2017-2018学年河北省沧州市沧县八年级(下)期末数学试卷
- 格式:pdf
- 大小:590.80 KB
- 文档页数:27
2017 —2018 学年八年级数学下期末试题2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题(满分120 分,时间:120 分钟)一、选择题: 本大题共8 个小题,每题 3 分,共24 分,在每题给出的四个选项A、B、c、D 中,只有一项为哪一项正确的,请把正确的选项填在答题卡的相应地点1. 在数轴上与原点的距离小于8 的点对应的x 知足A.x <8B.x >8c.x <-8 或x>8D.-8 <x<82. 将多项式﹣6a3b2﹣3a2b2+12a2b3 分解因式时,应提取的公因式是A .-3a2b2B.-3abc .-3a2bD.-3a3b33. 以下分式是最简分式的是A .B.c.D.4. 如图,在Rt △ABc中,∠c=90°,∠ABc=30°,AB=8,将△ABc沿cB 方向向右平移获得△DEF.若四边形ABED的面积为8,则平移距离为A .2B.4c.8D.165. 如下图,在△ABc 中,AB=Ac,AD 是中线,DE⊥A B,D F⊥Ac,垂足分别为E、F,则以下四个结论中:①AB 上任一点与Ac 上任一点到D的距离相等;②AD上任一点到AB、Ac 的距离相等;③∠BDE=∠cDF;④∠1=∠2. 正确的有A.1 个B.2 个c.3 个D.4 个6. 每千克元的糖果x 千克与每千克n 元的糖果y 千克混淆成杂拌糖,这样混淆后的杂拌糖果每千克的价钱为A. 元B. 元c. 元D.元7. 如图,□ABcD的对角线Ac,BD交于点o,已知AD=8,BD=12,Ac=6,则△oBc 的周长为A .13B.26c.20D.178. 如图,DE是△ABc的中位线,过点 c 作cF∥BD交DE的延伸线于点F,则以下结论正确的选项是A .EF=cFB.EF=DEc.cF<BDD.EF>DE二、填空题(本大题共 6 个小题,每题 3 分,共18 分,只需求把最后的结果填写在答题卡的相应地区内)9. 利用因式分解计算:2012-1992= ;10. 若x+y=1,xy=-7 ,则x2y+xy2= ;11. 已知x=2 时,分式的值为零,则k=;12. 公路全长为sk,骑自行车t 小时可抵达,为了提早半小时抵达,骑自行车每小时应多走;13. 一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为;14. 如图,△AcE 是以□ABcD的对角线Ac 为边的等边三角形,点 c 与点E对于x 轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.三、解答题(本大题共78 分, 解答要写出必需的文字说明、演算步骤)15. (6 分)分解因式(1)20a3-30a2 (2)25(x+y)2-9 (x-y )216. (6 分)计算:(1)(2)17. (6 分)A、B 两地相距200 千米,甲车从 A 地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A 地80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.18. (7 分)已知:如图,在△ABc中,AB=Ac,点D 是Bc 的中点,作∠EAB=∠BAD,AE边交cB 的延伸线于点E,延伸AD到点F,使AF=AE,连结cF.求证:BE=cF.19.(8 分)“二广”高速在益阳境内的建设正在紧张地进行,现有大批的沙石需要运输.“益安”车队有载重量为8 吨、10 吨的卡车共12 辆,所有车辆运输一次能运输110 吨沙石.(1)求“益安”车队载重量为8 吨、10 吨的卡车各有多少辆?(2)跟着工程的进展,“益安”车队需要一次运输沙石165 吨以上,为了达成任务,准备新增购这两种卡车共 6 辆,车队有多少种购置方案,请你一一写出.20. (8 分)如图,在Rt△ABc 中,∠AcB=90°,点D, E 分别在AB,Ac 上,cE=Bc,连结cD,将线段cD 绕点c 按顺时针方向旋转90°后得cF,连结EF.(1) 增补达成图形;(2) 若E F∥cD,求证:∠BDc=90° .21.(8 分)下边是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y ,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)= (y+4)2(第三步)= (x2-4x+4 )2(第四步)(1)该同学第二步到第三步运用了因式分解的.A .提取公因式B.平方差公式c .两数和的完整平方公式D.两数差的完整平方公式(2)该同学因式分解的结果能否完全?.(填“完全”或“不完全”)若不完全,请直接写出因式分解的最后结果.( 3 )请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1 进行因式分解.22. (8 分)如图,四边形ABcD中,对角线Ac,BD订交于点o,点E,F 分别在oA,oc 上(1)给出以下条件;①oB=oD,②∠1=∠2,③oE=oF,请你从中选用两个条件证明△BEo≌△DFo;(2)在(1)条件中你所选条件的前提下,增添AE=cF,求证:四边形ABcD是平行四边形.23. (10 分)如图,在□ABcD中,E是Bc 的中点,连结AE并延伸交Dc 的延伸线于点F.(1)求证:AB=cF;(2)连结DE,若AD=2AB,求证:D E⊥A F.24. (11 分)如图,在直角梯形ABcD中,AD∥Bc,∠B=90°,且AD=12c,AB=8c,Dc=10c,若动点P从A点出发,以每秒2c 的速度沿线段AD向点D运动;动点Q从c 点出发以每秒3c 的速度沿cB 向B 点运动,当P点抵达D点时,动点P、Q 同时停止运动,设点P、Q 同时出发,并运动了t 秒,回答以下问题:(1)Bc=c;(2)当t 为多少时,四边形PQcD成为平行四边形?(3)当t 为多少时,四边形PQcD为等腰梯形?(4)能否存在t ,使得△DQc是等腰三角形?若存在,请求出t 的值;若不存在,说明原因.2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题参照答案一、选择题( 每题 3 分,共24 分)1 、D 2、A 3、c4、A 5、c6、B7、D8、B二、填空题( 每题 3 分,共18 分)9.1.-711.-612.-13.6( 六)14. (5,0)三、解答题( 共78 分 )15. ( 1 )解:20a3 ﹣30a2=10a2 (2a ﹣3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)解:25(x+y)2﹣9(x﹣y)2=[5 (x+y)+3(x﹣y)][5 (x+y)﹣3(x﹣y) ]= (8x+2y)(2x+8y);=4(4x+y)(x+4y) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分16. (1)解:== ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)====⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分17. 设甲车的速度是x 千米/ 时,乙车的速度为(x+30)千米/ 时,⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分解得,x=60,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分经检验,x=60 是原方程的解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分则x+30=90,即甲车的速度是60 千米/ 时,乙车的速度是90 千米/ 时.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分18. 证明:∵AB=Ac,点D是Bc 的中点,∴∠cAD= ∠BAD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分又∵∠EAB=∠BAD,∴∠cAD= ∠EAB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分在△AcF 和△ABE中,∴△AcF≌△ABE(SAS).∴BE=cF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分19. 解:(1)设“益安”车队载重量为8 吨、10 吨的卡车分别有x 辆、y 辆,依据题意得:,解之得:.答:“益安”车队载重量为8 吨的卡车有 5 辆,10 吨的卡车有7 辆;⋯⋯⋯⋯⋯⋯⋯ 4 分(2)设载重量为8 吨的卡车增添了z 辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z <,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵z≥0 且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有 3 种购车方案:①载重量为8 吨的卡车购置 1 辆,10 吨的卡车购置 5 辆;②载重量为8 吨的卡车购置 2 辆,10 吨的卡车购置 4 辆;③载重量为8 吨的卡车不购置,10 吨的卡车购置 6 辆.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分20.(1) 解:补全图形,如图所示.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) 证明:由旋转的性质得∠DcF=90°,Dc=Fc,∴∠DcE +∠EcF=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∵∠AcB=90°,∴∠DcE+∠BcD=90°,∴∠EcF=∠BcD∵E F∥Dc,∴∠EFc+∠DcF=180°,∴∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分在△BDc和△EFc 中,Dc =Fc,∠BcD=∠EcF,Bc=Ec,∴△BDc≌△EFc(SAS),∴∠BDc= ∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分21. 解:(1)该同学第二步到第三步运用了因式分解的两数和的完整平方公式;故选:c;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)该同学因式分解的结果不完全,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x ﹣ 2 )4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)(x2﹣2x)(x2﹣2x+2)+1= (x2﹣2x)2+2(x2﹣2x)+1= (x2﹣2x+1)2= (x ﹣ 1 )4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分22. 证明:(1)选用①②,∵在△BEo和△DFo中,∴△BEo ≌△DFo (ASA);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)由(1)得:△BEo≌△DFo,∴Eo=Fo,Bo=Do,∵AE=cF,∴Ao=co,∴四边形ABcD 是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分23. 证明:(1)∵四边形ABcD是平行四边形,∴AB∥DF,∴∠ABE=∠FcE,∵E为Bc 中点,∴BE=cE,在△ABE与△FcE 中,,∴△ABE≌△FcE(ASA),∴AB=Fc;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(2)∵AD=2AB,AB=Fc=cD,∴AD=DF,∵△ABE≌△FcE,∴AE=EF,∴DE ⊥A F.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分24. 解:依据题意得:PA=2t,cQ=3t ,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12c,在直角△cDE中,∵∠cED=90°,Dc=10c,DE=8c,∴Ec==6c,∴Bc=BE+Ec=18c.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(直接写出最后结果18c 即可)(2)∵AD∥Bc,即PD∥cQ,∴当PD=cQ时,四边形PQcD为平行四边形,即12-2t=3t ,解得t= 秒,故当t= 秒时四边形PQcD 为平行四边形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12,c当PQ=cD时,四边形PQcD为等腰梯形.过点P 作PF⊥Bc 于点F,过点D作DE⊥Bc 于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△cDE中,,∴Rt△PQF≌Rt△cDE(HL),∴QF=cE,∴Qc-PD=Qc-EF=QF+Ec=2c,E即3t- (12-2t )=12,解得:t= ,即当t= 时,四边形PQcD 为等腰梯形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(4)△DQc是等腰三角形时,分三种状况议论:①当Qc=Dc时,即3t=10 ,∴t= ;②当DQ=Dc时,∴t=4 ;③当QD=Qc时,3t ×∴t= .故存在t ,使得△DQc是等腰三角形,此时t 的值为秒或 4 秒或秒.⋯⋯⋯11 分③在Rt△D Q中,DQ2=D2+Q236t=100t=。
沧州市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)在下列式子,,,,,中,分式的个数是().A . 2个B . 4个C . 3个D . 5个2. (2分) (2018九上·东台月考) 如果一组数据同时减去一个数a,那么它的方差()A . 增大aB . 减小aC . 不变D . 无法确定3. (2分)如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A . 0B .C . 1D .4. (2分) (2018九上·紫金期中) 正方形具有而菱形不具有的性质是()A . 对角线相等B . 对角线互相平分C . 对角线平分一组对角D . 对角线互相垂直5. (2分) (2018八上·惠山期中) 如图,在等腰三角形ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF的值等于()A .B . 3C .D . 66. (2分)如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm.则DC的长为()cm.A . 5B . 2.5C . 2D . 17. (2分) (2018九上·钦州期末) 下列函数的图象位于第一、第三象限的是()A . y=﹣x2B . y=x2C . y=D . y=﹣8. (2分)如图,在菱形ABCD中,对角线AC、BD相交于点O,E为CD的中点,则下列式子中不一定成立的是()A . BC=2OEB . CD=2OEC . CE=OED . OC=OE二、填空题 (共8题;共9分)9. (2分)(2014•丹东)若式子有意义,则实数x的取值范围是________.10. (1分)若双曲线过两点(-1,y1),(-3,y2),则有y1________ y2(可填“”、“”、“”).11. (1分) (2019七下·盐田期中) 佳佳用三根长度均为整数的木棒搭一个等腰三角形,其中一根木棒长为5,则另两根木棒最短可以为________.12. (1分)(2020·江西) 祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为________.13. (1分) (2020八下·鄂城期中) 如图,已知中,,,三角形的顶点在相互平行的三条直线,,上,且,之间的距离为2,,之间的距离为3,则的长是________.14. (1分)甲、乙两同学参加跳远训练,在相同条件下各跳了6次,统计两人的成绩得:平均数=,方差S2甲>S2乙,则成绩较稳定的是________ .(填甲或乙)15. (1分)(2017·嘉祥模拟) 每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为________.16. (1分) (2018八上·黑龙江期中) 在△ABC中,已知AB=7,BC=6,∠B=30°,那么S△ABC=________.三、综合题 (共10题;共90分)17. (5分)综合题。
2017~2018学年第二学期期末考试卷 八年级数学试题 2018.6一、选择题(本大题共10小题,每题3分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请把正确现象前的字母代号填涂在答题卷相应位置..........) 1.下列图形中,既是轴对称图形,又是中心对称图形的是……………………………………………( ▲ )A. B.C.D.2.下列各式: a -b2 ,x -3x ,5+y π ,a +b a -b ,1n(-y )中,是分式的共有…………………………( ▲ ) A.1个 B.2个C.3个D.4个 3.下列式子从左到右变形一定正确的是 ………………………………………………………………( ▲ )A. a b =a 2b 2B. a b =a +1b +1C. a b =a -1b -1D. a 2 ab =a b4.若2x -1 在实数范围内有意义,则的取值范围是………………………………………………( ▲ ) A.≥12B. ≥-12C.>12D.≠125.下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-23)2=12,(4)(2+3)( 2-3)=-1,其中结果正确的个数为 …………………………………………………………………………………………( ▲ ) A.1B.2C.3D.46.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是………… ……………………………………………………………………………( ▲ ) A.至少有1个球是黑球 B.至少有1个球是白球 C.至少有2个球是黑球D.至少有2个球是白球7.已知P 1(1,y 1),P 2(2,y 2),P 3(3,y 3)是反比例函数y =6x的图像上三点,且y 1<y 2<0<y 3,则1,2,3的大小关系是 …………………………………………………………………………………………( ▲ ) A. 1<2<3B. 3<2<1C. 2<1<3D. 2<3<18.关于的分式方程7x x -1 +5=2m -1x -1 有增根,则m 的值为 ……………( ▲ )A.5B.4C.3D.19.如图,在菱形ABCD 中,∠BCD =110°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则∠CDF 等于 …………………………………………( ▲ )A.15°B.25°C.45°D.55°10.如图,在平面直角坐标系中,直线y =33+2与轴交于点A ,与y 轴交于点B ,将△ABO 沿直线AB 翻折,点O 的对应点C 恰好落在双曲线y =k x(≠0)上,则的值为……( ▲ ) A.-4B.-2C. -2 3D. -3 3二、填空题:(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置.......上.) 11.若分式x -3x值为0,则的值为 ▲ . 12.若最简二次根式 2a -3 与5是同类二次根式,则a 的值为 ▲ .13.若反比例函数y =k -2x的图像经过第二、四象限,则的取值范围是 ▲ . 14.关于的分式方程x +m x -2+2m2-x=3的解为正实数,则实数m 的取值范围是 ▲ . 15.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =2,BC =6,则OB 的长为 ▲ .16.如图,正方形ABCD 的边长为6,点G 在对角线BD 上(不与点B 、D 重合),GF ⊥BC 于点F ,连接AG ,若∠AGF =105°,则线段BG = ▲ .17.如图,在平面直角坐标系中,点A 的坐标为(1,0),等腰直角三角形ABC 的边AB 在轴的正半轴上,∠ABC =90°,点B 在点A 的右侧,点C 在第一象限.将△ABC 绕点A 逆时针旋转75°,若点C 的对应点E 恰好落在y 轴上,则边AB 的长为 ▲ .CF E DBA(第9题)(第10题)18.如图,已知点A 是一次函数y =23(≥0)图像上一点,过点A 作轴的垂线,B 是上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰三角形ABC ,反比例函数y =kx(>0)的图像过点B 、C ,若△OAB 的面积为5,则△ABC 的面积是 ▲ .三、解答题(本大题共8小题,共计74分.解答需写出必要的文字说明或演算步骤.)19.(本题满分16分) 计算:(1)6×33-(12)-2+|1-2|;(2)(312-213+48)÷3;(3)1m -2-4m 2-4; (4)解方程:1x -2-1-x 2-x=-3.20.(本题满分4分)先化简,再求值:x -1x ÷(- 1x),其中=3-1.21.(本题满分8分)今年4月23日是第23个“世界读书日”.某校围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:MDABOCADG BFC(第15题)(第1(1)本次抽样调查的样本容量是多少? (2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计我市12000名初二学生中日均阅读时间在0.5~1.5小时的有多少人.22.(本题满分8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点,且∠BAE =∠DCF . 求证:BF =DE .23.(本题满分8分)如图,方格纸中每个小正方形的边长都是1个单位长度. Rt △ABC 的三个顶点A (-2,2),B (0,5),C (0,2). (1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出的图形△A 1B 1C .(2)平移△ABC ,使点A 的对应点A 2坐标为(-2,-6),请画出平移后对应的△A 2B 2C 2.(3)请用无刻度的直尺在第一、四象限内画出一个以A 1B 2为边,面积是7的矩形A 1B 1EF .(保留作图痕迹,不写作法)(4)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标.日人均阅读时间各时间段人数所占的百分比FEABCD24.(本题满分8分)某公司在工程招标时,接到甲、乙两个工程队的投标书.工程领导小组根据甲、乙两队的投标书测算:每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元.甲队单独完成此工程刚好如期完工,乙队单独完成此工程要比规定工期多用5天,若甲、乙两队合作4天,剩下的工程由乙独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需要多少天?(2)由于任务紧迫,公司要求工程至少提前7天完成,问怎样安排甲、乙两个工程队施工所付施工费最少?最少施工费是多少万元?(施工天数不满一天以一天计)25.(本题满分10分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =k x (>0,>0)的图像上,点D 的坐标为(2,32),设AB 所在直线解析式为y =+b (a ≠0),(1)求的值,并根据图像直接写出不等式a +b >kx的解集; (2)若将菱形ABCD 沿轴正方向平移m 个单位,① 当菱形的顶点B 落在反比例函数的图像上时,求m 的值;② 在平移中,若反比例函数图像与菱形的边AD 始终有交点,求m 的取值范围.26.(本题满分12分)在矩形ABCD 中,AB =4,AD =3,现将纸片折叠,点D 的对应点记为点P ,折痕为EF (点E 、F 是折痕与矩形的边的交点),再将纸片还原.(1)若点P 落在矩形ABCD 的边AB 上(如图1).① 当点P 与点A 重合时,∠DEF = ▲ °,当点E 与点A 重合时,∠DEF = ▲ °. ② 当点E 在AB 上时,点F 在DC 上时(如图2),若AP =72,求四边形EPFD 的周长.(2)若点F 与点C 重合,点E 在AD 上,线段BA 与线段FP 交于点M (如图3),当AM =DE 时,请求出线段AE 的长度.(3)若点P 落在矩形的内部(如图4),且点E 、F 分别在AD 、DC 边上,请直接写出AP 的最小值.APBCFDE AEP DFCBDCE MAP BDFCEPAB(图1)(图2)(图3)(图4)。
