2020年国家开放大学电大最全微积分初步形成性考核册
- 格式:doc
- 大小:1.11 MB
- 文档页数:30
18.下列各函数对中,()中的两个函数相等.答案:D A .2)()(x x f =,x x g =)( B .2)(xx f =,x x g =)(C .2ln )(x x f =,x x g ln 2)(=D .3ln )(x x f =x x g ln 3)(= 提示:两个函数相等,必须是对应的规则相同,定义域相同。
上述答案中,A 定义域不同;B 对应的规则不同;C 定义域不同;D 对应的规则相同,定义域相同9.当0→x 时,下列变量中为无穷小量的是( )答案:C.A .x 1B .xx sin C .)1ln(x +D .2xx提示:以0为极限的变量称为无穷小量。
上述答案中,当0→x 时,A 趋向∞;B 的极限为1;C 的极限为0;D 趋向∞。
10.当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x处连续. 答案:BA .0B .1C .2D .1-提示:当)()(lim 00x f x f x x =→时,称函数)(x f 在0x 连续。
因1)1(lim )(lim20=+=→→x x f x x k f ==)0(,所以当=k 1时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续11.当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续 答案:DA .0B .1C .2D .3提示:当)()(lim 00x f x f x x =→时,称函数)(x f 在0x 连续。
因为3)2(lim )(lim=+=→→x x x e x f k f ==)0(,所以当=k 3时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x ,在0=x 处连续12.函数233)(2+--=x x x x f 的间断点是( )答案:A A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点提示:若)(x f 在0x 有下列三种情况之一,则)(x f 在0x 间断:①在0x 无定义;②在0x 极限不存在;③在0x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→。
“ 经济数学基础 试题一、单项选择题(每小题3分,共15分) 1.函数242x y x -=-的定义域是( B )。
A .[2,)-+∞ [2,2)(2,)-+∞U C .[,2)(2,)-∞--+∞U D .[,2)(2,)-∞+∞U2.若()cos4f x π=,则()()limx f x x f x x→∞+∆-=∆( A )A .0 B .2C .sin4π-D .sin4π3.下列函数中,( D )是2sin x x 的函数原函数。
A .21cos 2x 22cos x C .22cos x -D .21cos 2x -4.设A 是m n ⨯矩阵,B 是s t ⨯矩阵,且T AC B 有意义,则C 是( D )矩阵。
A .m t ⨯B .t m ⨯C .n s ⨯D .s n ⨯5.用消元法解方程组12323324102x x x x x x +-=⎧⎪+=⎨⎪-=⎩,得到解为( C )。
A .123102x x x =⎧⎪=⎨⎪=-⎩B .123722x x x =-⎧⎪=⎨⎪=-⎩C .1231122x x x =-⎧⎪=⎨⎪=-⎩D .1231122x x x =-⎧⎪=-⎨⎪=-⎩二、填空题(每小题3分,共15分)6.已知生产某种产品的成本函数为C(q)=80+2q ,则当产量q=50单位时,该产品的平均成本为__3.6_________。
7.函数23()32x f x x x -=-+的间断点是__121,2x x ==_________。
8.11(cos 1)x x dx -+=⎰____2_______。
9.矩阵111201134-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的秩为= 2。
10.若线性方程组⎩⎨⎧=+=-02121x x x x λ有非零解,则=λ -1.三、微积分计算题(每小题l0分,共20分) 11.设1ln(1)1x y x+-=-,求(0)y '。
12.ln 220e (1e )d x x x +⎰解 ln 220e (1e )d x x x+⎰=ln220(1e )d(1e )x x ++⎰=ln 2301(1e )3x +=193四、代数计算题(每小题15分,共30分)13.设矩阵A =113115121-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦,求逆矩阵1()I A -+。
