;故选:A.11.解:(144+14)÷(3﹣1)+144,=158÷2+144,=79+144,=223,答:甲数是223.故应填:223.12.解:6□4÷3中,要使商的中间有一位是0,则□<3,所以□里可以填:0、1、2.故答案为:0、1、2.13.解:把三种颜色的筷子构造为三个抽屉,分别放黑、白、黄不同颜色的筷子.从最不利情况考虑,拿了3根,颜色各不同放到三个抽屉里,此时再任意拿1根,即可出现一个抽屉里能放了2根筷子.即出现一个抽屉里2根,另外两个抽屉里各1根筷子的情况,共计2+1+1=4根.故答案为:4.14.解:48÷2÷(1+2)×2=24÷3×2=16(厘米)答:长方形的长是16厘米.故选:B.15.解:因为被除数、除数与商三个数的和是103,商是3,所以被除数+除数=103﹣3=100;因为除数=,所以被除数是:100÷(1+)=100÷=75故选:C.16.解:设杰克得金币x个,所以x+(x+11)+(x﹣15)+(x+20)=280,解得x=66,所以桑吉分到了66+20=86个金币,另解:此题考查的是和差问题,通过与杰克的关系进行转化得知:杰克的金币数为:(280﹣11+15﹣20)÷4=66(个)桑吉的金币数为:66+20=86(个)故答案为86.17.解:根据分析,再加两只狗,狗与鸭子数量相同,狗的腿数比鸭子多:10+4×2=18(条)鸭子有:18÷(4﹣2)=9(只);狗有:9﹣2=7(只);狗和鸭子共有:9+7=16(只).故答案是:16.18.解:12÷(4﹣1)×(12﹣1)=12÷3×11=44(秒)答:敲十二点时要用44秒.故答案为:44.19.解:18÷(2﹣1)﹣3=18﹣3=15(岁)答:小春今年 15岁.故答案为:15.20.解:根据分析,一条阴影部分的面积为10÷2=5平方厘米.因为都是整数,所以只能为1×5.故,大正方形面积=(1+5)×(1+5)=6×6=36平方厘米.故选:B.21.解:根据分析可得,□□□×□□×□=152625=5×5×5×3×11×37=5×55×555,所以,□□□×□□×□=5×55×555;△△△×△△×△=625152=64×11×888=8×8×11×888=8×88×888;故答案为:5×55×555,8×88×888.22.解:因为,△=○+○+○,所以,△=3○,将△=3○代入△+○=40,3○+○=40,即4○=40,○=10,△=3○=3×10=30;故答案为:10;30.23.解:用3、0、8可以组成的不重复数字的三位数有:308,380,803,830;一共是4个.故答案为:4.24.解:根据题意,由竖式可得:个位上:C+C+C=3C的末尾是8,由3×6=18,可得,C=6,向十位进1;十位上:B+B+B+1=3B+1的末尾是8,也就是3B的末尾是8﹣1=7,由3×9=27,可得,B=9,向百位进2;百位上:A+A+A+2=8,3A=6,A=2;由以上可得竖式是:;所以,ABC表示的三位数是276.故答案为:296.25.解:由和差公式可得:甲今年的年龄是:(43+3)÷2=23(岁).答:甲今年23岁.故答案为:23.26.解:200÷(3+2+4),=200÷9,=22…2(面);所以剩下的2面彩旗是在第23个循环周期内,是2面黄旗,因为最后一面看到的是粉旗,所以第23个循环周期内没有旗了;这排彩旗最多有:22×9=198(面),答:这排彩旗最多有198面.故答案为:198.27.解:54﹣□÷6×3=36,□÷6×3=54﹣36,□÷6×3=18,□=18×6÷3,□=36.故答案为:36.28.解:假设15张全是双打台,则人数为:15×4=60(人),比已知人数多了60﹣38=22(人),已知双打台比单打台每台多4﹣2=2(人),所以单打台有:22÷2=11(张),则双打台有:15﹣11=4(张);答:单打台有11张;双打台有4张.故答案为:11;4.29.解:25×7﹣24×6,=175﹣144,=31,答:加上的这个数是31.故答案为:31.30.解:由分析可知:第8个小朋友与第3个重复,即5组一循环;则以此类推:(199﹣2)÷5=39…2(次);第199个同学取后ABCDE五个盒子中应分别是:5、6、4、3、2个小球;答:当199个同学放完后,A,B,C,D,E五个盒子中各放5、6、4、3、2个小球.31.解:根据分析可得,1÷2=(盒),即10﹣1=9(分钟);答:那么9分钟时,恰好放满半个盒子.