2017—2018学年下学期期末考试八年级数学试卷试卷满分 120分 考试时间 120分钟一、选择题(3分×10=30分)1.式子2+x 在实数范围内有意义,则x 的取值范围是( ). A .x <2 B .x ≥-2 C .x ≤-2 D .x >-2 2.下列计算正确的是( ).4==112==C.5=D.312314= 3.在平面直角坐标系中有两点A(5,0)和B (0,4),则这两点之间的距离是( ). A.41 B.9 C.14 D.34.一个三角形三边的长分别为1,2,3,则这个三角形的面积是( ).A.23B. 3C. 2D.15.下列命题:(1)平行四边形的对角相等,邻角互补;(2)有三个角都相等的四边形是矩形;(3)菱形的边长为a,两对边之间的距离为h,则此菱形的面积为ah 21;(4)有两条互相垂直的对称轴,且有一个角是直角的四边形是正方形. 其中正确命题的个数是( ). A.4 B.3 C. 2 D.1 6.下列式子中的y 不是x 的函数的是( ). A.y=3x-5 B.12--=x x y C.1-=x y D. )0(≥=x x y 7. 均匀地向一个如图所示的容器中注水,最后把容器注满,在注水过程中水面高度h 随时间t 变化的函数图象大致是( ).A B CD8. 在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:那么这50名同学读书册数的众数,中位数分别是( ). A .3,2 B .3,3 C .2,3 D .3,1第7题图9. 如图是经典手机游戏“俄罗斯方块”中的图案, 图1 中有8个矩形, 图2中有11个矩形, 图3中有15个矩形, 根据此规律, 图5中共有( )个矩形. A. 19 B. 25 C. 26 D. 3110.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 最小的值是( ).A.2B.3C.4D.5二、填空题(每小题3分,共18分)11.5.1化成最简二次根式为___________________.12.“全等三角形的对应边相等”的逆命题是____________________ __________________________________________.13.菱形的两条对角线的长分别是6和8,则此菱形的周长和面积分别是_________________. 14.数据分组后,小组1≤x<21的组中值为___________.15.如图,圆柱的底面半径为4,高为3π,蚂蚁在圆柱表面爬行,从点A 爬到点B 的最短路程是____________________.16.因长期干旱,甲水库水量降到了正常水位的最低值a ,为灌溉需要,由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过40h 后,乙水库停止供水,甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲书库蓄水量Q (万m 3)与时间t (h )之间的函数关系,则乙水库停止供水后,经过 小时后甲水库蓄水量又降到了正常水位的最低值.三、解答题(共72分)17.(每小题4分,共8分) (1)计算:);()(681-21-24+(2)已知x=2+3,求代数式3)32(34-72+-+x x )(的值.18.(本题6分)在平面直角坐标系中,直线y=kx-4 经过点P(2,-6),求关于x 的不等式kx-6≥O 的解集.19.(本题6分)如图,在正方形ABCD 中,E 是BC 的中点,F 是AB 上一点,且BF=21BE.求证:∠DEF=90°.图1图2图3第9题图第10题图BA 第15题图第16题图A F20.(本题6分)点P(x,y)在第一象限,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S. (1)用含x 的式子表示S,并画出函数S 的图象. (2)当点P 的横坐标为3时,△OPA 的面积为多少? (3)△OPA 的面积能大于12吗?为什么?21 .(本题6分)武汉市努力改善空气质量,近年来空气质量明显好转,根据武汉市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答: (1)这五年的全年空气质量优良天数的中位数是 ___,极差是_______.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是_________年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.22.(本题8分)如图,四边形ABCD 是正方形.G 是BC 上的任意一点,DE ⊥AG 于点E,BF ∥DE,且交AG 于点F. (1)求证:AF-BF=EF; (2)已知AF=4,EF=1,求AG 的长.23.(本题10分)现从A ,B 向甲、乙两地运送西瓜,A ,B 两个西瓜市场各有西瓜13吨,其中甲地需要西瓜14吨,乙地需要西瓜12吨,从A 到甲地运费50元/吨,到乙地30元/吨;从B 地到甲运费60元/吨,到乙地45元/吨.(2)设总运费为W 元,请写出W 与的函数关系式.(3)怎样调运西瓜才能使运费最少?B A 第22题图 第21题图24.(本题10分)问题 如图,P 是矩形ABCD 内一点,若PA=3,PB=4,PC=5, 求PD 的长. 分析 由题设知P 是矩形ABCD 内任一点,且PA,PB,PC 均已知,则PA,PB,PC,PD 四条线段间必定存在某种数量关系.猜想 (1)PA+PC=PB+PD; (2) PA 2+PC 2=PB 2+PD 2.验证 (1)当P 为矩形对角线AC,BD 的交点时,显然成立(如图2);当P 非对角线的交点时,如p '处,请补充验证过程,并对猜想(1)作出判断.聪明的你请验证(2)中的结论(如图3),并求出问题中PD 的长:结论 矩形内任一点分别到矩形一对对角顶点距离的平方和_________. 应用 掌握上述结论,解答有关问题,眼界更高,思维开阔,简便快捷,易于切题.请联系上述结论解答下面问题:如图4,M 是边长为1的正方形ABCD 内一点,若MA 2-MB 2=21, ∠CMD=90°,则∠MCD=_______.(请直接填写结果).25.(本题12分)如图①,在矩形ABCD 中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于F,然后展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”. (1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形(2) 如图②,在矩形ABCD 中, AB=2,BC=4 .当它的“折痕△BEF ”的一个顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标; (3)如图③,在矩形ABCD 中, AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF ”?若存在,说明理由,并求出此时点E 的坐标?若不存在,为什么?图2图3图4如图②如图③备用图2017—2018学年下学期期末考试八年级数学参考答案二、填空题 11.26(P10练习T2(3)) 12.三条边对应相等的三角形全等(P34T2(3)) 13.20,24 (P57T2) 14. 11 (P114探究右边卡片) 15. 5 (P39T12改编) 16. 10(仿汉中考) 三、解答题 17.(1)243-6 (P19T3(1))(2)2+ 3 (P19T6改编)18.(仿汉中考)把点P(2,-6)代人直线y=kx-4,得2k-4=-6 解得k=-1. …………………………………3分 ∴-x-6≥O…………………………………5分 ∴x ≤-6. …………………………………6分19.(P34T6改编) 设BF=x,则BE=CE=2x,CD=AD=4x,AF=3x. ∵∠B=90°, ∴EF 2 =BF 2+BE 2=x 2+(2x)2=5x 2. …………………2分同理:DE 2=20x 2, DF 2=25x 2. ∴EF 2 +DE 2= DF 2. …………………………………4分 根据勾股定理的逆定理,△DEF 为直角三角形. …………………………………5分 ∴∠DEF=90°. …………………………………6分20. (P99T9改编)(1)S=-2x+12(0<x<6) …………………………2分(解析式和画图各1分,没写取值范围不扣分) (2)6; …………………………………4分(3)不能大于12,因为0<x<6,所以0<S=-2x+12<12. …………6分 21. (广州市2012年中考题T9改编)(1)这五年的全年空气质量 优良天数按照从小到大排列如下: 333、334、345、347、357,所以中位数是345;…………………1分 极差是:357﹣333=24;……………2分(2)2007年与2006年相比,333﹣334=﹣1, 2008年与2007年相比,345﹣333=12, 2009年与2008年相比,347﹣345=2, 2010年与2009年相比,357﹣347=10,所以增加最多的是2008年;…………………………………3分 (3)这五年的全年空气质量优良天数的平均数===343.2天.…………………………………6分22.(第1问P62T15,第2问自编)(1)提示:由△ADE ≌△BAF, ……………………2分 可得AE=BF,从而AF-BF=EF. …………………………………4分(2)∵AF=4,EF=1,∴BF=AE=3, ∴AB=2243+=5. …………………………………5分 设FG=x,在Rt △BFG 和Rt △ABG 中,BG 2=x 2+32=(4+x)2-52. 解得x=.49……………7分 ∴AG=AF+FG=4+49=425.…………………………………8分3分)(2)由题意,得W=50x+30(13﹣x )+60(14﹣x )+45(x ﹣1),整理得,W=5x+1185. ………………………………(6分) (3)∵A ,B 到两地运送的西瓜为非负数,∴⎪⎪⎩⎪⎪⎨⎧≥-≥-≥-≥.010140130x x x x ,,, 解不等式组,得:1≤x ≤13,………………(8分)在W=5x+1185中,W 随x 增大而增大,…………………………(9分) ∴当x 最小为1时,W 有最小值 1190元.…………………………(10分)24.(P69T15改编)验证:(1)则p 'A+p 'C>AC=BD=p 'B+p 'D,显然不成立.综上所述,猜想(1)不具有一般性(或猜想(1)不一定成立). …………………………2分 (2)过P 点作AB 的平行线分别交AD,BC 于E,F(如图1).易证四边形ABFE 和四边形CDEF 均为矩形.设PE=a,PF=b,AE=BF=c,DE=CF=d. 易知PA 2=a 2+c 2,PC 2=b 2+d 2,PB 2=b 2+c 2,PD 2=a 2+d 2.于是PA 2+PC 2= a 2+b 2+c 2+d 2 =PB 2+PD 2. ………………………5分故PD 2=PA 2+PC 2-PB 2=32+52-42=18. 从而PD=23.…………6分 结论:相等………………………7分应用:由上述结论知MA 2+MC 2= MB 2+MD 2,∴MD 2- MC 2= MA 2-MB 2=21.…………8分C 图1又在Rt △MCD 中,MD 2+MC 2=1. ∴MD=23,MC=21.而CD=1 CD MC 21=∴.易得∠MCD=60°. ………………………10分25.(1)等腰;…………………………………(2分) (2)如图②,连接BE ,画BE 的中垂线交BC 于点F ,连接EF , △BEF 是矩形ABCD 的一个“折痕三角形”.………………(3分) ∵折痕垂直平分BE ,AB=AE=2,∴A 点在BE 的中线上,四边形ABFE 为正方形,∴AB=FB=2,则F (2,0). ………………………………(6分) (3)解法一:当F 在边BC 上时,设CF=x(x ≥0,如图③,∴S △BEF =-S △BCE =S △FCE 21SABCD矩形-SFCE△=4-x ,要S△BEF最大,则x=0,即F 点与C 点重合,由折叠可知,CE=BC, ∴ED=22CD CE -=32,则E 点坐标为E (4-23,2). ………………(9分) 当F 在边CD 上时,设AE=x(x ≥0),CF=y (y >0),如图④.∴S△BEF=SABCD矩形-SOAE△-SEFD△-SOCF△=8-x -21(4-x )(2-y )-2y=4-21xy ,要使S △BEF 最大,则x=0(y >0),即A 点与E 点重合,∴E 点坐标为E (0,2). ……………………(11分)综上所述,折痕△BEF 的最大面积为4时,点E 的坐标是E (4-23,2)或E (0,2). ……………………(12分)如图③(3)解法二:。
2017-2018学年度八年级第二学期期末考试数学试卷2017-2018学年八年级第二学期期末测试数学试卷(考试时间100分钟,满分120分)2018.06一、选择题(每题3分,共18分)1.(3分)二次根式有意义的条件是x≥2.2.(3分)下列各组数中能作为直角三角形的三边长的是3,4,5.3.(3分)若一次函数 y=x+4 的图象上有两点 A(-1,y1)、B(1,y2),则下列说法正确的是 y1<y2.4.(3分)如图,四边形 ABCD 的对角线 AC 和 BD 交于点 O,则下列不能判断四边形 ABCD 是平行四边形的条件是∠ABD=∠ADB,∠BAO=∠DCO。
5.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同。
其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的中位数。
6.(3分)在平面直角坐标系中,平行四边形 ABCD 的顶点 A,B,D 的坐标分别是(0,0),(5,0),(2,3),则顶点 C 的坐标是(7,3)。
二、填空题(每题3分,共24分)7.(3分)将直线 y=2x 向下平移2个单位,所得直线的函数表达式是 y=2x-2.8.(3分)直线y=kx+b(k>0)与x 轴的交点坐标为(2,0),则关于 x 的不等式 kx+b>0 的解集是 x>-b/k。
9.(3分)计算:(-2)²=4.10.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点 C 与点 A 重合,折痕为 DE,则△ABE 的周长为6+2√13.11.(3分)如图,平行四边形ABCD 中,AD=5,AB=3,若 AE 平分∠BAD 交边 BC 于点 E,则线段 EC 的长度为 3/2.12.(3分)已知一组数据1,2,-1,x,1 的平均数是1,则这组数据的中位数为 1.13.(3分)一次函数 y=kx+3 的图象过点 A(1,4),则这个一次函数的解析式 y=kx+1.14.(3分)如图,菱形ABCD 周长为16,∠ADC=120°,E 是 AB 的中点,P 是对角线 AC 上的一个动点,则 PE+PB 的最小值是 8.2三、计算题15.计算:-8 + 3.5 = -4.516.如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:1)在图1中,作出∠DAE的角平分线;2)在图2中,作出∠AEC的角平分线.四、应用题17.已知一次函数y=kx-4,当x=2时,y=-3.1)求一次函数的解析式:由题意得,-3=k(2)-4,解得k=1,所以一次函数的解析式为y=x-4.2)将该函数的图象向上平移6个单位,求平移后的图象与x轴的交点的坐标。
3 2017-2018 学年河北省八年级(下)期末数学试卷题及答案解析一、选择题(本大题共 16 小题,共 42.0 分)1.下列根式中是最简二次根式的是( )A. √ 2B. √3C. √9D. √122. 三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85, 其中能够构成直角三角形的有( )A. 1 个B. 2 个C. 3 个D. 4 个3.下列哪个点在一次函数1 y =2x +1的图象上( )A. (2,1)B. (2,0)C. (-2,1)D. (-2,0)4.一次函数 y =5x +3 的图象经过的象限是( ) A. 一、二、三 B. 二、三、四C. 一、二、四D. 一、三、四√3 5.下列计算正确的是( )A. √5-√3=√2B. 3√5×2 √3=6√15 C. (2√2)2=16D . 3=16.不能判定一个四边形是平行四边形的条件是( ) A. 两组对边分别平行 B. 一组对边平行另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等 7. 已知 A 样本的数据如下:72,73,76,76,77,78,78,B 样本的数据恰好是 A 样本数据每个都加 2,则 A ,B 两个样本的下列统计量对应相同的是( ) A. 平均数B. 方差C. 中位数D. 众数8. 若√x − 2y + 9与|x -y -3|互为相反数,则 x +y 的值为( ) A. 3B. 9C. 12D. 279.矩形具有而菱形不具有的性质是( ) A. 对角线互相平分 B. 对角线互相垂直 C. 对角线相等D. 对角线平分一组对角10.一支蜡烛长 20 厘米,点燃后每小时燃烧 5 厘米,燃烧时剩下的高度 h (厘米)与燃烧时间 t (时)的函数关系的图象是()A. B.C. D.11.如图,平行四边形ABCD 中,对角线AC、BD 交于点O,点E 是BC 的中点.若OE=3cm,则AB 的长为()A. 3cmB. 6cmC. 9cmD. 12cm12.直角三角形斜边上的高与中线分别为5cm 和6cm,则它的面积为()cm2.A. 30B. 60C. 45D. 1513.函数y=ax+b 与y=bx+a 的图象在同一坐标系内的大致位置正确的是()A. B.C. D.D. 9°14.已知:如图,在矩形 ABCD 中,E 、F 、G 、H 分别为边 AB 、BC 、CD 、DA 的中点.若 AB =2,AD =4,则图中阴影部分的面积为( )A. 8B. 6C. 4D. 315.如图,矩形 ABCD 中,DE ⊥AC 于 E ,且∠ADE :∠EDC =3:2, 则∠BDE 的度数为( ) A. 36°B. 18°C. 27°16.如图中的图象(折线 ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离 s (千米)和行驶时间 t (小时)之间的函数关系,根据图中提供的信息,给出下列说法: ①汽车共行驶了 120 千米; ②汽车在行驶途中停留了 0.5 小时;80③汽车在整个行驶过程中的平均速度为 3 千米/时; ④汽车自出发后 3 小时至 4.5 小时之间行驶的速度在逐渐减少. 其中正确的说法共有()√x+1 A. 1个 B. 2 个 C. 3 个 D. 4 个二、填空题(本大题共 4 小题,共12.0 分)17.函数y=1 中自变量x 的取值范围是.18.如图,矩形ABCD 的对角线AC=8cm,∠AOD=120°,则AB 的长为cm.19.已知点A(-1,a),B(2,b)在函数y=-3x+4 的图象上,则a 与b 的大小关系是.20.已知:如图,正方形ABC D中,对角线AC 和BD相交于点O.E、F 分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF 的长为cm.3x 2−y2三、计算题(本大题共 2 小题,共 22.0 分)21.计算(1)√27-√12+√45;(2)√27×√1 -(√5+√3)(√5-√3).22. 已知 x =√3+1,y =√3-1,求x 2 −2xy +y 2的值.四、解答题(本大题共 4 小题,共 44.0 分)23.如图,四边形 ABC D 是菱形,对角线 AC =8cm ,BD =6cm , DH ⊥AB 于 H ,求:DH 的长.24.已知一次函数y=kx+b 的图象经过点(-1,-5),且与正比例函数于点(2,a),求(1)a 的值;(2)k,b 的值;(3)这两个函数图象与x 轴所围成的三角形的面积.1y=2x的图象相交25.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10 次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是,乙的中位数是;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?26.抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B 两仓库.已知甲库有粮食100 吨,乙库有粮食80 吨,而A 库的容量为70 吨,B 库的容量为110 吨.从甲、乙两库到A、B 两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送 1 千米所需人民币)(1)若甲库运往 A 库粮食x 吨,请写出将粮食运往A、B 两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B 两库多少吨粮食时,总运费最省,最省的总运费是多少?答案和解析1.【答案】B【解析】解:A、= ,故此选项错误;B、是最简二次根式,故此选项正确;C、=3,故此选项错误;D、=2 ,故此选项错误;故选:B.直接利用最简二次根式的定义分析得出答案.此题主要考查了最简二次根式,正确把握定义是解题关键.2.【答案】C【解析】解:①、∵52+122=169=132,∴能构成直角三角形,故本小题正确;②、92+402=1681=412=169,∴能构成直角三角形,故本小题正确;③、82+152=289=172,∴能构成直角三角形,故本小题正确;④、132+842=6973≠852,∴不能构成直角三角形,故本小题错误.故选:C.根据勾股定理的逆定理对四个答案进行逐一判断即可.本题考查的是勾股定理的逆定理,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.3.【答案】D【解析】解:A、把(2,1)代入得,×2+1=2≠1,故本题选项错误;B、把(2,0)代入得,×2+1=2≠0,故本选项错误;C、把(-2,1)代入得,×(-2)+1=0≠1,故本选项错误;D、把(-2,0)代入得,×(-2)+1=0,故本选项正确.故选:D.将四个点分别代入函数的解析式进行验证即可.此题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此一次函数的解析式.比较简单.4.【答案】A【解析】解:∵一次函数y=5x+3 中,k=5>0,b=3>0,∴该直线从左往右上升,与y 轴交于正半轴,∴图象经过的象限是:一、二、三.故选:A.直接利用一次函数y=5x+3 的性质得出其经过的象限.此题主要考查了一次函数的性质,解题时注意:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.当b>0 时,直线与y 轴交于正半轴;当b<0 时,直线与y 轴交于负半轴.5.【答案】B【解析】解:A、不能化简,所以此选项错误;B、3 ×=6,所以此选项正确;C、(2)2=4×2=8 ,所以此选项错误;D、= = ,所以此选项错误;本题选择正确的,故选B.A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.6.【答案】B【解析】解:A、两组对边分别平行,可判定该四边形是平行四边形,故A 不符合题意;B、一组对边平行另一组对边相等,不能判定该四边形是平行四边形,也可能是等腰梯形,故 B 符合题意;C、一组对边平行且相等,可判定该四边形是平行四边形,故 C 不符合题意;D、两组对边分别相等,可判定该四边形是平行四边形,故D 不符合题意故选:B.根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.7.【答案】B【解析】解:设样本 A 中的数据为x i,则样本 B 中的数据为y i=x i+2,则样本数据B 中的众数和平均数以及中位数和A 中的众数,平均数,中位数相差2,只有方差没有发生变化;故选:B.根据样本A,B 中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论.此题主要考查统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.8.【答案】D【解析】解:∵与|x-y-3|互为相反数,∴+|x-y-3|=0,∴,②-①得,y=12,把y=12 代入②得,x-12-3=0,解得x=15,∴x+y=12+15=27.故选:D.根据互为相反数的和等于0 列式,再根据非负数的性质列出关于x、y 的二元一次方程组,求解得到x、y 的值,然后代入进行计算即可得解.