微积分初步形成性考核作业(一)解答————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2-ln(1)(x x f =的定义域是)∞,3(∪)3,2(+2.函数xx f -51)(=的定义域是)5,-3.函数2-4)2ln(1)(x x x f ++=的定义域是]2,1-(∪)1-,2-(4.函数72-)1-(+=x x x f ,则=)(x f 62+x5.函数>+=e 0≤2)(2x x x x f x,则=)0(f 2 . 6.函数x x x f 2-)1-(2=,则=)(x f 1-2x7.函数13-2-2+=x x x y 的间断点是1-=x8.=xx x 1sinlim ∞→ 1 . 9.若2sin 4sin lim0→=kxxx ,则=k 2 .10.若23sin lim0→=kxxx ,则=k 23二、单项选择题(每小题2分,共24分) 1.设函数2e exxy +=,则该函数是(B ). A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇又偶函数 2.设函数x x y sin 2=,则该函数是(A ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数3.函数222)(xx xx f +=的图形是关于(D )对称.A .x y =B .x 轴C .y 轴D .坐标原点4.下列函数中为奇函数是(C).A .x x sinB .x lnC .)1ln(2x x ++D .2x x +5.函数)5ln(41+++=x x y 的定义域为( D ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x6.函数)1-ln(1)(x x f =的定义域是(D ).A . )∞,1(+B .)∞,1(∪)1,0(+C .)∞,2(∪)2,0(+D .)∞,2(∪)2,1(+ 7.设1-)1(2x x f =+,则=)(x f ( C )A .)1(+x xB .2x C .)2-(x x D .)1-)(2(x x + 8.下列各函数对中,(D)中的两个函数相等.A .2)()(x x f =,x x g =)(B .2)(x x f =,x x g =)(C .2ln )(x x f =,9.当0→x 时,下列变量中为无穷小量的是( C ). A .x 1 B .x x sin C .)1ln(x + D .2xx10.当=k ( B )时,函数=+=,≠,1)(2x k x x x f ,在0=x 处连续. A .0 B .1 C .2 D .111.当=k ( D )时,函数=+=,≠,2)(x k x e x f x 在0=x 处连续. A .0 B .1 C .2 D .3 12.函数23-3-)(2+=x x x x f 的间断点是( A ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点三、解答题(每小题7分,共56分)⒈计算极限4-23-lim 222→x x x x +.解:4-23-lim 222→x x x x +4121-lim )2-)(2()2-)(1-(lim 2→2→=+=+=x x x x x x x x2.计算极限1-6-5lim 221→x x x x + 解:1-6-5lim 221→x x x x +2716lim )1-)(1()6)(1-(lim 1→1→=++=++=x x x x x x x x3.3-2-9-lim 223→x x x x解:3-2-9-lim 223→x x x x 234613lim )3-)(1()3-)(3(lim 3→3→==++=++=x x x x x x x x4.计算极限45-86-lim 224→++x x x x x解:45-86-lim 224→++x x x x x 321-2-lim )4-)(1-()4-)(2-(lim 4→4→===x x x x x x x x5.计算极限65-86-lim 222→++x x x x x .解:65-86-lim 222→++x x x x x 23-4-lim )3-)(2-()4-)(2-(lim 2→2→===x x x x x x x x6.计算极限xx x 1--1lim→. 解:x x x 1--1lim→)1-1(lim )1-1()1-1)(1--1(lim 0→0→+=++=x x xx x x x x x 21-1-11lim→=+=x x7.计算极限xx x 4sin 1--1lim→。
最新国家开放大学电大《微积分初步》期末试题题库及答案最新国家开放大学电大《微积分初步》期末试题题库及答案最新国家开放大学电大《微积分初步》期末试题题库及答案盗传必究题库一一、填空题(每小题4分,本题共20分)1.函数,则。
2.若函数,在处连续,则。
3.曲线在点处的切线斜率是。
4.。
5.微分方程的阶数为。
二、单项选择题(每小题4分,本题共20分)1.函数的定义域是()。
A.B.C.D.2.设,则()。
A.B.C.D.3.下列函数在指定区间上单调减少的是()。
A.B.C.D.4.若函数,则()。
A.B.C.D.5.微分方程的通解为()。
A.B.C.D.三、计算题(本题共44分,每小题11分)1.计算极限。
2.设,求。
3.计算不定积分。
4.计算定积分。