故答案为:9.32.解:边长是1个单位长度的正方形个数是12;边长是2个单位长度的正方形个数是6;边长是3个单位长度的正方形个数是2;边长最大是3个单位长度,正方形的边长再大就构不成正方形了;一共有正方形:12+6+2=20(个).答:可以得到20个正方形.故答案为:20.33.解:根据分析可得,2÷(2﹣1)×(12﹣1),=2×11,=22(秒);答:12点敲了12下,22秒可以敲完.故答案为:22.34.解:10﹣(5+4﹣2),=10﹣7,=3(个);答:空笔盒有3个;故答案为:3.35.解:因为A、B、C、D、E、F、G是不同的数字,由题意可得:D+G=10,C+F=10,B+E=9,A=1,所以:A+B+C+D+E+F+G=A+(B+E)+(C+F)+(D+G)=1+9+10+10=30故答案为:30.36.解:40÷(3+2)=40÷5=8(次)答:调整8次后男生女生人数就相等了.故答案为:8.37.找规律【难度】☆☆☆【答案】36三边形:1、1+2、1+2+3、1+2+3+4、1+2+3+4+5、1+2+3+4+5+6、……、1+2+3+…+8=36.38.解:移动后为:故答案为:39.解:3+4+1+1+1=10(个);故答案为:10.40.解:因为李老师不是上海人,上海的老师教数学,那李老师只可能教语文或英语,又因为李老师不教语文,所以李老师教英语,李老师不是上海人,北京的老师不教英语,所以李老师是深圳人;张老师不是北京人,只能是上海人,教数学;王老师是北京人,教语文.故答案为:上海,数学,北京,语文.。
第15届走美杯差倍问题竞赛试题2017年第15届走美杯差倍问题竞赛试题“走美杯”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。
以下是关于走美杯竞赛试题,希望大家认真做题!一、专题简析:有些差倍问题比较复杂,不能直接利用公式进行解答,这时需要我们小朋友仔细审题,尤其注意一些隐含条件,同时借助线段图帮助理解题意,从而找到解题方法。
较复杂的差倍应用题,数量关系比较隐蔽。
先依题意画出线段图,数量关系就会比较清晰地展现出来,然后借助线段图找出两个数的差以及所对应的倍数,再利用公式进行解答。
二、精讲精练例1:有两袋玉米,大袋比小袋多56千克,如果将小袋的玉米吃掉4千克,这时大袋的玉米重量是小袋的4倍。
两袋玉米原来各重量多少千克?三、知识要点:前面我们已经初步掌握了“和倍问题”的特征和解题方法。
如果知道了两个数的差与两个数间的倍数关系,要求两个数各是多少,这一类题,我们则把它称为“差倍问题”。
解答差倍问题与解答和倍问题相类似,要先找出差所对应的倍数,先求1倍数,再求出几倍数。
此外,还要充分利用线段图帮助分析数量关系。
用关系式可以这样表示:两数差÷(倍数-1)=较小的数(1倍数)较小的数×倍数=较大的数(几倍数)练习一1、有两箱玩具,第一盒比第二盒多60只。
如果从第二盒中取出3只,这时第一盒的只数是第二盒的8倍。
求两箱玩具原来各有多少只?2、一个书架上放着一些书,第二层比第一层多12本。
如果从第一层中拿走6本,这时第二层的本数是第一层的4倍。
求第一、第二层原来各有多少本书?例2:有甲、乙两桶色拉油,如果向甲桶中倒入8千克,则两桶色拉油就一样重;如果向乙桶中倒入12千克,乙桶的色拉油就是甲桶的5倍。
甲、乙两桶原来各有色拉油多少千克?练习二1、有甲、乙两桶水,如果向甲桶中倒入10千克水,两桶水就一样多;如果向乙桶中倒入4千克水,乙桶的'水就是甲桶的3倍。
2017年第十五届“走美杯”小数数学竞赛上海赛区初赛试卷(三年级)一、填空题(共5小题,每小题8分,满分40分)1.(8分)17×19﹣1001÷77= .2.(8分)根据下面数列的规律填空2,4,8,16,32,,128,…2,4,6,8,10,,14,…3.(8分)一箱苹果60个,第一天大家一起吃了17个,以后我每天吃1个,过了几天发现只剩下16个,苹果怎么少这么快?有人告诉我,小张每天都去偷偷地拿2个.请你算一算:这几天小张共拿了个苹果.4.(8分)24点游戏:用适当的运算符号(包括括号)把3,4,8,9这四个数组成一个算式,使结果等于24..5.(8分)从 1,3,5,7,9,11,13,15,17这九个数中,任取3个不同的数(不分先后)组成一组,使该组的平均数为9,共有种取法.二、填空题(共5小题,每小题10分,满分50分)6.