本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0 时,必须满足其中的每一项都等于0.9.【答案】C【解析】解:A、对角线互相平分是菱形矩形都具有的性质,故A 选项错误;B、对角线互相垂直是菱形具有而矩形不具有的性质,故B 选项错误;C、矩形的对角线相等,菱形的对角线不相等,故C 选项正确;D、对角线平分一组对角是菱形具有而矩形不具有的性质,故D 选项错误;故选:C.根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.本题主要考查对矩形的性质,菱形的性质等知识点的理解和掌握,能熟练地根据矩形和菱形的性质进行判断是解此题的关键.10.【答案】D【解析】解:设蜡烛点燃后剩下h 厘米时,燃烧了t 小时,则h 与t 的关系是为h=20-5t,是一次函数图象,即t 越大,h 越小,符合此条件的只有D.故选:D.随着时间的增多,蜡烛的高度就越来越小,由于时间和高度都为正值,所以函数图象只能在第一象限,由此即可求出答案.本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.【答案】B【解析】解:∵四边形ABCD 是平行四边形,∴OA=OC;又∵点 E 是BC 的中点,∴BE=CE,∴AB=2OE=2×3=6 (cm)故选:B.因为四边形ABCD 是平行四边形,所以OA=OC;又因为点E 是BC 的中点,所以OE 是△ABC 的中位线,由OE=3cm,即可求得AB=6cm.此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线的性质:三角形的中位线平行且等于三角形第三边的一半.12.【答案】A【解析】解:解:∵直角三角形的斜边上的中线为6cm,∴斜边为2×6=12 (cm),∵直角三角形斜边上的高为5cm,∴此直角三角形的面积为×12×5=30 (cm2),故选:A.据直角三角形斜边上中线性质求出斜边长,再根据直角三角形的面积公式求出面积即可.本题考查了直角三角形斜边上中线性质的应用,注意:直角三角形斜边上中线等于斜边的一半.13.【答案】C【解析】解:分四种情况:①当a>0,b>0 时,y=ax+b 的图象经过第一、二、三象限,y=bx+a 的图象经过第一、二、三象限,无选项符合;②当a>0,b<0 时,y=ax+b 的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C 选项符合;③当a<0,b>0 时,y=ax+b 的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C 选项符合;④当a<0,b<0 时,y=ax+b 的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选:C.根据a、b 的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.一次函数y=kx+b 的图象有四种情况:①当k>0,b>0,函数y=kx+b 的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b 的图象经过第一、三、四象限;③当k<0,b>0 时,函数y=kx+b 的图象经过第一、二、四象限;④当k<0,b<0 时,函数y=kx+b 的图象经过第二、三、四象限.14.【答案】C【解析】解:连接AC,BD,FH,EG,∵E,F,G,H 分别为边AB,BC,CD,DA 的中点,∴AH= AD,BF= BC,∵四边形ABCD 是矩形,∴AD=BC,AD∥BC,∴AH=BF,AH∥BF,∴四边形AHFB 是平行四边形,∴FH=AB=2,同理EG=AD=4,∵四边形ABCD 是矩形,∴AC=BD,∵E,F,G,H 分别为边AB,BC,CD,DA 的中点,∴HG∥AC,HG= AC,EF∥AC,EF= AC,EH= BD,∴EH=HG,GH=EF,GH∥EF,∴四边形EFGH 是平行四边形,∴平行四边形EFGH 是菱形,∴FH⊥EG,∴阴影部分EFGH 的面积是×HF×EG= ×2×4=4 ,故选:C.连接AC,BD,FH,EG,得出平行四边形ABFH,推出HF=AB=2,同理EG=AD=4,求出四边形EFGH 是菱形,根据菱形的面积等于×GH×HF ,代入求出即可.本题考查了矩形的性质,菱形的判定和性质,平行四边形的判定等知识点,关键是求出四边形EFGH 是菱形.15.【答案】B【解析】解:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选:B.本题首先根据∠ADE:∠EDC=3:2 可推出∠ADE 以及∠EDC 的度数,然后求出△ODC 各角的度数便可求出∠BDE.本题考查的是三角形内角和定理以及矩形的性质,难度一般.16.【答案】A【解析】解:由图象可知,汽车走到距离出发点120 千米的地方后又返回出发点,所以汽车共行驶了240 千米,①错;从 1.5 时开始到 2 时结束,时间在增多,而路程没有变化,说明此时在停留,停留了2-1.5=0.5 小时,②对;汽车用4.5 小时走了240 千米,平均速度为:240÷4.5=千米/时,③错.汽车自出发后3 小时至4.5 小时,图象是直线形式,说明是在匀速前进,④错.故选:A.根据图象上的特殊点的实际意义即可作出判断.本题考查由图象理解对应函数关系及其实际意义,注意总路程应包括往返路程,平均速度=总路程÷总时间.17.【答案】x>-1【解析】解:由题意得,x+1>0,解得x>-1.故答案为:x>-1.根据被开方数大于等于0,分母不等于0 列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18.【答案】4【解析】解:∵∠AOD=120°,∴∠AOB=60°,∵四边形ABCD 是矩形,∴AC=BD,AO=OC= cm,BO=OD,∴AO=BO=4cm,∴△ABO 是等边三角形,∴AB=AO=4cm,故答案为:4根据矩形的性质求出AO=BO=4cm,求出△AOB 是等边三角形,即可求出AB.本题考查了矩形的性质和等边三角形的性质和判定,能根据矩形的性质求出AO=BO 是解此题的关键.19.【答案】a>b【解析】解:∵点A(-1,a),B(2,b)在函数y=-3x+4 的图象上,∴a=3+4=7,b=-6+4=-2,∵7>-2,∴a>b.故答案为:a>b.分别把点A(-1,a),B(2,b)代入函数y=-3x+4,求出a、b 的值,并比较出其大小即可.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.【答案】5【解析】解:连接EF,∵OD=OC,∵OE⊥OF∴∠EOD+∠FOD=90°∵正方形ABCD∴∠COF+∠DOF=90°∴∠EOD=∠FOC而∠ODE=∠OCF=45°∴△OFC≌△OED,∴OE=OF,CF=DE=3cm,则AE=DF=4,根据勾股定理得到EF==5cm.故答案为5.3 连接 EF ,根据条件可以证明△OED ≌△OFC ,则 OE=OF ,CF=DE=3Ccm ,则AE=DF=4,根据勾股定理得到 EF==5cm .根据已知条件以及正方形的性质求证出两个全等三角形是解决本题的关键. 21.【答案】解:(1)√27-√12+√45=3√3 − 2√3 + 3√5=√3 + 3√5;(2)√27×√1-(√5+√3)(√5-√3)=√9 − (5 − 3)=3-2=1.【解析】(1) 根据二次根式的加减法可以解答本题;(2) 根据二次根式的乘法、平方差公式可以解答本题.= 22. = 本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法. 【答案】解:原式 (x−y )2 (x +y )(x−y )当 x =√3+1,y =√3-1 时, 原式=√3+1−√3+1=2 √3.x−y=x +y ,√3+1+√3−1 2√3 3【解析】先将分子、分母因式分解,再约分即可化简原式,继而将x 、y 的值代入计算可得.2 22 本题主要考查二次根式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及二次根式的混合运算.23. 【答案】解:∵四边形 ABCD 是菱形,AC =8cm ,BD =6cm ,∴AC ⊥BD ,OA =1AC =4cm,OB =1BD =3cm ,∴Rt △AOB 中,AB =√AO 2 + BO 2 =√32 + 42=5, ∵DH ⊥AB ,∵菱形 ABCD 的面积 1•BD =AB •DH ,S =2AC∴1×6×8=5 DH ,5 2 ∴DH =24. 【解析】先根据菱形对角线互相垂直平分得:OA= AC=4cm ,OB= BD=3cm ,根据勾股定理求得AB=5cm ,由菱形面积公式的两种求法列式可以求得高 DH 的长.本题考查了菱形的性质,熟练掌握菱形以下几个性质:①菱形的对角线互相 垂直平分,②菱形面积=两条对角线积的一半,③菱形面积=底边×高;本题利用了面积法求菱形的高线的长.24. 【答案】解:(1)由题知,把(2,a )代入 y =1 x , 解得 a =1;(2) 由题意知,把点(-1,-5)及点(2,a )代入一次函数解析式得:-k +b =-5,2k +b =a , 又由(1)知a =1,解方程组得:k =2,b =-3;(3) 由(2)知一次函数解析式为:y =2x -3,30)直线y=2x-3 与x轴交点坐标为(,233.∴所求三角形面积1=2×1×2=4【解析】(1)由题知,点(2,a)在正比例函数图象上,代入即可求得a 的值.(2)把点(-1,-5)及点(2,a)代入一次函数解析式,再根据(1)即可求得k,b 的值.(3)由于正比例函数过原点,又有两个函数交点,求面积只需知道一次函数与x 轴的交点即可.本题考查了一次函数图象上点的坐标的性质以及正比例函数图象上点的坐标的性质,注意直线上任意一点的坐标都满足函数关系式y=kx+b.25.【答案】8;7.5【解析】解:(1)甲的平均数=故答案为:8;7.5;(2);…==8,乙的中位数是7.5;,= ,∵,∴乙运动员的射击成绩更稳定.(1)根据平均数和中位数的定义解答即可;(2)计算方差,并根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答.此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳70 − x ≥ 0 定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小, 即波动越小,数据越稳定.26.【答案】解:(1)依题意有:若甲库运往 A 库粮食 x 吨,则甲库运到 B 库(100-x ) 吨,乙库运往 A 库(70-x )吨,乙库运到 B 库(10+x )吨.x ≥ 0则{100 − x ≥ 0,解得:0≤x ≤70. 10 + x ≥y =12×20 x +10×25 (100-x )+12×15 (70-x )+8×20×[110 -(100-x )]=-30x +39200其中 0≤x ≤70(2)上述一次函数中 k =-30<0∴y 随 x 的增大而减小∴当 x =70 吨时,总运费最省最省的总运费为:-30×70+39200=37100 (元)答:从甲库运往 A 库 70 吨粮食,往 B 库运送 30 吨粮食,从乙库运往 A 库 0 吨粮食,从乙库运往 B 库 80 吨粮食时,总运费最省为 37100 元.【解析】弄清调动方向,再依据路程和运费列出 y (元)与 x (吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.。
河北省沧州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八下·丹阳期中) 以下问题不适合全面调查的是()A . 调查全国中小学生课外阅读情况B . 调查某中学在职教师的身体健康状况C . 调查某班学生每周课前预习的时间D . 调查某校篮球队员的身高2. (2分)下列命题正确的是()A . 一组对边平行,另一组对边相等的四边形是平行四边形;B . 对角线互相垂直的四边形是菱形;C . 对角线相等的四边形是矩形;D . 一组邻边相等的矩形是正方形3. (2分)在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF 的长为()A . 2B . 8C . 5D . 104. (2分)下列函数中,当x>0时,y随x的增大而增大的是()A . y=-x+1B . y=x2-1C .D . y=-x2+15. (2分)下列命题中正确的是()A . 一组对边平行的四边形是平行四边形B . 两条对角线相等的平行四边形是矩形C . 两边相等的平行四边形是菱形D . 对角线互相垂直且相等的四边形是正方形6. (2分)△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1 ,再将△A1B1C1绕点O旋转180°后得到△A2B2C2 .则下列说法正确的是()A . A1的坐标为(3,1)B . S四边形ABB1A1=3C . B2C=2D . ∠AC2O=45°7. (2分) (2020八上·邛崃期末) 在平面直角坐标系中,点P与点M关于y轴对称,点N与点M关于x轴对称,若点P的坐标为(-2,3),则点N的坐标为()A . (-3,2)B . (2,3)C . (2,-3)D . (-2,-3)8. (2分) (2018八下·桐梓月考) 正方形ABCD中,AC=4,则正方形ABCD面积为()A . 4B . 8C . 16D . 329. (2分)既有外接圆,又有内切圆的平行四边形是()A . 矩形B . 菱形C . 正方形D . 平行四边形10. (2分)在△ABC中,D、E分别为AB、AC边上中点,且DE=6,则BC的长度是()A . 3B . 6C . 9D . 12二、填空题 (共10题;共20分)11. (1分)(2019·宁波模拟) 如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于________.12. (4分)对于问题:从一批冰箱中抽取100台,调查冰箱的使用寿命.该问题的总体是:________;个体是:________;样本是:________;样本容量是:________.13. (1分)如图所示,在平行四边形ABCD中,分别以AB、AD为边作等边△ABE和等边△ADF,分别连接CE、CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF⊥CD.14. (1分)(2017·洪泽模拟) 如图,将矩形纸片的两只直角分别沿EF、DF翻折,点B恰好落在AD边上的点B′处,点C恰好落在边B′F上.若AE=3,BE=5,则FC=________.15. (1分)(2017·海淀模拟) 某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是________(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.16. (1分)(2018·清江浦模拟) 正五边形的外角和等于 ________◦.17. (1分)快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地后停留了45分钟,立即按原路以另一速度匀速返回,直至与慢车相遇.已知慢车的速度为60千米/时,两车之间的距离y(千米)与两车行驶时间x(小时)之间的函数图象如图所示,则快车从乙地返回时的速度为________千米/时.18. (1分)如图,菱形ABCD的周长为36cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于________.19. (8分)如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中,________ 是自变量,________ 是因变量.(2)甲的速度________ 乙的速度.(大于、等于、小于)(3)6时表示________ ;(4)路程为150km,甲行驶了________ 小时,乙行驶了________ 小时.(5)9时甲在乙的________ (前面、后面、相同位置)(6)乙比甲先走了3小时,对吗?________ .20. (1分)(2017·平顶山模拟) 如图,在矩形ABCD中,AB=2 ,AD=4,点E是BC边上一个动点,连接AE,作DF⊥AE于点F,当BE的长为________时,△CDF是等腰三角形.三、解答题 (共6题;共73分)21. (10分)如图(1)如图(1),把三角形纸片ABC的角A沿DE折起(DE为折痕),使顶点A在∠A的内部,点A的对称点为点O,判断∠O、∠O DC、∠BEO的大小关系,并写出证明过程.(2)如图(2),把三角形纸片ABC的角A沿DE折起(DE为折痕),使顶点A在∠A的外部,点A的对称点为点O,判断∠O、∠ODC、∠BEO的大小关系吗?并写出证明过程.22. (15分) (2017八下·农安期末) 为加强学生课间锻炼,某校决定开设羽毛球、跳绳、踢毽子三种运动项目,为了解学生最喜欢哪一种项目,随机抽取了n名学生进行调查(每名同学选择一种体育项目),并将调查结果绘制成如图两个统计图.请结合上述信息解答下列问题:(1)求n的值;(2)请把条形统计图补充完整;(3)已知该校有1200人,请你根据统计图中的资料估计全校最喜欢踢毽子的人数.23. (18分)(2018·洪泽模拟) 如图①,直线y=﹣ x+8 与x轴交于点A,与直线y= x交于点B,点P为AB边的中点,作PC⊥OB与点C,PD⊥OA于点D.(1)填空:点A坐标为________,点B的坐标为________,∠CPD度数为________;(2)如图②,若点M为线段OB上的一动点,将直线PM绕点P按逆时针方向旋转,旋转角与∠AOB相等,旋转后的直线与x轴交于点N,试求MB•AN的值;(3)在(2)的条件下,当MB<2时(如图③),试证明:MN=DN﹣MC;(4)在(3)的条件下,设MB=t,MN=s,直接写出s与t的函数表达式.24. (5分)(2018·潘集模拟) 如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式.25. (10分) (2016九上·萧山月考) 已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA= AF,求证:CF⊥AB.26. (15分)(2019·贵池模拟) 如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE ,作BF⊥AE ,垂足为G交AD于F(1)求证:AF=DE;(2)连接DG,若DG平分∠EGF,如图(2),求证:点E是CD中点;(3)在(2)的条件下,连接CG,如图(3),求证:CG=CD.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共20分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共73分) 21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、23-4、24-1、25-1、25-2、26-1、26-2、26-3、。
河北省沧州市沧县2017-2018学年八年级上学期期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.下列图形中,轴对称图形的个数为()A. 4个B. 3个C. 2个D. 1个【答案】C【解析】解:第二个图形,第三个图形是轴对称图形,故选:C.根据轴对称图形的定义,可得答案.本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.一个数的平方和它的倒数相等,则这个数是()A. 1B. −1C. ±1D. ±1和0【答案】A【解析】解:设这个数为x,根据题意得:x2=1,即x3=1,x解得:x=1,则这个数是1.故选:A.设这个数为x,根据题意列出方程,求出方程的解得到x的值,即为这个数.此题考查了有理数的乘方,以及倒数,熟练掌握乘方的意义是解本题的关键.3.如果ab=cd,则下列正确得是()A. a:c=b:dB. a:d=c:bC. a:b=c:dD. d:c=b:a【答案】B【解析】解:A、a:c=b:d⇒ad=cb,故错误;B、a:d=c:b⇒ab=cd,故正确;C、a:b=c:d⇒ad=cb,故错误;D、d:c=b:a⇒da=cb,故错误.故选:B.根据比例的基本性质:两内项之积等于两外项之积.对选项一一分析,用排除法即可得出答案.根据比例的基本性质,能够熟练地实现比例式和等积式的互相转换.4.如图,数轴上的点A表示的数可能是下列各数中的()A. −8的算术平方根B. 10的负的平方根C. −10的算术平方根D. −65的立方根【答案】B【解析】解:如图,设A点表示的数为x,则−4<x<−3,∵−8<0,∴−8没有算术平方根,故A错误;∵−4<−√10<−3,故B正确;∵−10<0,∴−10没有算术平方根,故C错误;3<−4,故D错误.∵−5<√−65故选:B.设A点表示的数为x,则−4<x<−3,再根据每个选项中的范围进行判断.本题考查了实数与数轴的对应关系.关键是明确数轴上的点表示的数的大小,估计无理数的取值范围.5.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A. 4B. 8C. 16D. 64【答案】D【解析】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2−PQ2=289−225=64,则正方形QMNR的面积为64.故选:D.根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即为所求正方形的面积.此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.6. 下列计算结果正确的是( )A. √36=±6B. √(−3.6)2=−3.6C. −√3=√(−3)2D. √−53=−√53【答案】D【解析】解:A 、√36=6,此选项错误; B 、√(−3.6)2=3.6,此选项错误; C 、3=√(−3)2,此选项错误;D 、√−53=−√53,此选项正确.故选:D .根据二次根式的化简以及求立方根进行计算即可.本题考查了实数的运算.解题的关键是掌握二次根式的化简以及立方根的计算.7. 无论x 取什么数,总有意义的分式是( )A. 4xx 3+1B. x(x+1)2C. 3xx 2+1D.x−2x 2【答案】C【解析】解:A .4xx 3+1,x 3+1≠0,x ≠−1, B .x(x+1)2,(x +1)2≠0,x ≠−1, C .3x x 2+1,x 2+1≠0,x 为任意实数, D .x−2x ,x 2≠0,x ≠0;故选:C .按照分式有意义,分母不为零即可求解.本题考查的是分式有意义的条件,按照分式有意义,分母不为零即可求解8. 下列命题:①有一个角为60∘的等腰三角形是等边三角形; ②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等; ④到线段两端距离相等的点在这条线段的垂直平分线上. 正确的个数有( )A. 4个B. 3个C. 2个D. 1个【解析】解:①有一个角为60∘的等腰三角形是等边三角形,故①正确;②等腰直角三角形一定是轴对称图形,故②正确;③有一条直角边对应相等的两个直角三角形全等,故③错误;④到线段两端距离相等的点在这条线段的垂直平分线上,故④正确;故选:B.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50∘,则∠ACB的度数为()A. 105∘B. 100∘C. 95∘D. 90∘【答案】A【解析】解:∵CD=AC,∠A=50∘,∴∠ADC=∠A=50∘,∴∠ACD=180∘−50∘−50∘=80∘.∵由作图可知,MN是线段BC的垂直平分线,∴BD=CD,∴∠BCD=∠B=12∠ADC=25∘,∴∠ACB=∠ACD+∠BCD=80∘+25∘=105∘.故选:A.先根据等腰三角形的性质得出∠ADC的度数,再由三角形内角和定理求出∠ACD的度数,根据线段垂直平分线的性质得出∠BCD=∠B,再由三角形外角的性质求出∠BCD的度数,进而可得出结论.本题考查的是作图−基本作图,熟知线段垂直平分线的作法是解答此题的关键.10.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A. 25x =35x−20B. 25x−20=35xC. 25x=35x+20D. 25x+20=35x【答案】C【解析】解:根据题意,得25 x =35x+20.题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.二、填空题(本大题共10小题,共30.0分)11.√349=______.【答案】√37【解析】解:√349=√37,故答案为:√37.根据算术平方根的定义计算即可.本题考查了算术平方根,熟记定义是解题的关键.12.汽车以a千米/时的速度从甲地开往乙地,已知甲、乙两地相距120千米,则汽车从甲地到乙地用______小时.