四、应用题(本题16分)用钢板焊接一个容积为4的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少?试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)1.2.1 3.4.5.5 二、单项选择题(每小题4分,本题共20分)1.D2.A 3.B 4.C 5.D 三、计算题(本题共44分,每小题11分)1.解:原式11分2.解:9分11分3.解:= 11分4.解:11分四、应用题(本题16分)解:设水箱的底边长为,高为,表面积为,且有所以令,得,10分因为本问题存在最小值,且函数的驻点唯一,所以,当时水箱的表面积最小,此时的费用为(元)16分题库二一、填空题(每小题4分,本题共20分)1.函数,则。
2.。
3.曲线在点处的切线方程是。
4.。
5.微分方程的阶数为。
二、单项选择题(每小题4分,本题共20分)1.函数的定义域是()。
A.B.C.D.2.当()时,函数,在处连续。
A.0 B.C.1 D.3.下列结论中()不正确.A.在处连续,则一定在处可微。
B.在处不连续,则一定在处不可导。
C.可导函数的极值点一定发生在其驻点上。
中央电大《微积分初步》形成性考核册参考答案微积分初步作业1 参考答案1、函数、极限和连续一、填空题(每小题2分,共20分)1.()()3,+∞2,3 或填{}23x x x >≠且; 2.(),5-∞或填{}5x x <;3.()(]2,11,2--⋃-或填{}121x x x -<≤≠-且; 4.26x +; 5.2; 6.21x -; 7.1x =-; 8.1; 9.2; 10.32.二、单项选择题(每小题2分,共24分)1.B2.A3.D4.C5.D6.D7.C8.D9.C 10.B 11.D 12.A三、解答题(每小题7分,共56分) 1.解:原式=()()()()221211limlim .2224x x x x x x x x →→---==+-+ 2.解:原式=()()()()126167lim lim .1112x x x x x x x x →→+-+==+-+ 3.解:原式=()()()()323333limlim .1312x x x x x x x x →→+-+==+-+ 4.解:原式=()()()()422422lim lim .1413x x x x x x x x →→---==--- 5.解:原式=()()()()22244limlim 2.233x x x x x x x x →→---==--- 6.解:原式=111.2x x →→==-7.解:原式=111.8x x →→==-8.解:原式=()()0sin 4242lim16.x x x x x→→⋅⋅==微积分初步作业2 参考答案2、导数与微分3、导数的应用一、填空题(每小题2分,共20分)1.12; 2.10x y -+=; 3.230x y +-=; 41; 5.6-; 6.()271ln3+;7.21x-; 8.2-; 9.()1,+∞; 10. 0a >.二、单项选择题(每小题2分,共24分)1.D2.C3.C4.B5.D6.C7.C8.C9.A 10.B 11.B 12.A三、解答题(每小题7分,共56分)1.解:()111221221xxx y xe x e x e x ⎛⎫'=+-=- ⎪⎝⎭.2.解:24cos43sin cos y x x x '=-. 3.解:21y x '=-. 4.解:sin tan cos x y x x '==. 5.解:方程两边同时对x 求微分,得()()2202222xdx ydy xdy ydx x y dx x y dyx ydy dxx y+--=-=--∴=-6. 解: 原方程可化为()21x y +=1,1x y y x ∴+=±=-±1,y dy dx '∴=-=-7. 解:方程两边同时对x 求微分,得20x y y e dx e dy xe dx xdx +++=()2y x y xe dy e e x dx =-++2x y ye e xdy dx xe++∴=-. 8. 解:方程两边同时对x 求微分,得()()sin 0y x y dx dy e dy -+++=()()sin sin yx y dy dx e x y +∴=-+ 微积分初步作业3 参考答案4、不定积分、极值应用问题一、填空题(每小题2分,共20分)1.2ln 2x x x c -+; 2.24x e --; 3.()1x x e +; 4.2cos 2x ; 5.1x;6.4cos 2x -;7.2x e dx -; 8.sin x c +; 9.()1232F x c -+; 10. ()2112F x c--+.二、单项选择题(每小题2分,共16分) 1.A 3.A 4.A 5.A 6.A 7.C 8.B三、解答题(每小题7分,共35分)1.解:原式=32sin 3ln cos 3x dx x x c x⎛⎫=-+ ⎪⎝⎭⎰.2.解:原式=()()()()10111121212121221122x d x x c x c --=⨯-+=-+⎰.3.解:原式=111sin cos d c x x x⎛⎫-=+ ⎪⎝⎭⎰. 4.