(10分)每个月的周一、周二、周三、周四、周五、周六、周日都有4天或5天.某个月,周六、周日恰好有5天,而每个工作日都是4天,这个月1日是星期.7.(10分)从1,2,3,4,5,6,7,8,9,10中选出6个不同的数,填入如图的员圆圈中,满足下面的数是上面用线连接的两数之和,最下面的圆圈内的数最大时有种不同填法.(对称的填法看做同一种,比如1+3=4和3+1=4卡安卓相同的一种填法)8.(10分)甲、乙两人相距3020米,同时出发相向而行,甲每分钟行50米,乙每分钟行60米,甲出发后不久因故耽误了10分钟,然后继续向前行进,与乙相遇时,乙共行进了米.9.(10分)将一个正方形纸片沿虚线向上对折,再向右对折后得到一个正方形,然后剪下一个角(如图),将这个纸片展开后的形状应该是.10.(10分)2017除以9余1,2017年的每一天都可以用一个八位数表示.比如2017年1月8日可以表示为20170108,这个数除以9余1.2017年全年都用八位数表示,其中除以9余1的共有天.三、填空题(共5小题,每小题12分,满分60分)11.(12分)如图正方形与阴影长方形的边分别平行,正方形边长为8,图中四边形ABCD的面积为36,阴影长方形的面积是.12.(12分)A、B两个纸片都被分成了4个区域,用黄、蓝、红三种颜色分别给它们涂色,要求相邻的区域涂色不能相同,A,B两个纸片中的涂法较多,有种不同的涂法.13.(12分)一个宝库有9个藏宝室,成九宫格状排列,但只有一个进口和一个出口分别开在如图所示的藏宝室,每个藏宝室至多只能进去一次,相邻的藏宝室之间都有门相通,每个藏宝室中的宝贝价值已标在图中,大盗买通守护,夜间进入宝库,他能带走的宝物价值最多是.14.(12分)一个圆圈上排列着8个黑球,10个白球(如图),将任意两个球交换位置称为一次变换,至少经过次变换,可以使任意两个黑球不再相邻.15.(12分)现有1×1×2的积木3块,1×1×3的积木3块,1×2×2的积木5块(如图),从这些积木中选出若干个,拼出一个3×3×3的实心正方体,1×1×2的积木最少需要块,在你的拼法中还需要1×1×3的积木块,1×2×2的积木块.2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(三年级)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)17×19﹣1001÷77= 310 .【分析】可以将1001分解质因数,再运算,最后得出原式的结果.【解答】解:根据分析,原式=17×19﹣1001÷77=17×(20﹣1)﹣7×11×13÷77=17×20﹣17﹣77×13÷77=340﹣17﹣13=340﹣(17+13)=340﹣30=310.故答案是:310.【点评】本题考查了四则运算的巧算,突破点是:分解质因数,四则运算巧算,最后求得结果.2.(8分)根据下面数列的规律填空2,4,8,16,32,64 ,128,…2,4,6,8,10,12 ,14,…【分析】(1)4÷2=2,8÷4=2,16÷8=2,32÷16=2,后一个数是前一个数的2倍,由此求解.(2)4﹣2=2,6﹣4=2,8﹣6=2,后一个数比前一个数大2,由此求解.【解答】解:(1)32×2=64;(2)10+2=12;故答案为:64;12.【点评】数列中的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.3.(8分)一箱苹果60个,第一天大家一起吃了17个,以后我每天吃1个,过了几天发现只剩下16个,苹果怎么少这么快?有人告诉我,小张每天都去偷偷地拿2个.请你算一算:这几天小张共拿了18 个苹果.【分析】可以先用总数减去大家吃的苹果数和剩下的苹果数,再除以我每天吃的苹果数和小张偷的苹果数之和,就能求得天数,就能知道小张偷了几天,不难求得小张偷拿了多少苹果.【解答】解:根据分析,先求得小张偷拿苹果的天数,故有:(60﹣17﹣16)÷(2+1)=9(天),小张共偷了:9×2=18个.故答案是:18.【点评】本题考查等差数列,突破点是:先求得小张偷苹果的天数,再求苹果数.4.(8分)24点游戏:用适当的运算符号(包括括号)把3,4,8,9这四个数组成一个算式,使结果等于24.(3+9)÷4×8=24或者(3×4﹣9)×8=24或者3+4+8+9=24 .