【答案】120a【解析】解:∵甲、乙两地相距120千米,汽车以a千米/时的速度,∴汽车从甲地到乙地用120a小时.故答案为:120a.根据汽车以a千米/时的速度从甲地开往乙地,甲、乙两地相距120千米,再根据时间=路程速度列出代数式即可.此题考查了列代数式,用到的知识点是:时间=路程速度,解题的关键是读懂题意,找出之间的数量关系,列出代数式.13.√9+√643=______.【答案】7【解析】解:原式=3+4=7,故答案为:7原式利用算术平方根及立方根定义计算即可得到结果.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.14.已知如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于______.【答案】8【解析】解:∵△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,∴AD=BD,AE=CE∴△ADE的周长=AD+AE+DE=BD+DE+CE=BC=8.△ADE的周长等于8.故填8.要求周长,就是求各边长和,利用线段的垂直平分线得到线段相等,进行等量代换后即可求出.此题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.进行线段的等量代换是正确解答本题的关键.15.直角三角形斜边上的高与中线分别是5cm和7cm,则它的面积是______cm2.【答案】35【解析】解:∵直角三角形斜边上的中线7cm,∴斜边=2×7=14cm,∴它的面积=12×14×5=35cm2.故答案为:35.根据直角三角形斜边上的中线等于斜边的一半求出斜边的长,再根据三角形的面积公式列式计算即可得解.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形的面积,熟记性质是解题的关键.16.分式4mn220m n中分子、分母的公因式为______.【答案】4mn【解析】解:分式4mn220m2n中分子、分母的公因式为4mn;故答案为:4mn.观察分子分母,提取公共部分即可得出答案.此题主要考查了约分,注意:找出分子分母公共因式时,常数项也不能忽略.17.已知a,b是正整数,若√7a +√10b是不大于2的整数,则满足条件的有序数对(a,b)为______.【答案】(7,10)或(28,40)【解析】解:∵√7a +√10b是整数,∴a=7,b=10或a=28,b=40,因为当a=7,b=10时,原式=2是整数;当a=28,b=40时,原式=1是整数;即满足条件的有序数对(a,b)为(7,10)或(28,40),故答案为:(7,10)或(28,40).根据二次根式的性质和已知得出即可.本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.18.如图,有一底角为35∘的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是______度.【答案】125【解析】解:根据等腰三角形的性质:等边对等角.以及三角形的内角和是180∘,解得等腰三角形的顶角是180∘−35∘×2=110∘.根据三角形的一个外角等于和它不相邻的内角的和求得四边形的第四个角是90∘+35∘=125∘.比较四边形的四个内角,最大角的度数是125∘.故填125.根据等腰三角形的性质,依题意可得等腰三角形的顶角为110∘,又根据三角形的一个外角等于和它不相邻的内角的和可求出最大角的度数.本题考查了等腰三角形的性质、三角形的内角和定理和三角形的外角性质;利用三角形外角的性质求得四边形的内角后与其它三个角进行比较式正确解答本题的关键.19.若a=3−√2018,则代数式a2−6a−9的值是______.【答案】2000【解析】解:∵a=3−√2018,∴a2−6a−9=(3−√2018)2−6(3−√2018)−9=9−6√2018+2018−18+6√2018−9=2000,故答案为:2000.将a的值代入所求的式子,即可解答本题.本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.20.观察分析下列方程:①x+2x =3,②x+6x=5,③x+12x=7;请利用它们所蕴含的规律,求关于x的方程x+n2+nx−3=2n+4(n为正整数)的根,你的答案是:______.【答案】x=n+3或x=n+4【解析】解:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+abx=a+b的根为:x=a或x=b,∴x+n2+nx−3=2n+4可化为(x−3)+n(n+1)x−3=n+(n+1),∴此方程的根为:x−3=n或x−3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.首先求得分式方程①②③的解,即可得规律:方程x+abx=a+b的根为:x=a或x=b,然后将x+n2+nx−3=2n+4化为(x−3)+n(n+1)x−3=n+(n+1),利用规律求解即可求得答案.此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+abx= a+b的根为:x=a或x=b是解此题的关键.三、计算题(本大题共3小题,共18.0分)21.√3−√3(1−√3).【答案】解:原式=√3−√3+3=3.【解析】先进行二次根式的乘法运算,然后合并即可.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.22.(2√2+6√3)×√6÷2【答案】解:原式=(2√2×√6+6√3×√6)÷2=(4√3+18√2)÷2=2√3+9√2.【解析】先利用乘法分配律计算乘法,再计算除法即可得.本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.23.计算1a(a+1)+1(a+1)(a+2)+⋯+1(a+9)(a+10).【答案】解:原式=1a −1a+1+1a+1−1a+2+⋯…+1a+9−1a+10=1a−1a+10=10a2+10a【解析】根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键是找出各分式的规律,本题属于中等题型.四、解答题(本大题共5小题,共42.0分)24.如图:求作一点P,使PM=PN,并且使点P到∠AOB的两边的距离相等.【答案】解:如图,点P即为所求.(1)作∠AOB的平分线OC;(2)连结MN,并作MN的垂直平分线EF,交OC于P,连结PM、PN,则P点即为所求.【解析】(1)作∠AOB的平分线OC;(2)连结MN,并作MN的垂直平分线EF,交OC于P,连结PM、PN,则P点即为所求.本题考查作图−复杂作图、角平分线的性质,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本作图的步骤,属于中考常考题型.25.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,联结DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.【答案】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90∘.∠BAE=∠DAC=90∘+∠CAE,在△BAE和△DAC中{AB=AC∠BAE=∠DAC AE=AD,∴△BAE≌△CAD(SAS).(2)由(1)得△BAE≌△CAD.∴∠DCA=∠B=45∘.∵∠BCA =45∘,∴∠BCD =∠BCA +∠DCA =90∘, ∴DC ⊥BE .【解析】①可以找出△BAE≌△CAD ,条件是AB =AC ,DA =EA ,∠BAE =∠DAC =90∘+∠CAE .②由①可得出∠DCA =∠ABC =45∘,则∠BCD =90∘,所以DC ⊥BE .本题主要考查全等三角形的判定与性质及等腰三角形的性质;充分利用等腰直角三角形的性质是解答本题的关键.26. 如图,在△ABC 中,CD ⊥AB 于D ,AC =4,BC =3,DB =95.(1)求CD ,AD 的值;(2)判断△ABC 的形状,并说明理由.【答案】解:(1)∵CD ⊥AB 且CB =3,BD =95,故△CDB 为直角三角形, ∴在Rt △CDB 中,CD =√CB 2−BD 2=√32−(95)2=125,在Rt △CAD 中,AD =√AC 2−CD 2=√42−(125)2=165.(2)△ABC 为直角三角形. 理由:∵AD =165,BD =95,∴AB =AD +BD =165+95=5,∴AC 2+BC 2=42+32=25=52=AB 2, ∴根据勾股定理的逆定理,△ABC 为直角三角形.【解析】利用勾股定理求出CD 和AD 则可,再运用勾股定理的逆定理判定△ABC 是直角三角形.本题考查了勾股定理和它的逆定理,题目比较典型,是一个好题目.27. 小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约______千米.然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a 米种一棵树,绘制示意图如图:考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵数,请你求出a的值.【答案】3【解析】解:60×360=3(千米).故答案为:3.设每a米种一棵树,则另一方案每2a米种一棵树,依题意,得:3000a −30002a=2002,解得:a=15,经检验,a=15是所列方程的解,且符合题意.答:a的值为15.利用路程=速度×时间可求出路的长度,设每a米种一棵树,则另一方案每2a米种一棵树,根据种树的棵数=路的长度÷树的间隔结合另一方案可减少200棵数,即可得出关于a的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.28.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+ 2√2=(1+√2)2.善于思考的小明进行了以下探索:设a+b√2=(m+n√2)2(其中a、b、m、n均为整数),则有a+b√2=m2+2n2+ 2mn√2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b√2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b√3=(m+n√3)2,用含m、n的式子分别表示a、b,得:a=______,b=______;(2)利用所探索的结论,找一组正整数a、b、m、n填空:______+______√3=(______+______√3)2;(3)若a+4√3=(m+n√3)2,且a、m、n均为正整数,求a的值?【答案】m2+3n22mn 4 2 1 1【解析】解:(1)∵a+b√3=(m+n√3)2,∴a+b√3=m2+3n2+2mn√3,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。
2017-2018学年八年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效.1.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x<0C.x≤2D.x≥22.已知直角三角形的两条直角边的长分别为1,,则斜边长为()A.1B.C.2D.33.下列计算正确的是()A.B.3﹣=3C.D.=4.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3B.a=﹣1C.a=1D.a=25.四边形ABCD中,已知AB∥CD,下列条件不能判定四边形ABCD为平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=1806.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1)B.(2)C.(3)D.无法确定7.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1B.2C.3D.48.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,69.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7B.2()7C.2()8D.()910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.计算=,(﹣)2=,3﹣=.12.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为.14.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是.16.如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+3)(﹣2)18.(8分)如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.20.(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL 号约多少件比较合适,请计算说明.21.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF 的中点,连结DG.(1)求证:BC=DF;(2)连BD,求BD:DG的值.22.(10分)某移动通信公司推出了如下两种移动电话计费方式,说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.(12分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效. 1.【分析】由二次根式的性质可以得到x﹣2≥0,由此即可求解.【解答】解:依题意得x﹣2≥0,∴x≥2.故选:D.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.【分析】根据勾股定理进行计算,即可求得结果.【解答】解:直角三角形的两条直角边的长分别为1,,则斜边长=;故选:C.【点评】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3.【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.【分析】把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【解答】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选:C.【点评】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.5.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选:B.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.【分析】根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【解答】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【解答】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选:B.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9.【分析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【解答】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n的坐标的变化规律.10.【分析】分三种情形讨论求解即可解决问题;【解答】解:对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.【点评】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【分析】根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【解答】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.【分析】根据加权平均数的计算公式计算可得.【解答】解:该校篮球队队员的平均年龄为=13.7(岁),故答案为:13.7.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.13.【分析】设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【解答】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2故答案为2【点评】本题考查了平行四边形的性质,关键是灵活运用平行四边形的性质解决问题.14.【分析】平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【解答】解:可设新直线解析式为y=﹣x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为:y=﹣x+.【点评】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.15.【分析】利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【解答】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,60)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=8x+60;将(0,60)、(70,480)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+60;将(0,60)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.8x+60.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<8或v=4.8.故答案为:6<v<8或v=4.8【点评】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM =1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.【解答】解:过点E作ME⊥AD,延长ME交BC与N,∵四边形ABCD是矩形∴AD∥BC,且ME⊥DA∴EN⊥BC且∠A=90°=∠ABC=90°∴四边形ABNM是矩形∴AB=MN=5,AM=BN若ME:EN=1:4,如图1∵ME:EN=1:4,MN=5∴ME=1,EN=4∵折叠∴BE=AB=5,AP=PE在Rt△BEN中,BN==3∴AM=3在Rt△PME中,PE2=ME2+PM2AP2=(3﹣AP)2+1解得AP=若ME:EN=4:1,则EN=1,ME=4,如图2在Rt△BEN中,BN==2∴AM =2在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(2﹣AP )2+16解得AP =若点E 在矩形外,如图∵EN :EM =1:4∴EN =,EM =在Rt △BEN 中,BN ==∴AM =在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(AP ﹣)2+()2解得:AP =5故答案为,,5 【点评】本题考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用多项式乘法公式展开,然后合并即可.【解答】解:(1)原式=3﹣2+=;(2)原式=5﹣2+3﹣6=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】利用待定系数法即可解决问题;【解答】解:设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣5.【点评】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.20.【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用不要告诉总体的思想解决问题即可;【解答】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点评】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点评】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.22.【分析】(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【解答】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点评】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23.【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S=BD×MN=×6×2=12;四边形BMDN(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴==﹣1.故答案为:﹣1.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.24.【分析】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【解答】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:=3.【点评】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.。