解:原式=11111cos 2cos 2cos 2cos 2sin 222224xd x x x xdx x x x c -=-+=-++⎰⎰. 5.解:原式=()1x x x x x x xde xe e dx xe e c x e c -------=-+=--+=-++⎰⎰.四、极值应用题(每小题12分,共24分)1.解: 设矩形ABCD 的一边AB x =厘米,则60BC x =-厘米, 当它沿直线AB 旋转一周后,得到圆柱的体积()()260,060V x x x π=-<<令()()2602600V x x x π⎡⎤'=---=⎣⎦得20x = 当()0,20x ∈时,0V '>;当()20,60x ∈时,0V '<.20x ∴=是函数V的极大值点,也是最大值点.此时6040x -=答:当矩形的边长分别为20厘米和40厘米时,才能使圆柱体的体积最大. 2. 解:设成矩形有土地的宽为x 米,则长为216x米, 于是围墙的长度为()4323,0L x x x=+> 令243230L x'=-=得()12x =取正易知,当12x =时,L 取得唯一的极小值即最小值,此时21618x= 答:这块土地的长和宽分别为18米和12米时,才能使所用的建筑材料最省. 五、证明题(本题5分)()()()()1 0, 01 0, 0,0.x x f x e x e x f x f x x e '=-<<<'∴<>=--∞证:当时当时从而函数在区间是单调增加的微积分初步作业4 参考答案5、定积分及应用一、填空题(每小题2分,共20分)1.23-; 2.2; 3.3221633y x =-; 4.4; 5.24a π; 6.0;7.12;8.x y e =; 9.3x y ce -=; 10. 4.二、单项选择题(每小题2分,共20分)1.A2.A3.A4.D5.D6.B7.B8.D9.C 10.B三、计算题(每小题7分,共56分)1.解:原式=()()()2ln 23ln 20011911133xx x ed e e ++=+=-⎰. 2.解:原式=()()()21111715ln 15ln 15ln 5102e ex d x x ++=+=⎰. 3.解:原式=()111100011x x x xxde xe e dx e e e e =-=-=--=⎰⎰.4.解:原式=02cos 2cos 4sin 4222x x x xd x ππ⎡⎤-=-+=⎢⎥⎣⎦⎰.5.解:原式=22220000cos cos cos 0sin 1xd x x x xdx x ππππ-=-+=+=⎰⎰.6. 解:()()21,1P x Q x x x==+()()()()()()112ln 2ln 342 1 11 111 42P x dx P x dx dx dx x x x xy e Q x e dx c e x e dx c e x e dx c x x dx c x x x c x ---⎡⎤⎰⎰=+⎢⎥⎣⎦⎡⎤⎰⎰=++⎢⎥⎣⎦⎡⎤=++⎣⎦⎡⎤=++⎣⎦⎡⎤=++⎢⎥⎣⎦⎰⎰⎰⎰通解即通解31142c y x x x=++ 7. 解:()()1,2sin 2P x Q x x x x=-=()()()()11ln ln 2sin 2 2sin 21 2sin 2 cos 2P x dx P x dx dx dx x xx x y e Q x e dx c e x xedx c e x xe dx c x x x dx c x x x c ---⎡⎤⎰⎰∴=+⎢⎥⎣⎦⎡⎤⎰⎰=+⎢⎥⎣⎦⎡⎤=+⎣⎦⎡⎤=⋅+⎢⎥⎣⎦=-+⎰⎰⎰⎰通解即通解为()cos2y x x c =-+.四、证明题(本题4分)()()()()()()()()()()()000000aaaaaaaa af x dx f x dxf x dx f x dxf x d x f x dx f x dx f x dxf x f x dx ----+=-+=---+=-+=-+=⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰证:左边=右边。
最新国家开放大学电大《微积分初步》期末试题题库及答案盗传必究题库一一、填空题(每小题4分,本题共20分)1. 函a/(x + l) = x 2+2x + 7,则f(x)= c 「 sin 3x2.1im ----- = __________ .x3. 曲线y = x 2在点(1, 1)处的切线的斜率是.24. J ](sinxcos2x-x )dx = _____________5. _________________________________________ 微分方程9" +(y )4 cosx = e*的阶数为 二、单项选择题(每小题4分,本题共20分) 1 .函数f (x ) = ―1—的定义域是()・ln (x-l ) A. (l,+oo) B. (0,l)D(l,+8) C ・(1,2)D (2,+8) D. (0,2)u(2,+oo)A. 0B. 1C. 2D. -1 3.下列结论中正确的是( )・A. X 。
是/3)的极值点,则知必是/的驻点B. 使f\x )不存在的点x 0 一定是/3)的极值点・)时,函数f (x )= .3 [xsin — + 1,xk.'A 。