【分析】首先分析数字和为正好为24.【解答】解:依题意可知:(3+9)÷4×8=24或者(3×4﹣9)×8=24或者3+4+8+9=24.故答案为:(3+9)÷4×8=24或者(3×4﹣9)×8=24或者3+4+8+9=24.【点评】本题考查填符号组算式的理解和运用,关键从数字和开始分析,问题解决.5.(8分)从 1,3,5,7,9,11,13,15,17这九个数中,任取3个不同的数(不分先后)组成一组,使该组的平均数为9,共有8 种取法.【分析】首先分析数字和的平均数是9,那么可以理解为数字和为27,考虑幻和为27的幻方填写规律即可.【解答】解:依题意可知:满足幻和为9×3=27即可.中间数的3倍就是幻和,那么中间数字就是9.因为数字是等差数列可根据1﹣9的填写规律填写即可.共三行三列再加上两条对角线共8种.故答案为:8【点评】本题考查对幻方的理解和运用,关键问题是找到幻和,根据数字规律填写即可.问题解决.二、填空题(共5小题,每小题10分,满分50分)6.(10分)每个月的周一、周二、周三、周四、周五、周六、周日都有4天或5天.某个月,周六、周日恰好有5天,而每个工作日都是4天,这个月1日是星期六.【分析】分析天数可知共30天.继续分析即可求解.【解答】解:依题意可知:该月周一至周五都是4天,周六周日是5天,这个月共有30天.说明开始的第一天是周六,最后一天是周日.故答案为:六【点评】本题考查对周期问题的理解和运用,关键问题是找到天数和开始时间,问题解决.7.(10分)从1,2,3,4,5,6,7,8,9,10中选出6个不同的数,填入如图的员圆圈中,满足下面的数是上面用线连接的两数之和,最下面的圆圈内的数最大时有 3 种不同填法.(对称的填法看做同一种,比如1+3=4和3+1=4卡安卓相同的一种填法)【分析】首先根据题目推知最下面的圆圈最大时为10,然后根据上面圆圈的特点列出等量关系,讨论即可.【解答】解:最下面的数最大为10,第一行的三个数若依次为a、b、c,则10=a+2b+c.b=1时,a+c=8=2+6=3+5;b=2时,a+c=6=1+5;b≥3时,a+c≤4不成立.因此有3种不同填法.故答案为:3.【点评】本题的突破口是能根据第一行和第二行的圆圈关系列出等量关系,进而分类讨论.8.(10分)甲、乙两人相距3020米,同时出发相向而行,甲每分钟行50米,乙每分钟行60米,甲出发后不久因故耽误了10分钟,然后继续向前行进,与乙相遇时,乙共行进了1920 米.【分析】根据题意,我们知道“甲出发后不久因故耽误了10分钟”,实际上就相当于甲在他们相遇的路程中少走了10分钟的路程.也就是说甲再加上10分钟的路程,才是他们同时出发没有意外情况下的总路程3020+50×10=3520米.用总路程÷他们的速度和=他们相遇用时(实际上是相遇时乙行程所用时间).有了时间就可求乙的行程了.注:题中所带的解法,与以上分析思路一样,只是把甲和乙调换了一下.【解答】解:(3020+50×10)÷(60+50)=32(分钟)32×60=1920(米)答:乙共行进了1920米.【点评】此题中只要搞明白:甲在他们相遇时所走总路程中,少走了10×50=500米或者是乙多走了10×60=600米.注意你清楚:你求的是谁行程的用时才行.9.(10分)将一个正方形纸片沿虚线向上对折,再向右对折后得到一个正方形,然后剪下一个角(如图),将这个纸片展开后的形状应该是 D .【分析】首先分析剪去的地方是边缘还是中间,不难发现是中间的部分,继续观察即可.【解答】解:依题意可知:按照折图顺序,可知剪去的是中间的部分.这是个对称问题,依对折顺序恢复即可得到图中的D图.故选:D【点评】本题考查对三视图的理解和运用,关键问题是找到剪去的位置,问题解决.10.(10分)2017除以9余1,2017年的每一天都可以用一个八位数表示.比如2017年1月8日可以表示为20170108,这个数除以9余1.2017年全年都用八位数表示,其中除以9余1的共有40 天.【分析】首先分析2017除以9余数为1,那么后面的4个数字和就是9的倍数即可,枚举法简单易懂.【解答】解:依题意可知:2017除以9余数为1,那么后面的4个数字和就是9的倍数.