2017-2018学年八年级(下)期末数学试卷一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a33.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.164.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠15.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.6.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>27.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.409.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为度.12.当x=时,分式的值为零.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为cm.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a b.(填“>”“<”或“=”号)17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是.18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个【考点】轴对称图形.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:图1是轴对称图形,符合题意;图2不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意;图3是轴对称图形,符合题意;图4不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意.共2个轴对称图案.故选B.2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x•x2=x2同底数幂的乘法,底数不变指数相加,故本选项错误;B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.C、(ab)3=a3b3,故本选项正确;D、a6÷a2=a3同底数幂的除法,底数不变指数相减,故本选项错误.故选C.3.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.16【考点】方差.【分析】设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,代入方差的公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],计算即可.【解答】解:设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,∵S2= [(a1﹣)2+(a2﹣)2+…+(a n﹣)2],∴S′2= [(2a1﹣2)2+(2a2﹣2)2+…+(2a n﹣2)2]= [4(a1﹣)2+4(a2﹣)2+…+4(a n﹣)2]=4S2=4×2=8.故选C.4.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【考点】分式有意义的条件;二次根式有意义的条件.【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.5.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .B .C .D .【考点】矩形的性质. 【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .6.一次函数y=kx +b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .x <0B .x >0C .x <2D .x >2【考点】一次函数的图象.【分析】根据函数图象与x 轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.7.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的基本判定性质.【解答】解:A、两条对角线相等的平行四边形是矩形,故选项A错误;B、两条对角线互相垂直的平行四边形是菱形,故选项B错误;C、根据平行四边形的判定定理可知两条平行线相互平分的四边形是平行四边形,为真命题,故选项C是正确的;D、两条对角线互相垂直且相等的平行四边形是正方形,故选项D错误;故选C.8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.40【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;由此代入n=12求得答案即可.【解答】解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;当n=12时,共有小三角形的个数是3×12+4=40.故选:D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+【考点】一次函数与二元一次方程(组).【分析】根据一共20个人,进球49个列出关于x、y的方程即可得到答案.【解答】解:根据进球总数为49个得:2x+3y=49﹣5﹣3×4﹣2×5=22,整理得:y=﹣x+,∵20人一组进行足球比赛,∴1+5+x+y+3+2=20,整理得:y=﹣x+9.故选:C.二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为108度.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,而正五边形的每个外角都相等,即可求得外角的度数,再根据外角与内角互补即可求得内角的度数.【解答】解:正五边形的外角是:360÷5=72°,则内角的度数是:180°﹣72°=108°.故答案为:108.12.当x=2时,分式的值为零.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=3.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AD=BC,AD∥BC,求出四边形BEDF是平行四边形,根据平行四边形的性质得出DE=BF,求出AE=CF,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE∥DF,∴四边形BEDF是平行四边形,∴DE=BF,∴AD﹣DE=BC﹣BF,∴AE=CF,∵AE=3,∴CF=3,故答案为:3.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是12.【考点】勾股定理;等腰三角形的性质.【分析】首先利用勾股定理求出AE的长,即可求出△ABC的面积,然后证明DE 是△ABC的中位线,进而求出△BDE的面积.【解答】解:∵△ABC中,AB=AC,AE平分∠BAC交BC于点E,∴AE⊥BC,且BE=CE,∴AE==8,=×BC×AE=×12×8=48,∴S△ABC∵点D为AB的中点,∴DE是△ABC的中位线,∴DE∥AC,且DE=AC,∴==,=S△ABC=×48=12.∴S△BDE故答案为:12.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为4cm.【考点】菱形的性质;线段垂直平分线的性质.【分析】首先连接AC,由BC的垂直平分线EF经过点A,根据线段垂直平分线的性质,可得AC的长,由菱形的性质,可求得AC=AB=4cm,然后由勾股定理,求得OB的长,继而求得答案.【解答】解:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a>b.(填“>”“<”或“=”号)【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再比较出﹣5与4的大小即可解答.【解答】解:∵直线y=﹣3x+2中,k=﹣3<0,∴此函数是减函数,∵﹣5<4,∴a>b.故答案为:>.17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是甲.【考点】方差.【分析】由s甲2=0.002、s乙2=0.03,可得到s甲2<s乙2,根据方差的意义得到甲的波动小,比较稳定.【解答】:∵s甲2=0.002、s乙2=0.03,∴s甲2<s乙2,∴甲比乙的产量稳定.故答案为:甲18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.【考点】一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.【考点】解分式方程;实数的运算;负整数指数幂.【分析】(1)l原式利用乘方的意义,算术平方根定义,以及负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)方程两边同乘(x+2)(x﹣2)得x(x+2)﹣(x+2)(x﹣2)=8,解得:x=2,检验:当x=2时(x+2)(x﹣2)=0,则x=2不是原方程的解,原方程无解.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.【考点】作图—复杂作图;矩形的判定.【分析】(1)①利用线段垂直平分线的作法得出即可;②利用射线的作法得出D点位置;(2)利用直角三角形斜边与其边上中线的关系进而得出AM=MC=BM=DM,进而得出答案.【解答】解:(1)①如图所示:M点即为所求;②如图所示:四边形ABCD即为所求;(2)矩形,理由:∵Rt△ABC中,∠ABC=90°,BM是AC边上的中线,∴BM=AC,∵BM=DM,AM=MC∴AM=MC=BM=DM,∴四边形ABCD是矩形.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是30元;(2)这次调查获取的样本数据的中位数是50元;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有250人.【考点】条形统计图;用样本估计总体;中位数;众数.【分析】(1)众数就是出现次数最多的数,据此即可判断;(2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.【解答】解:(1)众数是:30元,故答案是:30元;(2)中位数是:50元,故答案是:50元;(3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.【考点】一次函数的应用.【分析】(1)观察不难发现,每10分钟放水250m3,然后根据此规律求解即可;(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.【解答】解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;答:池内有水2000m3.(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得:,所以,y=﹣25x+4000(0≤x≤160).23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.【考点】正方形的性质;全等三角形的判定与性质;矩形的性质.【分析】根据题意我们不难得出四边形GEFC是个矩形,因此它的对角线相等.如果连接EC,那么EC=FG,要证明AE=FG,只要证明EC=AE即可.证明AE=EC就要通过全等三角形来实现.三角形ABE和BEC中,有∠ABD=∠CBD,有AB=BC,有一组公共边BE,因此构成了全等三角形判定中的SAS,因此两三角形全等,得AE=EC,即AE=GF.【解答】证明:连接EC.∵四边形ABCD是正方形,EF⊥BC,EG⊥CD,∴∠GCF=∠CFE=∠CGE=90°,∴四边形EFCG为矩形.∴FG=CE.又BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?【考点】一次函数的应用.【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可;(2)根据每天获取利润为14400元,则y=14400,求出即可;(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【解答】解:(1)根据题意得出:y=12x×100+10(10﹣x)×180=﹣600x+18000;(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.【考点】四边形综合题.【分析】(1)由△ABC和△DEF是两个边长为6cm的等边三角形,得出BC=DF,由∠ACD=∠FDE=60°,得出BC∥DE,证出四边形BCDE是平行四边形;(2)(a)根据有一组邻边相等的四边形是菱形即可得到结论;(b)根据有一个角是直角的平行四边形是矩形即可得到结论.【解答】(1)证明:∵△ABC和△DEF是两个边长为6cm的等边三角形,∴BC=DE,∠ABC=∠FDE=60°,∴BC∥DE,∴四边形BCDE是平行四边形;(2)解:(a)当t=2秒时,▱BCDE是菱形,此时A与D重合,∴CD=DE,∴▱ADEC是菱形;(b)若平行四边形BCDE是矩形,则∠CDE=90°,如图所示:∴∠CDB=90°﹣60°=30°同理∠DCA=30°=∠CDB,∴AC=AD,同理FB=EF,∴F与B重合,∴t=(6+2)÷1=8秒,∴当t=8秒时,平行四边形BCDE是矩形.。
河北省沧州市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A . 是轴对称图形,但不是中心对称图形B . 是中心对称图形,但不是轴对称图形C . 既是轴对称图形,又是中心对称图形D . 既不是轴对称图形,也不是中心对称图形2. (2分) (2017七上·三原竞赛) 下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()城市北京武汉广州哈尔滨平均气温(单位:℃)-4.6 3.813.1-19.4A . 哈尔滨B . 广州C . 武汉D . 北京3. (2分)下列函数中,自变量x的取值范围是x>2的函数是()A .B .C .D .4. (2分) (2018八上·南召期中) 下列各式中,一定成立的是()A .B .C .D .5. (2分)如图,半径为1的⊙ O 与正五边形 ABCDE 的边相切于点的 A,C ,则弧AC的长为()A .B .C .D .6. (2分)如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m、n、p、q,如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示﹣2011的点与圆周上重合的点对应的字母是()A . mB . nC . pD . q7. (2分)(2014·来宾) 将分式方程 = 去分母后得到的整式方程,正确的是()A . x﹣2=2xB . x2﹣2x=2xC . x﹣2=xD . x=2x﹣48. (2分) (2017八上·西安期末) 到三角形三个顶点距离相等的点是().A . 三角形三边垂直平分线的交点B . 三角形三条内角平分线的交点C . 三角形三条高线所在直线的交点D . 三角形三条中线的交点9. (2分) (2017八下·滦县期末) 如图,平行四边形ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A . 26B . 20C . 17D . 1310. (2分)(2019·鞍山) 如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A . x>B . x<C . x>3D . x<3二、填空题 (共9题;共9分)11. (1分) (2016七上·钦州期末) 分解因式:a2﹣6a+9﹣b2=________.12. (1分) (2016八下·鄄城期中) 不等式组的整数解共有________个.13. (1分) (2018八上·兴义期末) 已知关于x的分式方程无解,则a=________14. (1分)(2020·扬州模拟) 如图,已知四边形是平行四边形,,将它沿翻折得到四边形,若四边形是正方形,则的度数是________.15. (1分) (2019七上·正定期中) 已知、互为倒数,、互为相反数,则________.16. (1分) (2019九上·靖远期末) 从长为10cm、7cm、5cm、3cm的四条线段中任选三条能够组成三角形的概率是________.17. (1分) (2020七上·中山期末) 已知x=3是方程的解,则m的值为________。
河北省沧州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017八上·梁子湖期末) 下列计划图形,不一定是轴对称图形的是()A . 角B . 等腰三角形C . 长方形D . 直角三角形2. (2分)(2017·安徽) 不等式4﹣2x>0的解集在数轴上表示为()A .B .C .D .3. (2分) (2018八上·建昌期末) 下列各分式中,是最简分式的是()A .B .C .D .4. (2分) (2019八上·北碚期末) 如图,▱ABCD的对角线交于点,且AC::3,那么AC的长为()A .B .C . 3D . 45. (2分) (2020八下·温州期中) 如图,四边形ABCD中,∠ADC=90°,AE=BE,BF=CF,连接EF,AD=3,CD=1,则EF的长为()A .B .C .D .6. (2分) (2019八下·碑林期末) 若x<y,则下列结论不一定成立的是()A . x﹣3<y﹣3B . ﹣5x>﹣5yC . ﹣D . x2<y27. (2分)(2018·拱墅模拟) ()A .B .C .D .8. (2分)如图,已知∠O=30°,点B是OM边上的一个点光源,在边ON上放一平面镜.光线BC经过平面镜反射后,反射光线与边OM的交点记为E,则△OCE是等腰三角形的个数有()A . 1个B . 2个C . 3个D . 3个以上9. (2分)(2019·义乌模拟) 如图,AC是平行四边形ABCD的对角线,当它满足以下:①∠1=∠2;②∠2=∠3;③∠B=∠3;④∠1=∠3中某一条件时,平行四边形ABCD是菱形,这个条件是()A . ①或②B . ②或③C . ③或④D . ①或④10. (2分) (2017八下·官渡期末) 一次函数y=kx+b的图象如图所示,则k、b的符号()A . k<0,b>0B . k>0,b>0C . k<0,b<0D . k>0,b<011. (2分) (2020七下·东丽期末) 已知三个非负数a、b、c满足若,则的最小值为()A .B .C .D . -112. (2分) (2019九上·海淀开学考) 已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A . 两组对边分别平行的四边形是平行四边形B . 对角线互相平分的四边形是平行四边形C . 一组对边平行且相等的四边形是平行四边形D . 两组对边分别相等的四边形是平行四边形二、填空题 (共4题;共4分)13. (1分)(2019·濮阳模拟) 如图,在Rt△ABC中,AB=2,BC=1.将边BA绕点B顺时针旋转90°得线段BD,再将边CA绕点C顺时针旋转90°得线段CE,连接DE,则图中阴影部分的面积是________.14. (1分)若一个正n边形的一个内角为144°,则n等于________ .15. (1分)分式方程=的解是x=________ .16. (1分)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD.过点B作BF//DE,与AE的延长线交于点F.若AB=6,则BF的长为________.三、解答题 (共12题;共106分)17. (10分) (2017八下·盐湖期末) 因式分解:2x2﹣4x+2.18. (5分) (2019八下·莱州期末)(1)解方程组: .(2)解不等式组: .19. (5分)(2019·行唐模拟) 定义新运算:对于非零的两个实数a , b ,规定a⊕b=如:2⊕3=(1)求4⊕(﹣6)的值;(2)计算⊕ ;(3)若2⊕(2x﹣1)=1,求x的值.20. (5分) (2017九下·杭州期中) 已知x=﹣2,求的值.21. (5分)如图,在△ABC中,AB>AC,AD平分∠BAC(1)尺规作图:在AD上标出一点P,使得点P到点B和点C的距离相等(不写作法,但必须保留作图痕迹);(2)过点P作PE⊥AB于点E,PF⊥AC于点F,求证:BE=CF;(3)若AB=a,AC=b,则BE=________,AE=________.22. (10分)在△ABC中,∠A=40°:(1)如图(1)BO、CO是△ABC的内角角平分线,且相交于点O,求∠BOC;(2)如图(2)BO、CO是△ABC的外角角平分线,且相交于点O,求∠BOC;(3)如图(3)BO、CO分别是△ABC的一内角和一外角角平分线,且相交于点O,求∠BOC;(4)根据上述三问的结果,当∠A=n°时,分别可以得出∠BOC与∠A有怎样的数量关系(只需写出结论).23. (10分) (2020九上·石城期末) 如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长。
河北省沧州市八年级下学期数学期末考试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题有10小题,每小题3分,共30分.) (共10题;共30分)1. (3分) (2019八下·郾城期中) 如果二次根式有意义,那么x的取值范围是()A . x≥0B . x≥3C . x≤3D . x≠32. (3分) (2019八下·泰兴期中) 下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (3分) (2019九下·十堰月考) 在最近很火的节目《中国诗词大会》中,除才女武亦姝实力超群外,其他选手的实力也不容小觑.以下是随机抽取的10名挑战者答对的题目数量的统计:人数3421答对题数4578这10名挑战者答对题目数量中的中位数和众数分别是()A . 4和5B . 5和4C . 5和5D . 6和54. (3分)若一元二次方程x2-ax+1=0有两个相等的实数根,则a的值可以是()A . 0B . 2D . 45. (3分)下列运算正确的是()A . -=B .C . ×=D .6. (3分) (2017八上·哈尔滨月考) 如图,AB=AC,AE=EC,∠ACE=28°,则∠B的度数是()A . 60°B . 70°C . 76°D . 45°7. (3分)(2017·河北模拟) 下列判断错误的是()A . 两组对边分别相等的四边形是平行四边形B . 四个内角都相等的四边形是矩形C . 四条边都相等的四边形是菱形D . 两条对角线垂直且平分的四边形是正方形8. (3分) (2018八下·邗江期中) 如图,在周长为10m的长方形窗户上钉一块宽为1m的长方形遮阳布,使透光部分正好是一正方形,则钉好后透光面积为()A . 4m2B . 9m2C . 16m29. (3分)如图,把长为8 cm的矩形纸片按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6 cm2 ,则打开后梯形的周长是()A . (10+2)cmB . (10+)cmC . 22 cmD . 18 cm10. (3分) (2019九下·义乌期中) 如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于为半径作弧,两弧交于点M,N;②作直线MN,且恰好经过点A,与CD交于点E,连接BE,则下列说法错误的是()A .B .C . 若AB=4,则D .二、填空题(本大题有10小题,每小题3分,共30分) (共10题;共30分)11. (3分)(2019·河北模拟) 计算: =________。