在x = 0处连续.x = 0C.若r(x o) = O,则Xo必是,⑴的极值点D.X。
是/3)的极值点,旦尸Oo)存在,则必有.广(工0)= 04.若函数 /'(x) = x +J^(x > 0),贝0 J /'(x)dx=().A.x + Vx + c12 2 |B.—x + —x2 +c2 3C.x2 +x + c31D.x2 + — x2 +c25.微分方程* = 0的通解为()・A.y = 0B.y - cC.y = x + cD.y = ex三、计算题(本题共44分,每小题11分)1 •计算极限Iim-V--5V + 6 .13 X2 -92.设y = x4x + cos3x,求⑪.3.计算不定积分j x sin xdx4.计算定积分j^e x(l + e x)2dx四、应用题(本题16分)用钢板焊接一个容积为411?的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少?试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)1 291.x +62. 33.—4.5. 22 3二、单项选择题(每小题4分,木题共20分)四、应用题(木题16分)4解:设水箱的底边长为X ,高为h,表面积为S,且有h = — x 2 所以Sl+4劝“ +皿X10分因为本问题存在最小值,且函数的驻点唯一,所以,当x = 2,h = 1时水箱的表面积最小.题库二一、填空题(每小题4分,本题共20分)1. 函数f(x} = ―1— + V4-X 2的定义域是ln(x + l)---------l.c2.B3.D 4-A5.B 三、计算题(本题共44分,每小题11分)1.解:原式=lim-仃 一 2)(x — 3) = = La (x + 3)(x -3) a x + 3 6 11分2.解:V = 2/-3sin3x23 1 dy = (—x 2 -3sin3x)dx11分3.解:Jx sinxdx = -x cos x + J cos xdx = -x cos x + sinx + c11分4.解: Pe x (l + e x )2dx = J ,n2(l + e x )2d(l + e x ) = -(l + e x )3ln219T11分此时的费用为2X 10+40=160 (元) 16分io_x + i(ri.设函数歹=——-—,则该函数是(A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数2.当XT 0时,下列变量中为无穷小量的是(A.B. x sinxC. ln(l + x)D.3.设y = lg2x 则dy =(A. —dx2xB. —dxXC. In10 、 --- dxD. xlnlO^4. 在切线斜率为2x的积分曲线族中,通过点(1,4)的曲线为()。
微积分初步形成性考核作业(一)解答————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2-ln(1)(x x f =的定义域是)∞,3(∪)3,2(+2.函数xx f -51)(=的定义域是)5,-3.函数2-4)2ln(1)(x x x f ++=的定义域是]2,1-(∪)1-,2-(4.函数72-)1-(+=x x x f ,则=)(x f 62+x5.函数>+=e 0≤2)(2x x x x f x,则=)0(f 2 . 6.函数x x x f 2-)1-(2=,则=)(x f 1-2x7.函数13-2-2+=x x x y 的间断点是1-=x8.=xx x 1sinlim ∞→ 1 . 9.若2sin 4sin lim0→=kxxx ,则=k 2 .10.若23sin lim0→=kxxx ,则=k 23二、单项选择题(每小题2分,共24分) 1.设函数2e exxy +=,则该函数是(B ). A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇又偶函数 2.设函数x x y sin 2=,则该函数是(A ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数3.函数222)(xx xx f +=的图形是关于(D )对称.A .x y =B .x 轴C .y 轴D .坐标原点4.下列函数中为奇函数是(C).A .x x sinB .x lnC .)1ln(2x x ++D .2x x +5.函数)5ln(41+++=x x y 的定义域为( D ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x6.函数)1-ln(1)(x x f =的定义域是(D ).A . )∞,1(+B .)∞,1(∪)1,0(+C .)∞,2(∪)2,0(+D .)∞,2(∪)2,1(+ 7.设1-)1(2x x f =+,则=)(x f ( C )A .)1(+x xB .2x C .)2-(x x D .)1-)(2(x x + 8.下列各函数对中,(D)中的两个函数相等.A .2)()(x x f =,x x g =)(B .2)(x x f =,x x g =)(C .2ln )(x x f =,9.