按照月份枚举即可:0108,0117,0126;0207,0216,0225;0306,0315,0324;0405,0414,0423;0504,0513,0522,0531;0603,0612,0621,0630;0702,0711,0720,0729;0801,0810,0819,0828;0909,0918,0927;1008,1017,1026;1107,1116,1125;1206,1215,1224;共40个.故答案为:40【点评】本题考查对数的整除特性的理解和运用,关键问题是找到数字和是9的倍数同时不能大于12月.问题解决.三、填空题(共5小题,每小题12分,满分60分)11.(12分)如图正方形与阴影长方形的边分别平行,正方形边长为8,图中四边形ABCD的面积为36,阴影长方形的面积是8 .【分析】根据题意可知四边形ABCD的周围四个直角三角形的面积的和为8×8﹣36=28,因此四边形ABCD内的四个空白直角三角形的面积和也是28,因此阴影长方形的面积是36﹣28=8.据此解答.【解答】解:四边形ABCD的周围四个直角三角形的面积的和8×8﹣36=64﹣28=28阴影长方形的面积36﹣28=8答:阴影长方形的面积是8.故答案为:8.【点评】本题也可用四边形ABCD的面积的2倍减去正方形的面积来求.12.(12分)A、B两个纸片都被分成了4个区域,用黄、蓝、红三种颜色分别给它们涂色,要求相邻的区域涂色不能相同,A,B两个纸片中 B 的涂法较多,有12 种不同的涂法.【分析】A的涂色区域只能是最上方区域和左下方区域图同色,其排列数为;图B的涂色区域中涂同色的区域有2类,一是最上方区域和左下方区域;二是最上方区域和右下角区域,涂色种类数为+.【解答】解:图A的涂色方法有=3×2×1=6(种)图B的涂色方法有+=6+6=12(种)故:B的涂法多,有12种不同涂法.【点评】此题的解题关键是能否想到合并能涂同色的区域,而且要把这种情况找全.13.(12分)一个宝库有9个藏宝室,成九宫格状排列,但只有一个进口和一个出口分别开在如图所示的藏宝室,每个藏宝室至多只能进去一次,相邻的藏宝室之间都有门相通,每个藏宝室中的宝贝价值已标在图中,大盗买通守护,夜间进入宝库,他能带走的宝物价值最多是39 .【分析】本题首先能想到根据染色问题进行分析,可将房间黑白相间染色,根据进口和出口所染颜色不同可知大盗应该经过了偶数个房间,因此最多经过8个房间,据此解答.【解答】解:借助染色解题,给3×3的方格黑白相同染色(如图),进口为黑格,若全部走完9个方格,出口应为黑格,而图中出口为白格,故至少有一个黑格不能走到,标数最小的(进口除外)应为6,即标6的房间无法进入,所以大盗能带走的宝物最多是45﹣6=39.故答案为:39.【点评】本题的突破口在于能用染色的方法进行解题,难度较大.14.(12分)一个圆圈上排列着8个黑球,10个白球(如图),将任意两个球交换位置称为一次变换,至少经过 3 次变换,可以使任意两个黑球不再相邻.【分析】首先给19个球进行编号,其中5个连续的黑球至少选2个和白球互换,2个连续的黑球可选一个和白球互换,据此解答.【解答】解:首先给18个球进行编号,由于是最少的变换次数,则1﹣5中最少需要变换2号和4号,可将2号和14互换,4号和12号互换,8号和7号互换,因此最少经过3次变换,可以使任意两个黑球不再相邻.故答案为:3.【点评】本题白球的数目比黑球多,互换难度较小,属于较简单试题.15.(12分)现有1×1×2的积木3块,1×1×3的积木3块,1×2×2的积木5块(如图),从这些积木中选出若干个,拼出一个3×3×3的实心正方体,1×1×2的积木最少需要 1 块,在你的拼法中还需要1×1×3的积木 3 块,1×2×2的积木 4 块.【分析】题目考查最少需要的块数,首先可以考虑1×1×2的积木块数为0,3×3×3的实心正方体需要块数27,1×1×3的积木3块可以提供的块数分别是3、6、9,1×2×2的积木5块可以提供的块数分别是4、8、12、16、20,若只用1×1×2和1×1×3的积木,则无法凑成27块,因此接着考虑1×1×2的积木块数为1的情况,27=1×2+3×3+4×4,即1×1×2的积木为1块时可以拼出3×3×3的正方体,据此可解.【解答】解:如图:其中红色部分为1×1×2的积木,有1块;蓝色部分为1×2×2的积木,在红色部分的后面还有一块,有4块;白色部分为1×1×3的积木,共3块.答:1×1×2的积木最少需要1块,在你的拼法中还需要1×1×3的积木3块,1×2×2的积木4块.故答案为:1,3,4.【点评】本题主要考查了学生的空间想象能力,在拼时的方法可能不同,但有的块数是一定的.。