八年级下册数学沧州数学期末试卷测试卷(含答案解析)一、选择题1.式子2x -有意义,则x 的取值范围是( ) A .x ≥2 B .x ≤2 C .x ≥﹣2 D .x ≤﹣2 2.以下各组数为三边的三角形中,不是直角三角形的是( )A .31+,31-,22B .7,24,25C .4,7.5,8.5D .3.5,4.5,5.53.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠FB .∠B =∠BCFC .AC =CFD .AD =CF4.甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是25S =甲,212S =乙,则甲、乙两个同学的数学成绩比较稳定的是( )A .甲B .乙C .甲和乙一样D .无法确定5.如图所示,正方形ABCD 的边长为4,点E 为线段BC 上一动点,连结AE ,将AE 绕点E 顺时针旋转90°至EF ,连结BF ,取BF 的中点M ,若点E 从点B 运动至点C ,则点M 经过的路径长为( )A .2B .22C .23D .46.如图,在菱形ABCD 中,,AE AF 分别垂直平分,BC CD ,垂足分别为,E F ,则EAF ∠的度数是( )A .90°B .60°C .45°D .30°7.如图,点P 表示的数是-1,点A 表示的数是2,过点A 作直线l 垂直于P A ,在直线l 上取点B ,使AB =1,以点P 为圆心,PB 为半径画弧交数轴于点C ,则点C 所表示的数为( ).A .10B .101-+C .101+D .101-8.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(8,4),若直线经过点D (2,0),且将平行四边形OABC 分割成面积相等的两部分,则直线DE 的表达式是( )A .y=x-2B .y=2x-4C .y=x-1D .y=3x-6二、填空题9.若232(2)x x -+--有意义,则x 的取值范围是_______________. 10.已知菱形ABCD 的两条对角线分别长6和8,则它的面积是_____.11.如图,数字代表所在正方形的面积,则A 所代表的正方形的面积为_________.12.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,且OA =OD ,∠OAD =55°,则∠OAB 的度数为_______.13.写一个函数图象交y 轴于点()0,3-,且y 随x 的增大而增大的一次函数关系式_______.14.如图,在矩形ABCD 中,AB=3,AD=4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于_____.15.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1小时后,乙车才沿相同路线行驶乙车先到达B 地并停留1小时后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离(km)y 与乙车行驶时间(h)x 之间的函数关系如图所示下列说法:①乙车的速度是120km/h ;②160m =;③点H 的坐标是()7,80;④7.5n =.其中错误的是_______.(只填序号)16.函数y =kx 与y =6–x 的图像如图所示,则k =________.三、解答题17.计算: (1)1632(22055+ (32214524-(41112333-⎛⎫- ⎪⎝⎭.18.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点C 为一海港,且点C 与直线AB 上两点A 、B 的距离分别为300km 和400km ,又AB =500km ,以台风中心为圆心周围250km 以内为受影响区域. (1)海港C 会受台风影响吗?为什么?(2)若台风的速度为20km/h ,台风影响该海港持续的时间有多长?19.如图,方格纸中每个小正方形的边长均为1,线段AB 和线段CD 的端点均在小正方形的顶点上.(1)在方格纸中画以AB 为一边的正方形ABEF ,点E 和点F 均在小正方形的顶点上; (2)在方格纸中画以CD 为一边的菱形CDGH ,点G 和点H 均在小正方形的顶点上,菱形CDGH 的面积为20,连接FG ,并直接写出线段FG 的长.20.如图,在矩形AFCG 中,BD 垂直平分对角线AC ,交CG 于D ,交AF 于B ,交AC 于O .连接AD ,BC .(1)求证:四边形ABCD 是菱形;(2)若E 为AB 的中点,DE ⊥AB ,求∠BDC 的度数;21.阅读下列材料,然后回答问题:531+这样的式子其实我们还可以()())()22312313131313131⨯===++--,这种化简的步骤叫做分母有理化.(153+(2)猜想:211n n =++- (用含n 的式子表示)(3)化简:111113153752019201720212019++++++++++22.为了做好开学准备,某校共购买了20桶A 、B 两种桶装消毒液,进行校园消杀,以备开学.已知A 种消毒液300元/桶,每桶可供2000米2的面积进行消杀,B 种消毒液200元/桶,每桶可供1000米2的面积进行消杀.(1)设购买了A 种消毒液x 桶,购买消毒液的费用为y 元,写出y 与x 之间的关系式,并指出自变量x 的取值范围;(2)在现有资金不超过5300元的情况下,求可消杀的最大面积. 23.在平面直角坐标系中,已知,点,点B 落在第二象限,点D 是y 轴正半轴上一动点, (1)如图1,当时,将沿着直线BD 翻折,点O 落在第一象限的点E 处.①若轴,求点E 的坐标;②如图2,当点D 运动到中点时,连接AE ,请判断四边形的形状,并说明理由;③如图3,在折叠过程中,是否存在点D ,使得是以为腰的等暖三角形﹖若存在,求出对应D 点的坐标.若不存在.请说明理由;(2)如图4,将沿着翻折.得到.(点A 的对应点为点F ),若点F 到x轴的距离不大于3,直接写出的取值范围.(不需要解答过程)24.如图,在平面直角坐标系中,点A 的坐标为()5,0,点B 在y 轴正半轴上(OB OA <),把线段AB 绕点A 顺时针旋转90︒得到线段AC ,过点C 分别向x 轴,y 轴作垂线,垂足为D ,E .(1)求四边形ABEC 的面积;(2)若4CE BE =,求直线AC 的表达式;(3)在(2)的条件下,点P 为OE 延长线上一点,连接PC ,作PCD ∠的平分线,交x 轴于点F ,若PCF 为等腰三角形,求点F 的坐标.25.已知ABC ∆中,62,12AB AC BC ===.点P 从点B 出发沿线段BA 移动,同时点Q 从点C 出发沿线段AC 的延长线移动,点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D . (1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线,垂足为E ,当点P 、Q 在移动的过程中,设BE CD λ+=,λ是否为常数?若是请求出λ的值,若不是请说明理由.(3)如图③,E 为BC 的中点,直线CH 垂直于直线AD ,垂足为点H ,交AE 的延长线于点M ;直线BF 垂直于直线AD ,垂足为F ;找出图中与BD 相等的线段,并证明.【参考答案】一、选择题 1.A 解析:A 【分析】根据二次根式的性质和被开方数大于或等于0,可以求出x 的范围. 【详解】解:根据二次根式的性质,被开方数大于或等于0, 可知:x ﹣2≥0, 解得:x ≥2. 故选A . 【点睛】此题主要考查了二次根式的意义的条件.关键是把握二次根式中的被开方数必须是非负数,否则二次根式无意义.2.D解析:D 【分析】根据勾股定理的逆定理解题. 【详解】解:A. 222(31)(31)3133132)8++=+++-==, 222(31)(31)2)∴+=故A 是直角三角形,不符合题意; B. 2227+24=625,25=625,22272425∴+=故B 是直角三角形,不符合题意; C. 2224+7.5=72.25,8.5=72.25,2224+7.5=8.5∴故C 是直角三角形,不符合题意; D. 2223.5+4.5=32.5,5.5=30.252223.5+4.5 5.5∴≠故D 不是直角三角形,符合题意, 故选:D . 【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.3.B解析:B 【解析】 【分析】根据已知条件可以得到//AC DE ,对选项判断即可求出解. 【详解】解:∵D ,E 分别是AB ,BC 的中点 ∴//AC DE ,12DE AC =A :根据∠B =∠F 得不出四边形ADFC 为平行四边形,选项不符合题意; B :∠B =∠BCF ,∴CF//AD ,∴四边形ADFC 为平行四边形,选项符合题意; C :根据AC =CF 得不出四边形ADFC 为平行四边形,选项不符合题意; D :根据AD =CF 得不出四边形ADFC 为平行四边形,选项不符合题意; 故答案为B . 【点睛】此题考查了中位线的性质以及平行四边形的判定,熟练掌握有关性质即判定方法是解题的关键.4.A解析:A 【解析】 【分析】平均成绩相同情况下,方差越小越稳定即可求解. 【详解】解:∵甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是25S =甲,212S =乙,2S 甲<2S 乙,∴甲同学的数学成绩比较稳定. 故选择A . 【点睛】本题考查用平均数,方差进行决策,掌握平均数是集中趋势的物理量,方差是离散程度的物理量,方差越小波动越小,方差越大波动越大越不稳定是解题关键.5.B解析:B 【分析】已知EF ⊥AE ,当E 点在线段BC 上运动到两端时,正好是M 点运动的两个端点,由此可以判断M 点的运动轨迹是BC 、CD 中点的连线长. 【详解】解:取BC 、CD 的中点G 、H ,连接GH ,连接BD ∴GH 为△BCD 的中位线,即12GH BD =∵将AE 绕点E 顺时针旋转90°至EF , ∴EF ⊥AE ,当E 点在B 处时,M 点在BC 的中点G 处,当E 点在C 点处时,M 点在CD 中点处, ∴点M 经过的路径长为GH 的长, ∵正方形ABCD 的边长为4, ∴2242BD BC CD =+= ∴1222GH BD ==, 故选B .【点睛】本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M 点的运动轨迹.6.B解析:B 【解析】 【分析】根据垂直平分线的性质可得出△ABC 、△ACD 是等边三角形,从而先求得∠B =60°,∠C =120°,在四边形AECF 中,利用四边形的内角和为360°可求出∠EAF 的度数. 【详解】解:连接AC,∵AE垂直平分边BC,∴AB=AC,又∵四边形ABCD是菱形,∴AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠B=60°,∴∠BCD=120°,又∵AF垂直平分边CD,∴在四边形AECF中,∠EAF=360°-180°-120°=60°.故选B.【点睛】本题考查了菱形的性质及线段垂直平分线的性质,关键是掌握线段垂直平分线上的点到线段两端点的距离相等,及菱形四边形等的性质.7.D解析:D【解析】【分析】首先在直角三角形中,利用勾股定理可以求出线段PB的长度,然后根据PB=PC即可求出OC的长度,接着可以求出数轴上点C所表示的数.【详解】解:22=31=10PB+∴PB=PC,∴1101=-=,OC PC∴点C101,故选:D.【点睛】此题主要考查了实数与数轴之间的对应关系,首先正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.8.A解析:A【分析】过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可. 【详解】解:∵点B 的坐标为(8,4),∴平行四边形的对称中心坐标为(4,2), 设直线DE 的函数解析式为y=kx+b ,则4220k b k b +=⎧⎨+=⎩, 解得12k b =⎧⎨=-⎩,∴直线DE 的解析式为y=x-2. 故选:A . 【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.二、填空题9.3x ≥-且2x ≠ 【解析】 【分析】有意义可得30,x +≥ 由222x 有意义可得20,x -≠ 再解不等式组,从而可得答案. 【详解】解:22(2)x --有意义,3020x x ①②由①得:3,x ≥- 由②得:2,x ≠所以x 的取值范围是:3x ≥-且2,x ≠ 故答案为:3x ≥-且2x ≠ 【点睛】本题考查的是二次根式有意义的条件,负整数指数幂的含义,由二次根式有意义的条件,结合负整数指数幂的含义列出不等式组是解本题的关键. 10.24 【解析】 【详解】试题分析:本题直接根据菱形面积等于两条对角线的长度的乘积的一半进行计算.S=6×8÷2=24. 考点:菱形的性质.11.A解析:【解析】【分析】三个正方形的边长正好构成直角三角形的三边,根据勾股定理得到字母A 所代表的正方形的面积A =36+64=100.【详解】解:由题意可知,直角三角形中,一条直角边的平方=36,一条直角边的平方=64,则斜边的平方=36+64.故答案为:100.【点睛】本题考查了正方形的面积公式以及勾股定理.12.A解析:35°【分析】根据矩形的判定得到四边形ABCD 是矩形,由矩形的性质求出∠DAB ,代入∠OAB =∠DAB ﹣∠OAD 求出即可.【详解】解:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵OA =OD ,∴AC =BD ,∴四边形ABCD 是矩形,∴∠DAB =90°,∵∠OAD =55°,∴∠OAB =∠DAB ﹣∠OAD =35°,故答案为:35°.【点睛】本题考查了矩形的判定和性质,能根据矩形的性质求出∠DAB 的度数是解此题的关键. 13.y=x -3(答案不唯一)【分析】设这个一次函数的解析式为:y=kx +b ,然后将()0,3-代入可得b=-3,再根据y 随x 的增大而增大可得,k >0,最后写出一个符合以上结论的一次函数即可.【详解】解:设这个一次函数的解析式为:y=kx +b将()0,3-代入,解得b=-3,∵y 随x 的增大而增大∴k >0∴这个一次函数可以为y=x -3故答案为:y=x -3(答案不唯一)【点睛】此题考查的是根据一次函数的图象所经过的点和一次函数的增减性,写出符合条件的一次函数,掌握一次函数的图象及性质与各系数的关系是解决此题的关键.14.A 解析:125【详解】解:设AC 与BD 相交于点O ,连接OP ,过D 作DM ⊥AC 于M ,∵四边形ABCD 是矩形, ∴,AC=BD ,∠ADC=90°.∴OA=OD . ∵AB=3,AD=4,∴由勾股定理得:22345+ . ∵1134522ACD S DM ∆=⨯⨯=⨯⋅ ,∴DM=125. ∵AOD APO DPO S S S ∆∆∆=+, ∴111222AO DM AO PE DO PF ⋅⋅=⋅+⋅ . ∴PE+PF=DM=125.故选B . 15.④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时解析:④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km /h .①正确;由图象第2-6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m =160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故答案为:④.【点睛】本题考查函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.16.2【分析】首先根据一次函数y=6﹣x与y=kx图像的交点横坐标为2,代入一次函数y=6﹣x求得交点坐标为(2,4),然后代入y=kx求得k值即可.【详解】∵一次函数y=6﹣x与y=kx图像的解析:2【分析】首先根据一次函数y=6﹣x与y=kx图像的交点横坐标为2,代入一次函数y=6﹣x求得交点坐标为(2,4),然后代入y=kx求得k值即可.【详解】∵一次函数y=6﹣x与y=kx图像的交点横坐标为2,∴y=6﹣2=4,∴交点坐标为(2,4),代入y=kx,2k=4,解得:k=2.故答案为2.【点睛】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=6﹣x与y=kx两个解析式.三、解答题17.(1)2;(2)3;(3)143;(4)【分析】(1)将二次根式化简合并进行计算即可;(2)将二次根式有理化进行计算即可;(3)根据平方差公式化简计算即可;(4)先将二次根式、绝对值、负指解析:(1)2;(2)3;(3)143;(4【分析】(1)将二次根式化简合并进行计算即可;(2)将二次根式有理化进行计算即可;(3)根据平方差公式化简计算即可;(4)先将二次根式、绝对值、负指数幂化简,再合并同类项即可.【详解】(1)2==,(21535==,(31311143=⨯=,(4113333-⎛⎫-= ⎪⎝⎭【点睛】本题考查的是二次根式的混合运算,将各个式子化为最减是解答此题的关键.18.(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长解析:(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图所示,过点C 作CD ⊥AB 于D 点,∵AC =300km ,BC =400km ,AB =500km ,∴222AC BC AB +=, ∴△ABC 为直角三角形,∴1122··AC BC AB CD =, ∴300400500CD ⨯=,∴240km CD =,∵以台风中心为圆心周围250km 以内为受影响区域,∴海港C 会受到台风影响;(2)由(1)得CD =240km ,如图所示,当EC =FC =250km 时,即台风经过EF 段时,正好影响到海港C ,此时△ECF 为等腰三角形,∵70km ED =,∴EF =140km ,∵台风的速度为20km/h ,∴140÷20=7h ,∴台风影响该海港持续的时间有7h.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.19.(1)见解析;(2)见解析,【解析】【分析】(1)根据正方形的定义画出图形即可;(2)画出底为,高为的菱形即可,利用勾股定理求出.【详解】解:(1)如图,正方形即为所求;(2)如图,菱解析:(1)见解析;(2)见解析,26FG=【解析】【分析】(1)根据正方形的定义画出图形即可;(2)画出底为5,高为4的菱形即可,利用勾股定理求出FG.【详解】解:(1)如图,正方形ABEF即为所求;(2)如图,菱形CDGH即为所求,22FG=+=.5126【点睛】本题考查作图-应用与设计作图,勾股定理,菱形的性质,正方形的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.20.(1)见解析;(2)60°【分析】(1)根据垂直平分线的性质得到AD=CD,AB=BC,根据三角形全等得到CD =AB,即可求证;(2)根据等边三角形的性质求得∠DBA=60°,即可求解.【详解析:(1)见解析;(2)60°【分析】(1)根据垂直平分线的性质得到AD=CD,AB=BC,根据三角形全等得到CD=AB,即可求证;(2)根据等边三角形的性质求得∠DBA=60°,即可求解.【详解】(1)证明:∵BD垂直平分AC,∴OA=OC,AD=CD,AB=BC.∵四边形AFCG是矩形,∴CG∥AF,∴∠CDO=∠ABO,∠DCO=∠BAO,∴△COD≌△AOB(AAS),∴CD=AB,∴AB=BC=CD=DA,∴四边形ABCD是菱形.(2)∵E为AB的中点,DE⊥AB,∴DE垂直平分AB,∴AD=DB.又∵AD=AB,∴△ADB为等边三角形,∴∠DBA=60°.∵CD∥AB,∴∠BDC=∠DBA=60°.【点睛】此题考查了菱形的判定,涉及了全等三角形的证明,矩形的性质、垂直平分线的性质等,熟练掌握相关基本性质是解题的关键.21.(1);(2);(3)【解析】【分析】(1)根据材料运用方法进行分母有理化即可;(2)根据题意总结规律即可;(3)先分母有理化,再根据式子的规律即可求解.【详解】解:(1)==;解析:(123【解析】【分析】(1)根据材料运用方法进行分母有理化即可;(2)根据题意总结规律即可;(3)先分母有理化,再根据式子的规律即可求解.【详解】解:(1(22(32019+=122019+=112019 2+【点睛】本题主要考查了分母有理化,解题的关键是根据材料能正确的进行分母有理化.22.(1)y=100x+4000(0<x<20且x为整数);(2)33000米2.【分析】(1)根据题意,可以写出y与x之间的关系式,并写出自变量x的取值范围;(2)根据现有资金不超过5300元,解析:(1)y=100x+4000(0<x<20且x为整数);(2)33000米2.【分析】(1)根据题意,可以写出y与x之间的关系式,并写出自变量x的取值范围;(2)根据现有资金不超过5300元,可以求得x的取值范围,再根据题意,可以得到消杀面积与x的函数关系式,然后根据一次函数的性质,即可得到可消杀的最大面积.【详解】解:(1)由题意可得,y=300x+200(20﹣x)=100x+4000,即y与x之间的关系式为y=100x+4000(0<x<20且x为整数);(2)∵现有资金不超过5300元,∴100x+4000≤5300,解得,x≤13,设可消杀的面积为S米2,S=2000x+1000(20﹣x)=1000x+20000,∴S随x的增大而增大,∴当x=13时,S取得最大值,此时S=33000,即可消杀的最大面积是33000米2.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)①,;②四边形ABDE是平行四边形;理由见解析;③存在,D (0,2.5);(2)【分析】(1)①由,求出和长度,由轴,求出点的坐标;②延长交轴于点,连接,得到正方形,从而,且,故得证四边解析:(1)①,;②四边形ABDE是平行四边形;理由见解析;③存在,D (0,2.5);(2)【分析】(1)①由,求出和AB长度,由轴,求出点E的坐标;②延长BD交x轴于点H,连接HE,得到正方形,从而,且,故得证四边形是平行四边形;③利用等腰三角形的定义和翻折的特征得到中垂线,再得证三角形全等,从而求出点D的坐标;(2)分析清楚和点F到x轴的距离之间的关系,然后当F到x轴的距离为3时,求出的值,最后得出的取值范围.【详解】解:(1)当时,,A,①,(0,4),,,将沿着直线BD翻折后轴,如图(1),,,,.故答案为:,.②四边形是平行四边形,理由如下:延长BD交x轴于点H,连接,,点D是的中点,,,,,,,,由折叠得:,∴四边形是正方形,,,∴四边形是平行四边形.③如图(3),连接,延长BD交于点M,由折叠可知,,,是的中垂线,,,是以、为腰的等腰三角形,,,,设,则:,,,解得:,,∴存在点,使得是以、为腰的等腰三角形.(3)如图(4),过点F作轴于点N,作轴于点G,则,四边形是矩形,由折叠得:,当F到x轴的距离为3,即时,,,,,∴,∴,解得:,越小,点B 越向左,越大, 越小,越小,即点F 到x 轴的距离越小,点F 到x 轴的距离不大于3,.【点睛】本题考查了平行的性质、勾股定理、翻折的特征、等腰三角形的性质、全等的判定和性质、三角形的面积等知识点.要求学生能够熟练应用勾股定理求线段长度,应用等面积法列方程求解,同时学会数学结合的思想解题.对于的取值范围,要会分析和点F 到x 轴的距离之间的关系.24.(1);(2);(3)或或.【解析】【分析】(1)连接,作,交的延长线于点,可知,,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解;(2)设,即可表示出、的长度,根据求解析:(1)25;(2)52533y x =-;(3)()0,0或()2,0-或4,03⎛⎫ ⎪⎝⎭. 【解析】【分析】(1)连接AE ,作90EAG ∠=︒,AG 交EC 的延长线于点G ,可知90BAC EAG ∠=∠=︒,CAG BAE ∠=∠,再根据180CEO BAC ∠+∠=︒,可得180ABE ACE ∠+∠=︒,又因为180ACG ACE ∠+∠=︒,得到ABE ACG ∠=∠,即可证明ABE ACG ≌,所以可得AEG ABEC S S =四边形,再计算AE 的长度即可求解;(2)设OB a =,即可表示出CE 、BE 的长度,根据4CE BE =求出a 的值,即可得到C 点的坐标,再设直线AC 的解析式为y kx b =+,将A 、C 两点的坐标代入即可;(3)设点F 坐标为()0m ,,因为CF 平分PCD ∠,所以PCF DCF ∠=∠,最后分三种情况进行讨论即可.【详解】(1)∵()5,0A ,∴5OA =,连接AE ,作90EAG ∠=︒,AG 交EC 的延长线于点G ,如图,∴90BAC EAG ∠=∠=︒,∴CAG BAE ∠=∠,∵180CEO BAC ∠+∠=︒,即180AEB AEC BAE CAE ∠+∠+∠+∠=︒,在ACE 中,180AEC CAE ACE ∠+∠+∠=︒,∵ 180AEB BAE ABE ∠+∠=︒-∠,∴180ABE ACE ∠+∠=︒,又∵180ACG ACE ∠+∠=︒,∴ABE ACG ∠=∠,∵AB AC =,∴ABE ACG ≌,∵AE AG =,∴45AEG AGE ∠=∠=°,∴45AEO EAO ∠=∠=︒,∴5OE OA ==, ∴52AE = ∴15252252AEG ABEC S S ==⨯=四边形; (2) 设OB a =,由(1)可知,OA OE =,∵OE CD =,∴OA CD =,∵AOB 与CDA 都是直角三角形,且AB AC =,∴AOB CDA △≌△,∴AD OB a ==,∴5CE OD a ==+,5BE a =-,∵4CE BE =,∴()545a a +=-,解得3a =,∴()8,5C ,又∵()5,0A ,设直线AC 的解析式为y kx b =+,则5085k b k b +=⎧⎨+=⎩,解得53253k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AC 的解析式为52533y x =-; (3)设点F 坐标为()0m ,, ∵CF 平分PCD ∠,∴PCF DCF ∠=∠,①当PF PC =时,则PFC PCF DCF ∠=∠=∠,∴//PF CD ,∴F 与O 重合,∴()0,0F ;②当PF CF =时,过点F 作FM CP ⊥,垂足为M ,则PM CM =,90CMF CDF ∠=∠=︒,又∵PCF DCF ∠=∠,CF CF =,∴CMF CDF ≌△△,∴5CM CD ==,∴10PC =,在Rt PCE △中,由勾股定理可求得6PE =,∴11OP =,在Rt POF △中,222PF OF OP =+,在Rt CDF 中,222=CF CD DF +,∴2222=OF OP CD DF ++,∴()()22221158m m -+=+-, 解得2m =-,∴()2,0F -;③当CP CF =时,延长CF 交y 轴于点N ,∵//CD PN ,且PCF DCF ∠=∠∴CNP PCF DCF ∠=∠=∠,∴PN PC =,过点P 作PQ CF ⊥,垂足为Q ,则CQ QN =,90PQC CDF ∠=∠=︒,∴PCQ FCD ≌,∴5CQ CD ==,∴10CN =,在Rt CEN 中,由勾股定理可求得6EN =,∴1ON =,∴()0,1N -,∵()8,5C ,设直线CN 的解析式为y kx b =+,则851k b b +=⎧⎨=-⎩,解得341k b ⎧=⎪⎨⎪=-⎩, ∴直线CN 解析式为314y x =-, 当0y =时,解得43x =, ∴4,03F ⎛⎫ ⎪⎝⎭.综上所述,当PCF 为等腰三角形时,F 点坐标为()0,0或()2,0-或4,03⎛⎫ ⎪⎝⎭. 【点睛】本题是四边形的综合题,考查了矩形的性质、三角形内角和定理、全等三角形的性质和判定、勾股定理、待定系数法求函数解析式等知识点,解题要注意分类讨论的思想. 25.(1)3;(2)6(3)BD=AM ,证明见解析【分析】(1)因为速度相等和等腰三角形的已知条件,作平行线构造全等三角形,问题得以解决. (2)这类题一般结论成立,根据(1)中的思路,加上等腰三角 解析:(1)3;(2)6(3)BD=AM ,证明见解析【分析】(1)因为速度相等和等腰三角形的已知条件,作平行线构造全等三角形,问题得以解决. (2)这类题一般结论成立,根据(1)中的思路,加上等腰三角形的性质,可以求出定值. (3)根据已知条件可以判断ABC ∆是等腰直角三角形,近而求出AED ∆≌CEM ∆,得出ED=EM,即可得出结论.【详解】(1)如图,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP=CQ ,∵PF//AQ ,∴∠PFB=∠ACB ,∠DPF=∠CQD ,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD ,∴DF=CD=12CF ,又因P 是AB 的中点,PF ∥AQ ,∴F 是BC 的中点,即FC=12BC=6,∴CD=12CF=3;(2)6BE CD λ+==为定值. 如图②,点P 在线段AB 上, 过点P 作PF//AC 交BC 于F ,则有(1)可知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF∵有(1)可知△PFD ≌△QCD ∴CD=12CF ∴()111162222BE CD BF CF BF CF BC λ+==+=+== (3)BD=AM证明:∵62,12AB AC BC ===∴222144AB AC BC +==∴ABC ∆是等腰直角三角形∵E 为BC 的中点∴12CE BE BC ==∴12AE BC =,090AEC CEM ∠=∠=∴AE CE BE ==,090∠+∠=EAD ADE ∵AH ⊥CM ∴090ECM CDH ∠+∠= ∵ADE CDH ∠=∠ ∴EAD ECM ∠=∠ ∴AED ∆≌CEM ∆ (ASA) ∴DE ME = ∴BE DE AE ME +=+ 即:BD AM =。