当0→x 时,下列变量中为无穷小量的是( C ). A .x 1 B .x x sin C .)1ln(x + D .2xx10.当=k ( B )时,函数=+=,≠,1)(2x k x x x f ,在0=x 处连续. A .0 B .1 C .2 D .111.当=k ( D )时,函数=+=,≠,2)(x k x e x f x 在0=x 处连续. A .0 B .1 C .2 D .3 12.函数23-3-)(2+=x x x x f 的间断点是( A ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点三、解答题(每小题7分,共56分)⒈计算极限4-23-lim 222→x x x x +.解:4-23-lim 222→x x x x +4121-lim )2-)(2()2-)(1-(lim 2→2→=+=+=x x x x x x x x2.计算极限1-6-5lim 221→x x x x + 解:1-6-5lim 221→x x x x +2716lim )1-)(1()6)(1-(lim 1→1→=++=++=x x x x x x x x3.3-2-9-lim 223→x x x x解:3-2-9-lim 223→x x x x 234613lim )3-)(1()3-)(3(lim 3→3→==++=++=x x x x x x x x4.计算极限45-86-lim 224→++x x x x x解:45-86-lim 224→++x x x x x 321-2-lim )4-)(1-()4-)(2-(lim 4→4→===x x x x x x x x5.计算极限65-86-lim 222→++x x x x x .解:65-86-lim 222→++x x x x x 23-4-lim )3-)(2-()4-)(2-(lim 2→2→===x x x x x x x x6.计算极限xx x 1--1lim→. 解:x x x 1--1lim→)1-1(lim )1-1()1-1)(1--1(lim 0→0→+=++=x x xx x x x x x 21-1-11lim→=+=x x7.计算极限xx x 4sin 1--1lim→。
2020-2021国家开放大学电大《微积分初步》期末试题及答案盗传必究一、填空题(每小题4分,本题共20分)1.函数24)2(2+-=-x x x f ,则=)(x f 。
2.若函数⎪⎩⎪⎨⎧=≠+=0,0,13sin )(x k x x x x f ,在0=x 处连续,则=k 。
3.曲线x y =在点)1,1(处的切线斜率是 。
4.=-⎰-x x x x d )2cos (sin 112 。
5.微分方程x y xy y sin 4)(6)5(3=+''的阶数为 。
二、单项选择题(每小题4分,本题共20分)1.函数x x x x f -+-=5)2ln()(的定义域是( )。
A .),2(+∞B .]5,2(C .)5,3()3,2(⋃D .]5,3()3,2(⋃2.设x y 2lg =,则=y d ( )。
A .x x d 10ln 1 B .x xd 1 C .x x d 21 D .x xd 10ln 3.下列函数在指定区间(,)-∞+∞上单调减少的是( )。
A .x sinB .x -3C .2xD .x e4.若函数)0()(>+=x x x x f ,则='⎰x x f d )(( )。
A .c x x ++2B .c x x ++2323221 C .c x x ++D .c x x ++23223 5.微分方程0='y 的通解为( )。
A .0=yB .cx y =C .c x y +=D . c y =三、计算题(本题共44分,每小题11分)1.计算极限9152lim 223--+→x x x x 。
2.设x x x y 3cos +=,求y d 。
3.计算不定积分x x d )12(10⎰-。
4.计算定积分x x x d e 10⎰。
四、应用题(本题16分)用钢板焊接一个容积为43m 的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少? 试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)1.22-x 2.1 3.21 4.32- 5.5 二、单项选择题(每小题4分,本题共20分)1.D 2.A 3.B 4.C 5.D三、计算题(本题共44分,每小题11分)1.解:原式34)3)(3()3)(5(lim3=+--+=→x x x x x 11分 2.解:x s x y in332321-=' 9分 x x s x y d )in3323(d 21-= 11分 3.解:x x d )12(10⎰-=c x x x +-=--⎰1110)12(221)12(d )12(21 11分 4.解:x x x de 10⎰-=10e x x 1e e d e 1010=-=⎰x x x 11分四、应用题(本题16分)解:设水箱的底边长为x ,高为h ,表面积为S ,且有24x h =所以,16422xx xh x S +=+= 2162x x S -=' 令0='S ,得2=x , 10分 因为本问题存在最小值,且函数的驻点唯一,所以,当1,2==h x 时水箱的表面积最小, 此时的费用为 16040102=+⨯=x S (元) 16分。