2018-2019学年河北省沧州市八年级(下)期末数学试卷收获!来检测一下自己吧,请你认真审题,精心作答,细心检查。
相信你能取得好成绩!一、正确选择(本大题共10个小题,每小题3分,共30分)1.(3分)要了解某校七至九年级的课外作业负担情况,下列抽样调查样本的代表性较好的是()A.调查七年级全体女生B.调查八年级全体男生C.调查八年级全体学生D.随机调查七、八、九各年级的100名学生2.(3分)如图,在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点坐标为()A.(﹣3,﹣5)B.(3,5)C.(3,﹣5)D.(5,﹣3)3.(3分)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.14.(3分)下列关于变量x,y的关系中:①y=x;②y2=x;③2x2=y.其中y是x的函数有()A.3个B.2个C.1个D.0个5.(3分)对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A.通常不可互相转换B.扇形统计图能清楚地表示出各部分在总体中所占的百分比C.折线统计图能清楚地表示出每个项目的具体数目D.条形统计图能清楚地反映事物的变化情况6.(3分)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm7.(3分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB 上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+108.(3分)如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M 处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对9.(3分)根据如图的程序,计算当输入值x=﹣2时,输出结果y为()A.1 B.5 C.7 D.以上都有可能10.(3分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A.20kg B.25kg C.28kg D.30kg二、填空(本题共8个小题,每小题3分,共24分)11.(3分)某市为了分析全市9600名初中毕业生的中考数学考试成绩,共抽取15本试卷进行调查,其中每本试卷都是30份,该调查的样本容量是.12.(3分)如果M(a,b),N(c,d)是平行于y轴的一条直线上的两点,那么a与c的关系是.13.(3分)在函数y=x中,若自变量x的取值范围是50≤x≤75,则函数值y的取值范围为.14.(3分)已知一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),直接写出方程的解.15.(3分)一个五边形有三个内角是直角,另两个内角都等于n°,则n=.16.(3分)聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是.17.(3分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为.18.(3分)如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是米.三、解答与计算(本题共4个小题,每小题7分,共28分)19.(7分)如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的平面直角坐标系.并写出点C,D,E,F的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?20.(7分)如图,E、F是▱ABCD的对角线AC上的两点,且AE=CF,请你以点F为一个端点与图中已标明字母的某一点连成一条线段,猜想并说明它与图中已有的某一条线段相等(只需说明一组线段相等即可).(1)连结;(2)猜想:=;(3)证明:21.(7分)今年我国中东部大部分地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为%;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数.22.(7分)在弹性限度内,弹簧的长度y是所挂物体质量x的一次函数,当所挂物体的质量为1kg时弹簧长15cm,当所挂物体的质量为3kg时弹簧长16cm,写出y与x之间的关系式,并求出当所挂物体的质量为4kg时弹簧伸长了多少厘米?23.(9分)如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB.(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求点E的坐标.24.(9分)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.25.(9分)已知函数y=kx+b的图象与x轴、y轴分别交于点A(12,0)、点B,与函数y=x的图象交于点E,点E的横坐标为3,求:(1)直线AB的解析式;(2)在x轴有一点F(a,0).过点F作x轴的垂线,分别交函数y=kx+b和函数y=x于点C、D,若以点B、O、C、D为顶点的四边形是平行四边形,求a的值.26.(11分)某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.2016-2017学年河北省沧州市八年级(下)期末数学试卷参考答案与试题解析一、正确选择(本大题共10个小题,每小题3分,共30分)1.(3分)(2017春•沧州期末)要了解某校七至九年级的课外作业负担情况,下列抽样调查样本的代表性较好的是()A.调查七年级全体女生B.调查八年级全体男生C.调查八年级全体学生D.随机调查七、八、九各年级的100名学生【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、B、C中进行抽查,对抽取的对象划定了范围,因而不具有代表性;D、随机调查七、八、九各年级的100名学生,调查具有代表性;故选:D.【点评】考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.2.(3分)(2017春•沧州期末)如图,在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点坐标为()A.(﹣3,﹣5)B.(3,5)C.(3,﹣5)D.(5,﹣3)【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:点P(﹣3,5)关于x轴的对称点坐标为(﹣3,﹣5),故选:A.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.(3分)(2014•重庆)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.1【分析】把点的坐标代入函数解析式计算即可得解.【解答】解:∵点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,∴3k﹣2=1,解得k=1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征,准确计算是解题的关键.4.(3分)(2017春•沧州期末)下列关于变量x,y的关系中:①y=x;②y2=x;③2x2=y.其中y是x的函数有()A.3个B.2个C.1个D.0个【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:∵对于x的每一个取值,y都有唯一确定的值,①y=x;③2x2=y.当x取值时,y有唯一的值对应;故选:B.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5.(3分)(2017春•沧州期末)对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A.通常不可互相转换B.扇形统计图能清楚地表示出各部分在总体中所占的百分比C.折线统计图能清楚地表示出每个项目的具体数目D.条形统计图能清楚地反映事物的变化情况【分析】根据条形统计图和扇形统计图、折线统计图的概念判断.【解答】解:A、这三种统计图可以互相转化,但是各有利弊,不是经常互相转化,故此选项错误;B、扇形统计图直接反映部分占总体的百分比大小,故此选项正确;C、折线统计图能清楚地反映事物的变化情况,故此选项错误;D、条形统计图能清楚地表示出每个项目的数据,故此选项错误;故选;B.【点评】本题考查的是条形统计图和扇形统计图、折线统计图的不同,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,折线统计图能清楚地反映事物的变化情况.6.(3分)(2007•日照)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm【分析】根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.【解答】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.【点评】此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.7.(3分)(2016•温州)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.【点评】本题主要考查矩形的性质及点的坐标的意义,根据坐标的意义得出x、y之间的关系是解题的关键.8.(3分)(2011•海南)如图,将平行四边形ABCD折叠,使顶点D恰落在AB 边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对【分析】根据题意,推出∠B=∠D=∠AMN,即可推出结论①,由AM=DA推出四边形AMND为菱形,因此推出②.【解答】解:∵平行四边形ABCD,∴∠B=∠D=∠AMN,∴MN∥BC,∵AM=DA,∴四边形AMND为菱形,∴MN=AM.故选A.【点评】本题主要考查翻折变换的性质、平行四边形的性质、菱形的判定和性质,平行线的判定,解题的关键在于熟练掌握有关的性质定理,推出四边形AMND 为菱形.9.(3分)(2017春•沧州期末)根据如图的程序,计算当输入值x=﹣2时,输出结果y为()A.1 B.5 C.7 D.以上都有可能【分析】先由x=﹣2≤﹣1,确定x与y的关系式为y=x2+3,然后代值计算即可.【解答】解:∵x=﹣2≤﹣1,∴y=x2+3=(﹣2)2+3=7,故选:C.【点评】本题考查了代数式求值:把满足题意的字母的值代入代数式,然后进行实数运算即可.10.(3分)(2009•成都)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A.20kg B.25kg C.28kg D.30kg【分析】根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x对应的值即可.【解答】解:设y与x的函数关系式为y=kx+b,由题意可知,所以k=30,b=﹣600,所以函数关系式为y=30x﹣600,当y=0时,即30x﹣600=0,所以x=20.故选A.【点评】本题重点考查了一次函数的图象及一次函数的应用,是一道难度中等的题目.二、填空(本题共8个小题,每小题3分,共24分)11.(3分)(2017春•沧州期末)某市为了分析全市9600名初中毕业生的中考数学考试成绩,共抽取15本试卷进行调查,其中每本试卷都是30份,该调查的样本容量是450.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:由题意,得抽取了15×30=450份,故答案为:450.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.12.(3分)(2017春•沧州期末)如果M(a,b),N(c,d)是平行于y轴的一条直线上的两点,那么a与c的关系是相等.【分析】根据平行于y轴的直线上的点的横坐标相等即可得出a=c.【解答】解:∵M(a,b),N(c,d)是平行于y轴的一条直线上的两点,∴a=c.故答案为相等.【点评】本题考查了坐标与图形性质,熟记平行于y轴的直线上的点的横坐标相等是解题的关键.13.(3分)(2017春•沧州期末)在函数y=x中,若自变量x的取值范围是50≤x≤75,则函数值y的取值范围为120≤y≤180.【分析】根据正比例函数图象的增减性解答.【解答】解:∵函数y=x的y随x的增大而增大,∴当x=50时,y=×50=120.当x=75时,y=×75=180.则120≤y≤180.故答案是:120≤y≤180.【点评】本题考查了正比例函数的性质.解题时,利用了正比例函数图象的性质.14.(3分)(2017春•沧州期末)已知一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),直接写出方程的解.【分析】根据方程组的解即为函数图象的交点坐标解答即可.【解答】解:∵一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),∴方程组的解为.故答案为为.【点评】本题主要考查了一次函数与二元一次方程组,掌握函数图象交点坐标为两函数解析式组成的方程组的解是解题的关键.15.(3分)(2017春•沧州期末)一个五边形有三个内角是直角,另两个内角都等于n°,则n=135.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给五边形有三个角是直角,另两个角都等于n,列方程可求解.【解答】解:依题意有3×90+2n=(5﹣2)•180,解得n=135.故答案为:135.【点评】本题考查根据多边形的内角和计算公式求多边形的内角,解答时要会根据公式进行正确运算、变形和数据处理.16.(3分)(2008•达州)聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是.【分析】首先正确数出所有的数字个数和9出现的个数;再根据频率=频数÷总数,进行计算.【解答】解:根据题意,知在数据中,共33个数字,其中11个9;故数字9出现的频率是=.【点评】本题考查频率的求法:频率=.17.(3分)(2012•平原县一模)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为(2,1).【分析】由四边形OABC是矩形,BE=BD=1,易得△BED是等腰直角三角形,由折叠的性质,易得∠BEB′=∠BDB′=90°,又由点B的坐标为(3,2),即可求得点B′的坐标.【解答】解:∵四边形OABC是矩形,∴∠B=90°,∵BD=BE=1,∴∠BED=∠BDE=45°,∵沿直线DE将△BDE翻折,点B落在点B′处,∴∠B′ED=∠BED=45°,∠B′DE=∠BDE=45°,B′E=BE=1,B′D=BD=1,∴∠BEB′=∠BDB′=90°,∵点B的坐标为(3,2),∴点B′的坐标为(2,1).故答案为:(2,1).【点评】此题考查了折叠的性质、矩形的性质以及坐标与图形的性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.18.(3分)(2010•安顺)如图是某工程队在“村村通”工程中,修筑的公路长度y (米)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是504米.【分析】本题可设x≥2时,函数解析式为y=kx+b,根据待定系数法即可求出函数解析式,进而即可求出答案.【解答】解:设x≥2时,函数解析式为y=kx+b,∴2k+b=180,4k+b=288,解得k=54,b=72,∴y=54x+72,∴当x=8时,y=504.故填504.【点评】此题主要考查了函数图象,本题用到的知识点是:已知两点,可确定直线的函数解析式.当已知函数的某一点的横坐标时,也可求出相应的y值.三、解答与计算(本题共4个小题,每小题7分,共28分)19.(7分)(2017春•沧州期末)如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的平面直角坐标系.并写出点C,D,E,F的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?【分析】(1)以A点为原点,水平方向为x轴,建立平面直角坐标系,根据坐标系可得答案;(2)由每级台阶高为1可得答案.【解答】解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5).(2)每级台阶高为1,所以10级台阶的高度是10.【点评】本题主要考查点的坐标,掌握平面直角坐标系及点的坐标是解题的关键.20.(7分)(2017春•沧州期末)如图,E、F是▱ABCD的对角线AC上的两点,且AE=CF,请你以点F为一个端点与图中已标明字母的某一点连成一条线段,猜想并说明它与图中已有的某一条线段相等(只需说明一组线段相等即可).(1)连结DF;(2)猜想:BE=DF;(3)证明:【分析】由平行四边形的性质和已知条件得出OB=OD,OE=OF,证出四边形BEDF是平行四边形,即可得出结论..【解答】(1)解:连接DF;故答案为:DF;(2)解:猜想:BE=DF;故答案为:BE,DF;(3)证明:连接BF,连接BD,与AC交于点O:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,∴OE=OF,∴四边形BEDF是平行四边形,∴BE=DF.【点评】本题结合平行四边形的性质与判定,证明四边形BEDF是平行四边形是解决问题的关键.21.(7分)(2016•江汉区一模)今年我国中东部大部分地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=40,n=100,扇形统计图中E组所占的百分比为15%;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数.【分析】(1)根据A组有80人,所占的百分比是20%,即可求得总人数,用总人数乘以B组所占的百分比得到B组的人数,用总人数减去A、B、D、E四个组的人数得到C组人数,然后用E组人数÷总人数即可求出E组所占的百分比;(2)利用样本估计总体,用该市人口总数乘以持D组“观点”的市民所占百分比即可求解.【解答】解:(1)调查的总人数是:80÷20%=400(人),则m=400×10%=40(人),n=400﹣80﹣40﹣120﹣60=100(人),E组所占的百分比为:60÷400=15%.故答案是:40,100,15;(2)100×=30(万).答:其中持D组“观点”的市民人数30万人…(8分)【点评】本题考查的是扇形统计图和频数分布表的综合运用,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)(2017春•沧州期末)在弹性限度内,弹簧的长度y是所挂物体质量x 的一次函数,当所挂物体的质量为1kg时弹簧长15cm,当所挂物体的质量为3kg 时弹簧长16cm,写出y与x之间的关系式,并求出当所挂物体的质量为4kg时弹簧伸长了多少厘米?【分析】设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;把x=4时代入解析式求出y的值即可.【解答】解:设y与x的函数关系式为y=kx+b,由题意,得,解得:.故y与x之间的关系式为:y=0.5x+14.5;当x=4时,y=0.5×4+14.5=16.5.所以弹簧深长的长度为16.5﹣14.5=2厘米,答:当所挂物体的质量为4kg时弹簧伸长了2厘米.【点评】本题考查了运用待定系数法求一次函数的解析式的运用,由自变量求函数值的运用,解答时求出函数的解析式是关键.23.(9分)(2017春•沧州期末)如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB.(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求点E的坐标.【分析】(1)易证四边形AEBD是平行四边形,再证明临边DA=DB即可;(2)连接DE,交AB于点F,分别求出EF,AF的长即可求出点E的坐标.【解答】解:(1)证明:∵BE∥AC,AE∥OB,∴四边形AEBD是平行四边形.又∵四边形OABC是矩形,∴OB=AC,且互相平分,∴DA=DB.∴四边形AEBD是菱形.(2)连接DE,交AB于点F.由(1)四边形AEBD是菱形,∴AB与DE互相垂直平分于点F.又∵OA=3,OC=2,∴EF=DF=OA=1.5,AF=AB=1.∴E点坐标为(4.5,1).【点评】本题考查了平行四边形的判定、菱形的判定、矩形的性质、坐标与图形特征,正确做出图形的辅助线是解题的关键.24.(9分)(2017春•沧州期末)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.=OA•y,然后把y转换成x,即可求【分析】(1)根据三角形的面积公式S△OPA得△OPA的面积S与x的函数关系式;(2)把s=10代入S=﹣4x+40,求得x的值,把x的值代入y=﹣x+10即可求得P的坐标.【解答】解(1)∵A(8,0),∴OA=8,S=OA•|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10).(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).【点评】本题考查了一次函数图象上点的坐标特征和一次函数的性质,把求三角形的面积和一次函数的图象结合起来,综合性比较强.25.(9分)(2017春•沧州期末)已知函数y=kx+b的图象与x轴、y轴分别交于点A(12,0)、点B,与函数y=x的图象交于点E,点E的横坐标为3,求:(1)直线AB的解析式;(2)在x轴有一点F(a,0).过点F作x轴的垂线,分别交函数y=kx+b和函数y=x于点C、D,若以点B、O、C、D为顶点的四边形是平行四边形,求a的值.【分析】(1)将x=3代入y=x中求出y值,即得出点E的坐标,结合点A、E 的坐标利用待定系数法即可求出直线AB的解析式;(2)由点F的坐标可表示出点C、D的坐标,由此即可得出线段CD的长度,根据平行四边形的判定定理即可得出CD=OB,即得出关于a的方程,解方程即可得出结论.【解答】解:(1)把x=3代入y=x,得y=3,∴E(3,3),把A(12,0)、E(3,3)代入y=kx+b中,得:,解得:,∴直线AB的解析式为y=﹣x+4.(2)由题意可知C、D的横坐标为a,∴C(a,﹣a+4),D(a,a),∴CD=|a﹣(﹣a+4)|=|a﹣4|.若以点B、O、C、D为顶点的四边形是平行四边形,则CD=OB=4,即|a﹣4|=4,解得:a=6或a=0(舍去).故:当以点B、O、C、D为顶点的四边形是平行四边形时,a的值为6.【点评】本题考查了一次函数图象上点的坐标特征、待定系数法求函数解析式以及平行四边形的判定,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据CD=OB得出关于a的方程.本体属于中档题,难度不大,解决该题型题目时,根据平行四边形的判定找出相等的线段是关键.26.(11分)(2016•卧龙区一模)某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.【分析】(1)根据函数图象可知点(0,15)和点(1,10)在甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数图象上,从而可以解答本题;(2)根据函数图象可以分别求得甲乙刚开始两端对应的函数解析式,联立方程组即可求得第一次相遇的时间;(3)根据函数图象可以得到在最后一段甲对应的函数解析式,乙到侧门时时间为2.2h,从而可以得到乙回到侧门时,甲到侧门的路程.【解答】解:(1)设甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=kx+b,∵点(0,15)和点(1,10)在此函数的图象上,∴,解得k=﹣5,b=15.∴y=﹣5x+15.即甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=﹣5x+15.(2)设乙骑自行车从侧门匀速前往正门对应的函数关系式y=kx,。