微积分初步 作业1 学 号:得 分: 教师签名:————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2-ln(1)(x x f =的定义域是)∞,3(∪)3,2(+2.函数xx f -51)(=的定义域是)5,-3.函数2-4)2ln(1)(x x x f ++=的定义域是]2,1-(∪)1-,2-(4.函数72-)1-(+=x x x f ,则=)(x f 62+x5.函数>+=0e≤2)(2x x x x f x,则=)0(f 2 . 6.函数x x x f 2-)1-(2=,则=)(x f 1-2x7.函数13-2-2+=x x x y 的间断点是1-=x8.=xx x 1sin lim ∞→ 1 .9.若2sin 4sin lim 0→=kxxx ,则=k 2 . 10.若23sin lim0→=kxxx ,则=k 23 二、单项选择题(每小题2分,共24分) 1.设函数2e exxy +=,则该函数是(B ). A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇又偶函数 2.设函数x x y sin 2=,则该函数是(A ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数3.函数222)(xx xx f +=的图形是关于(D )对称.A .x y =B .x 轴C .y 轴D .坐标原点 4.下列函数中为奇函数是( C ).A .x x sinB .x lnC .)1ln(2x x ++D .2x x + 5.函数)5ln(41+++=x x y 的定义域为( D ). A .5->x B .4-≠xC .5->x 且0≠xD .5->x 且4-≠x6.函数)1-ln(1)(x x f =的定义域是(D ). A . )∞,1(+ B .)∞,1(∪)1,0(+C .)∞,2(∪)2,0(+D .)∞,2(∪)2,1(+7.设1-)1(2x x f =+,则=)(x f ( C ) A .)1(+x x B .2x C .)2-(x x D .)1-)(2(x x + 8.下列各函数对中,(D )中的两个函数相等.A .2)()(x x f =,x x g =)(B .2)(x x f =,x x g =)(C .2ln )(x x f =,9.当0→x 时,下列变量中为无穷小量的是( C ). A .x1B .x x sin C .)1ln(x + D .2xx10.当=k ( B )时,函数=+=,≠,1)(2x k x x x f ,在0=x 处连续. A .0 B .1 C .2 D .111.当=k ( D )时,函数=+=,≠,2)(x k x e x f x 在0=x 处连续.。
最新国家开放大学电大《微积分初步》期末试题题库及答案最新国家开放大学电大《微积分初步》期末试题题库及答案最新国家开放大学电大《微积分初步》期末试题题库及答案盗传必究题库一一、填空题(每小题4分,本题共20分)1.函数,则。
2.若函数,在处连续,则。
3.曲线在点处的切线斜率是。
4.。
5.微分方程的阶数为。
二、单项选择题(每小题4分,本题共20分)1.函数的定义域是()。
A.B.C.D.2.设,则()。
A.B.C.D.3.下列函数在指定区间上单调减少的是()。
A.B.C.D.4.若函数,则()。
A.B.C.D.5.微分方程的通解为()。
A.B.C.D.三、计算题(本题共44分,每小题11分)1.计算极限。
2.设,求。
3.计算不定积分。
4.计算定积分。
四、应用题(本题16分)用钢板焊接一个容积为4的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少?试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)1.2.1 3.4.5.5 二、单项选择题(每小题4分,本题共20分)1.D2.A 3.B 4.C 5.D 三、计算题(本题共44分,每小题11分)1.解:原式11分2.解:9分11分3.解:= 11分4.解:11分四、应用题(本题16分)解:设水箱的底边长为,高为,表面积为,且有所以令,得,10分因为本问题存在最小值,且函数的驻点唯一,所以,当时水箱的表面积最小,此时的费用为(元)16分题库二一、填空题(每小题4分,本题共20分)1.函数,则。
2.。
3.曲线在点处的切线方程是。
4.。
5.微分方程的阶数为。
二、单项选择题(每小题4分,本题共20分)1.函数的定义域是()。
A.B.C.D.2.当()时,函数,在处连续。
A.0 B.C.1 D.3.下列结论中()不正确.A.在处连续,则一定在处可微。
B.在处不连续,则一定在处不可导。
C.可导函数的极值点一定发生在其驻点上。