河北省沧州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列方程不是分式方程的是()A . +x=2+3xB . =C . ﹣ =4D . + =12. (2分) (2019八上·太原期中) 已知一次函数 ( 为常数)的图象经过平面直角坐标系的第一、二、三象限,则下列结论一定正确的是()A .B .C .D .3. (2分)如果点C、D是线段AB上的两个点,且AC=BD,那么下列结论中正确的是()A . 与是平行向量B . 与是相等向量C . 与是相等向量D . 与是相反向量4. (2分)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A .B .C .D . 15. (2分)一个角的平分线的尺规作法,其理论依据是全等三角形判定定理()A . 边角边B . 边边边C . 角角边D . 角边角6. (2分) (2019九上·重庆开学考) 下列命题是真命题的是()A . 对角线相等的四边形是矩形B . 对角线互相垂直的矩形为正方形C . 对角线互相垂直的四边形为菱形D . 对角线互相垂直且相等的四边形为正方形二、填空题 (共11题;共11分)7. (1分)我们把a、b中较小的数记作min{a,b},设函数f(x)={2 ,|x﹣2|}.若动直线y=m与函数y=f(x)的图象有三个交点,它们的横坐标分别为x1、x2、x3 ,则x1x2x3的最大值为________.8. (1分) (2018八下·深圳月考) 如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A ,则不等式mx+2<kx+b<0的解集为________.9. (1分)(2020·衢州) 一元一次方程2x+1=3的解是x=________。
2017-2018学年河北省沧州市沧县八年级(下)期末数学试卷一、正确选择(本大题共10个小题;每小题3分,共30分。
各题均为单选)1.(3分)下列调查中,最适宜采用普查方式的是()A.对我国初中学生视力状况的调查B.对一批节能灯管使用寿命的调查C.对量子科学通信卫星上某种零部件的调查D.对“最强大脑”节目收视率的调查2.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.53.(3分)在直角坐标系中,点M,N在同一个正比例函数图象上的是()A.M(2,﹣3),N(﹣4,6)B.M(﹣2,3),N(4,6)C.M(﹣2,﹣3),N(4,﹣6)D.M(2,3),N(﹣4,6)4.(3分)下列各种判定矩形的说法正确的是()A.对角线相等的四边形是矩形B.有三个角相等的四边形是矩形C.对角线互相平分且相等的四边形是矩形D.对角线相等且互相垂直的四边形是矩形5.(3分)当b<0时,一次函数y=x+b的图象大致是()A.B.C.D.6.(3分)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量7.(3分)平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)8.(3分)某校八年级登山小组以akm/h的速度开始登山,走了一段时间后休息了一会儿由于山路逐渐变陡,所以休息后就以bkm/h的速度继续前进.一段时间后到达山顶,吃午饭并原地活动午休后,又以ckm/h的速度下山(b<a<c),中间再也没有休息过,一直返回山脚.此次登山活动整个过程中所走的路程s(km)与所用时间t(h)之间的函数关系的图象大致是下列中的()A.B.C.D.9.(3分)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10B.14C.20D.2210.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.4二、准确填空(本大题共8个小题,每小题3分,共24分)11.(3分)为了了解参加某运动会2500名运动员的年龄情况,从中抽取了100名运动员的年龄,在这个问题中,样本是.12.(3分)在直角坐标系中,已知点A的坐标为(2,3).若将OA绕原点旋转180°,得到OA1,则点A1的坐标为.13.(3分)已知一等腰三角形的面积为20cm2.设它的底边长为x(cm),则底边上的高y (cm)与x的函数关系式为.14.(3分)已知关于x,y的方程组的解为,写出一次函数y=﹣x+1和y=﹣的图象交点P的坐标是.15.(3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是.16.(3分)将一次函数y=2x﹣1的图象向上平移3个单位,所得的直线不经过第象限.17.(3分)如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于.18.(3分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.三、简答与计算(本大题共4个小题,每小题7分,共28分)19.(7分)有一块10公顷的成熟麦田,用一台收割速度为0.5公顷/时的小麦收割机来收割.(1)求收割的面积y(公顷)与收割时间x(h)之间的函数关系式.(2)求收割完这块麦田的时间.20.(7分)如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.21.(7分)如图,如图等腰直角△ABC的直角边与正方形MNPQ的边长均为10cm,边CA 与边MN在同一直线上,点A与点M重合,让△ABC沿MN方向以1cm/s的速度匀速运动,运动到点A与N重合时停止,设运动的时间为t,运动过程中△ABC与正方形MNPQ 的重叠部分面积为S,(1)试写出S关于t的函数关系式,并指出自变量t的取值范围.(2)当MA=2cm时,重叠部分的面积是多少?22.(7分)我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.如图,E、F、G、H分别是四边形ABCD各边的中点.(1)求证:四边形EFGH是平行四边形;(2)如果我们对四边形ABCD的对角线AC与BD添加一定的条件,则可使四边形EFGH 成为特殊的平行四边形,请你经过探究后直接填写答案:①当AC=BD时,四边形EFGH为;②当AC BD时,四边形EFGH为矩形;③当AC=BD且AC⊥BD时,四边形EFGH为.四.解答与证明(本大题共4个小题,共38分)23.(9分)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.24.(9分)在平面直角坐标系中,△ABC顶点坐标分别为:A(2,5)、B(﹣2,3)、C(0,2).线段DE的端点坐标为D(2,﹣3),E(6,﹣1).(1)线段AB先向平移个单位,再向平移个单位与线段ED重合;(2)将△ABC绕点P旋转180°后得到的△DEF,使AB的对应边为DE,直接写出点P 的坐标,并画出△DEF;(3)求点C在旋转过程中所经过的路径l的长.25.(10分)某街道决定从备选的五种树种选购一种进行栽种,为了更好地了解社情民意,工作人员在街道辖区范围内随机抽去了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图所示的两个不完整的统计图.请根据所给信息解答以下问题:(1)这次参与调查的居民人数为;(2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)已知街道辖区内现有居民8万人,请估计这8万人中最喜欢玉兰树的有多少人?26.(10分)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?2017-2018学年河北省沧州市沧县八年级(下)期末数学试卷参考答案与试题解析一、正确选择(本大题共10个小题;每小题3分,共30分。
各题均为单选)1.(3分)下列调查中,最适宜采用普查方式的是()A.对我国初中学生视力状况的调查B.对一批节能灯管使用寿命的调查C.对量子科学通信卫星上某种零部件的调查D.对“最强大脑”节目收视率的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查范围广适合抽样调查,故A不符合题意;B、调查具有破坏性适合抽样调查,故B不符合题意;C、必须全面调查,故C符合题意;D、调查范围广适合抽样调查,故D不符合题意;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3.(3分)在直角坐标系中,点M,N在同一个正比例函数图象上的是()A.M(2,﹣3),N(﹣4,6)B.M(﹣2,3),N(4,6)C.M(﹣2,﹣3),N(4,﹣6)D.M(2,3),N(﹣4,6)【分析】设正比例函数的解析式为y=kx,根据4个选项中得点M的坐标求出k的值,再代入N点的坐标去验证点N是否在正比例函数图象上,由此即可得出结论.【解答】解:设正比例函数的解析式为y=kx,A、﹣3=2k,解得:k=﹣,﹣4×(﹣)=6,6=6,∴点N在正比例函数y=﹣x的图象上;B、3=﹣2k,解得:k=﹣,4×(﹣)=﹣6,﹣6≠6,∴点N不在正比例函数y=﹣x的图象上;C、﹣3=﹣2k,解得:k=,4×=6,6≠﹣6,∴点N不在正比例函数y=x的图象上;D、3=2k,解得:k=,﹣4×=﹣6,﹣6≠6,∴点N不在正比例函数y=x的图象上.故选:A.【点评】本题考查了一次函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是验证4个选项中点M、N是否在同一个正比例函数图象上.本题属于基础题,难度不大,解决该题型题目时,根据给定的一点的坐标利用待定系数法求出正比例函数解析式,再代入另一点坐标去验证该点是否在该正比例函数图象上.4.(3分)下列各种判定矩形的说法正确的是()A.对角线相等的四边形是矩形B.有三个角相等的四边形是矩形C.对角线互相平分且相等的四边形是矩形D.对角线相等且互相垂直的四边形是矩形【分析】根据矩形的判定方法即可判断;【解答】解:A、错误.对角线相等的四边形不一定是矩形;B、错误.有三个角相等的四边形不一定是矩形;C、正确;D、错误.对角线相等且互相垂直的四边形不一定是矩形.故选:C.【点评】本题考查矩形的判定,解题的关键是记住矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)5.(3分)当b<0时,一次函数y=x+b的图象大致是()A.B.C.D.【分析】根据一次函数系数的正负,可得出一次函数图象经过的象限,由此即可得出结论.【解答】解:∵k=1>0,b<0,∴一次函数y=x+b的图象经过第一、三、四象限.故选:B.【点评】本题考查了一次函数图象与系数的关系,解题的关键是找出函数图象经过的象限.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数图象与系数的关系找出函数图象经过的象限是关键.6.(3分)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可.【解答】解:A、1000名考生的数学成绩是样本,故A选项错误;B、4万名考生的数学成绩是总体,故B选项错误;C、每位考生的数学成绩是个体,故C选项正确;D、1000是样本容量,故D选项错误;故选:C.【点评】本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.7.(3分)平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.8.(3分)某校八年级登山小组以akm/h的速度开始登山,走了一段时间后休息了一会儿由于山路逐渐变陡,所以休息后就以bkm/h的速度继续前进.一段时间后到达山顶,吃午饭并原地活动午休后,又以ckm/h的速度下山(b<a<c),中间再也没有休息过,一直返回山脚.此次登山活动整个过程中所走的路程s(km)与所用时间t(h)之间的函数关系的图象大致是下列中的()A.B.C.D.【分析】登山路程随着时间的增多是在不断增多,由于速度的变化形式为大,0,小,0,下山的路程随着时间的增多在不断增多,所以随着时间的变化,路程的函数图象也将表现为:陡,平,缓,平,陡.【解答】解:根据题意,登山运动分为四个阶段,快行﹣停止﹣慢行﹣停止,下山运动分一个阶段,快行,反映到图象上是:五条线段陡,平,缓,平,陡.故选:B.【点评】本题考查了函数的图象,解决此类题目的关键是应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象的缓陡.9.(3分)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10B.14C.20D.22【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选:B.【点评】此题主要考查了平行四边形的性质,正确得出AO+BO的值是解题关键.10.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.4【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,=,∵S菱形ABCD∴,∴DH=,故选:A.=【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD是解此题的关键.二、准确填空(本大题共8个小题,每小题3分,共24分)11.(3分)为了了解参加某运动会2500名运动员的年龄情况,从中抽取了100名运动员的年龄,在这个问题中,样本是100名运动员的年龄.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:为了了解参加某运动会2500名运动员的年龄情况,从中抽取了100名运动员的年龄,在这个问题中,样本是抽取了100名运动员的年龄,故答案为:抽取了100名运动员的年龄.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.12.(3分)在直角坐标系中,已知点A的坐标为(2,3).若将OA绕原点旋转180°,得到OA1,则点A1的坐标为(﹣2,﹣3).【分析】由题意,A与A1关于原点对称,横坐标与纵坐标都互为相反数;【解答】解:由题意,A与A1关于原点对称,∵A(2,3),∴A1(﹣2,﹣3).故答案为(﹣2,﹣3).【点评】本题考查坐标与图形变化﹣旋转,解题的关键是理解题意,属于中考常考题型.13.(3分)已知一等腰三角形的面积为20cm2.设它的底边长为x(cm),则底边上的高y (cm)与x的函数关系式为y=(x>0).【分析】根据三角形的面积公式,可得函数关系式.【解答】解:由三角形的面积,得y=(x>0),故答案为:y=(x>0)【点评】本题考查了等腰三角形的性质,利用了三角形的面积公式.14.(3分)已知关于x,y的方程组的解为,写出一次函数y=﹣x+1和y=﹣的图象交点P的坐标是(﹣1,2).【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【解答】解:∵关于x,y的方程组的解为,∴一次函数y=﹣x+1和y=﹣的图象交点P的坐标是(﹣1,2).故答案为:(﹣1,2).【点评】此题主要考查了二元一次方程组和一次函数的关系,关键是掌握方程组的解就是两函数图象的交点.15.(3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是150米.【分析】根据题意判断出小华走过的路线图形是正多边形,用360°除以24°求出多边形的边数,再根据多边形的周长公式列式计算即可得解.【解答】解:由题意得,小华走过的路线图形是正多边形,360°÷24°=15,15×10=150米,所以,一共走的路程是150米.故答案为:150米.【点评】本题考查了多边形内角与外角,判断出走过的路线图形是正多边形并利用多边形的外角和定理求出边数是解题的关键.16.(3分)将一次函数y=2x﹣1的图象向上平移3个单位,所得的直线不经过第四象限.【分析】根据一次函数图象的平移规律,可得答案.【解答】解:将一次函数y=2x﹣1的图象向上平移3个单位,得y=2x+2,直线y=2x+2经过一、二、三象限,不经过第四象限,故答案为:四.【点评】本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键,注意求直线平移后的解析式时要注意平移时k的值不变.17.(3分)如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于4.【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF﹣AB=2,AE=AD﹣DE=2,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故答案为4.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明三角形是等腰三角形是解决问题的关键.18.(3分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为5.【分析】过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x轴于点E.则OB=.由于四边形OABC是平行四边形,所以OA=BC,又由平行四边形的性质可推得∠OAF=∠BCD,则可证明△OAF≌△BCD,所以OE的长固定不变,当BE最小时,OB取得最小值,从而可求.【解答】解:过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x 轴于点E,直线x=1与OC交于点M,与x轴交于点F,直线x=4与AB交于点N,如图:∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线x=1与直线x=4均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC,在△OAF和△BCD中,,∴△OAF≌△BCD.∴BD=OF=1,∴OE=4+1=5,∴OB=.由于OE的长不变,所以当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=5.故答案为:5.【点评】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.三、简答与计算(本大题共4个小题,每小题7分,共28分)19.(7分)有一块10公顷的成熟麦田,用一台收割速度为0.5公顷/时的小麦收割机来收割.(1)求收割的面积y(公顷)与收割时间x(h)之间的函数关系式.(2)求收割完这块麦田的时间.【分析】(1)根据题意可以写出相应的函数关系式;(2)将y=10代入(1)中的函数关系式即可解答本题.【解答】解:(1)由题意可得,y=0.5x,即收割的面积y(公顷)与收割时间x(h)之间的函数关系式是y=0.5x;(2)将y=10代入y=0.5x,得10=0.5x,解得,x=20,答:收割完这块麦田需要20小时.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.20.(7分)如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【分析】(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可;(2)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出结论.【解答】解:(1)如图所示:(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE∥AF,∴四边形ABEF是平行四边形,∵AF=AB,∴四边形ABEF是菱形.【点评】本题考查了平行四边形的性质、作图﹣基本作图、等腰三角形的判定、菱形的判定;熟练掌握平行四边形的性质和角平分线作图,证明BE=AB是解决问题(2)的关键.21.(7分)如图,如图等腰直角△ABC的直角边与正方形MNPQ的边长均为10cm,边CA 与边MN在同一直线上,点A与点M重合,让△ABC沿MN方向以1cm/s的速度匀速运动,运动到点A与N重合时停止,设运动的时间为t,运动过程中△ABC与正方形MNPQ 的重叠部分面积为S,(1)试写出S关于t的函数关系式,并指出自变量t的取值范围.(2)当MA=2cm时,重叠部分的面积是多少?【分析】(1)根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA的长度可得出y与x的关系;(2)将MA=2cm代入可得出重叠部分的面积.【解答】解:(1)∵△ABC是等腰直角三角形,四边形MNPQ是正方形,∴△AMR是等腰直角三角形,由题意知,AM=MR=t,S=S△AMR=t•t=(0≤t≤10);(2)当MA=2cm时,重叠部分的面积是=2cm2.【点评】本题以动态的形式考查了三角形和矩形重叠部分的面积,等腰直角三角形的性质及正方形的性质,判断出重叠部分是等腰直角三角形比较关键.22.(7分)我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.如图,E、F、G、H分别是四边形ABCD各边的中点.(1)求证:四边形EFGH是平行四边形;(2)如果我们对四边形ABCD的对角线AC与BD添加一定的条件,则可使四边形EFGH 成为特殊的平行四边形,请你经过探究后直接填写答案:①当AC=BD时,四边形EFGH为菱形;②当AC垂直BD时,四边形EFGH为矩形;③当AC=BD且AC⊥BD时,四边形EFGH为正方形.【分析】先根据中位线定理证明:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等的四边形各边中点所得四边形是菱形;顺次连接对角线相等且互相垂直的四边形各边中点所得四边形是正方形.【解答】解:(1)连接AC、BD,因为H、G,分别为AD、DC的中点,所以HG∥AC,同理EF∥AC,所以HG∥EF;同理可知HE∥GF.于是四边形EFGH是平行四边形.(2)由于对角线相等,因为H,G,分别为AD、DC的中点,所以HG=AC,同理EF=AC,所以HG=EF;同理可知HE=BD,GF=BD.又因为AC=BD所以HE=EF=FG=GH.又因为是四边形EFGH是平行四边形.所以四边形EFGH为菱形.(3)由于四边形EFGH是平行四边形.当AC⊥BD时,HE⊥EF,故四边形EFGH为矩形;(4)由于四边形EFGH是平行四边形.当AC⊥BD时,HE⊥EF,故四边形EFGH为矩形;AC=BD时,四边形EFGH为正方形.【点评】根据三角形的中位线定理证明:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等的四边形各边中点所得四边形是菱形.四.解答与证明(本大题共4个小题,共38分)23.(9分)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.【分析】(1)利用两点法就可以画出函数图象;(2)利用函数解析式分别代入x=0与y =0的情况就可以求出交点坐标;(3)通过交点坐标就能求出面积;(4)观察函数图象与x轴的交点就可以得出结论.【解答】解:(1)当x=0时y=4,当y=0时,x=﹣2,则图象如图所示(2)由上题可知A(﹣2,0)B(0,4),=×2×4=4,(3)S△AOB(4)x<﹣2.【点评】本题考查了一次函数的图象和一次函数图象上点的坐标特征.正确求出一次函数与x轴与y轴的交点是解题的关键.24.(9分)在平面直角坐标系中,△ABC顶点坐标分别为:A(2,5)、B(﹣2,3)、C(0,2).线段DE的端点坐标为D(2,﹣3),E(6,﹣1).(1)线段AB先向右平移4个单位,再向下平移6个单位与线段ED重合;(2)将△ABC绕点P旋转180°后得到的△DEF,使AB的对应边为DE,直接写出点P 的坐标,并画出△DEF;(3)求点C在旋转过程中所经过的路径l的长.【分析】(1)直接利用平移的性质得出平移规律即可;(2)利用旋转的性质得出对应点位置进而得出答案;(3)利用弧长公式进而求出答案.【解答】解:(1)AB先向右平移4个单位,再向下平移6个单位与ED重合;故答案为:右,4,下,6;(2)如图所示:P(2,1),画出△DEF;(3)点C在旋转过程中所经过的路径长l=.。