微积分初步形成性考核作业(一)————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2ln(1)(-=x x f 的定义域是 .解:020)2ln({>-≠-x x , 23{>≠x x 所以函数)2ln(1)(-=x x f 的定义域是),3()3,2(+∞⋃2.函数xx f -=51)(的定义域是 .解:05>-x ,5<x所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是 .解:⎪⎩⎪⎨⎧≥->+≠+04020)2ln(2x x x ,⎪⎩⎪⎨⎧≤≤-->-≠2221x x x 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- 4.函数72)1(2+-=-x x x f ,则=)(x f.解:72)1(2+-=-x x x f 6)1(61222+-=++-=x x x所以=)(x f 62+x5.函数⎩⎨⎧>≤+=0e02)(2x x x x f x ,则=)0(f .解:=)0(f 2202=+6.函数x x x f 2)1(2-=-,则=)(x f .解:x x x f 2)1(2-=-1)1(11222+-=-+-=x x x ,=)(x f 12+x7.函数1322+--=x x x y 的间断点是 .解:因为当01=+x ,即1-=x 时函数无意义所以函数1322+--=x x x y 的间断点是1-=x8.=∞→xx x 1sinlim .解:=∞→x x x 1sinlim 111sinlim =∞→xx x9.若2sin 4sin lim0=→kxxx ,则=k .解: 因为24sin 44sin lim 4sin 4sin lim00===→→kkxkx x xk kx x x x 所以2=k10.若23sin lim 0=→kxxx ,则=k .解:因为2333lim 33lim 00===→→kx x sim k kx x sim x x所以23=k 二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数解:因为y e e e e x y xx x x =+=+=-----22)()( 所以函数2e e xx y +=-是偶函数。
姓名:
微积分初步 作业1 学 号:
得 分: 教师签名:
————函数,极限和连续
一、填空题(每小题2分,共20分) 1.函数)
2-ln(1)(x x f =的定义域是)∞,3(∪)3,2(+
2.函数x
x f -51)(=的定义域是)5,-
3.函数2
-4)
2ln(1
)(x x x f ++=
的定义域是]2,1-(∪)1-,2-(
4.函数72-)1-(+=x x x f ,则=)(x f 62+x
5.函数>+=0
e
≤2
)(2x x x x f x
,则=)0(f 2 . 6.函数x x x f 2-)1-(2=,则=)(x f 1-2x
7.函数1
3
-2-2+=x x x y 的间断点是1-=x
8.=x
x x 1
sin lim ∞→ 1 .
9.若2sin 4sin lim 0→=kx
x
x ,则=k 2 . 10.若23sin lim
0→=kx
x
x ,则=k 23 二、单项选择题(每小题2分,共24分) 1.设函数2
e e
x
x
y +=
,则该函数是(B ). A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇又偶函数 2.设函数x x y sin 2=,则该函数是(A ).
A .奇函数
B .偶函数
C .非奇非偶函数
D .既奇又偶函数
3.函数2
2
2)(x
x x
x f +=的图形是关于(D )对称.
A .x y =
B .x 轴
C .y 轴
D .坐标原点 4.下列函数中为奇函数是( C ).
A .x x sin
B .x ln
C .)1ln(2x x ++
D .2x x + 5.函数)5ln(4
1
+++=
x x y 的定义域为( D )
. A .5->x B .4-≠x
C .5->x 且0≠x
D .5->x 且4-≠x
6.函数)
1-ln(1
)(x x f =
的定义域是(D ). A . )∞,1(+ B .)∞,1(∪)1,0(+
C .)∞,2(∪)2,0(+
D .)∞,2(∪)2,1(+
7.设1-)1(2x x f =+,则=)(x f ( C ) A .)1(+x x B .2x C .)2-(x x D .)1-)(2(x x + 8.下列各函数对中,(
D )中的两个函数相等.
A .2)()(x x f =,x x g =)(
B .2)(x x f =,x x g =)(
C .2ln )(x x f =,
9.当0→x 时,下列变量中为无穷小量的是( C ). A .x
1
B .
x x sin C .)1ln(x + D .2x
x
10.当=k ( B )时,函数=+=
,
≠,
1)(2x k x x x f ,在0=x 处连续. A .0 B .1 C .2 D .1
11.当=k ( D )时,函数=+=
,
≠,
2)(x k x e x f x 在0=x 处连续.。