低压短路电流计算
- 格式:doc
- 大小:35.50 KB
- 文档页数:18
低压系统短路电流的计算概述:一、基本概念1.短路电流:电力系统中在电气设备两个相或相与地之间产生的短路电流。
2.非感性负荷:电阻负荷和感性负荷的总和。
3.短路阻抗:电力系统在短路点的阻抗。
4.X/R比:电力系统短路时,电感阻抗与电阻的比值。
二、计算方法1.对称短路电流计算对称短路电流计算是指短路时三相之间电气参数相等,无损耗和非感性负荷的情况下的短路电流计算。
1.1系统等效短路电流计算方法该方法适用于系统短路电流的初步估算,一般采用简化的计算模型。
1.1.1电抗率法通过系统的等效电抗率和额定电流来计算短路电流。
电抗率与系统电抗的比为系统等效电抗率。
短路电流的计算公式为:Isc = K × In其中,Isc为短路电流,K为系统等效电抗率,In为额定电流。
采用一个合适的变比将电源侧的短路电流转换到负荷侧。
定比法适用于主变电站、变电站等。
1.2单相短路电流计算方法单相短路电流计算是指只考虑一相短路时的电流值。
1.2.1滑块法通过测量一相的电压、电流和功率因数,并利用滑块器计算短路电流。
该方法适用于事故现场的短路电流测量。
1.2.2暂态法通过测量电流波形的快速变化以及额定电流计算短路电流。
该方法适用于有标称线路电压的暂态短路。
2.不对称短路电流计算不对称短路电流计算是指考虑非感性负荷、非对称运行和非对称故障时的短路电流计算。
不对称短路电流计算需要引入负荷的电抗率和相角、电源的电抗率和相角等因素。
2.1非对称短路电流计算方法非对称短路电流的计算一般采用叠加法或K方法。
2.1.1叠加法将正序短路电流、负序短路电流和零序短路电流分别计算后,再进行叠加得到总的不对称短路电流。
K方法是一种通过电抗率和相角来计算不对称短路电流的方法。
具体计算步骤较为复杂,需要手动计算。
三、简化计算方法除了上述详细的计算方法外,还存在一些简化的计算方法。
例如,利用已知的短路电阻和短路电压、安培-欧姆定律、Thévenin定理等。
目录一、低压短路电流计算 (2)1、三相短路电流周期分量计算 (2)2、三相短路冲击电流计算 (2)3、三相短路电流第一周期(0.02S)全短路电流有效值计算 (3)4、电动机晶闸管装置对短路电流的影响 (3)二、配电变压器出口侧总断路器的短路校验 (14)1、额定短路分断能力(I cn)的校验 (14)2、额定短路接通能力(I cm)的校验 (15)3、额定短时耐受电流(Icw)的校验 (16)TaZ eI 01.0''*2-TaeKch 01.01-+=Tae01.0-εεR X Ta 314=一、 低压短路电流计算1、 三相短路电流周期分量计算三相短路电流周期分量按下式计算:式中I Z ’’ …………三相短路电流周期分量有效值,KA ; Up …………低压网络平均额定线电压,Up 取400V ;Z ε …………每相总阻抗,m Ω; R ε …………每相总电阻,m Ω; X ε …………每相总电抗,m Ω。
低压网络一般以三相短路电流为最大,与中性点是否接地无关。
2、 三相短路冲击电流计算电源供给的短路冲击电流值,按下式计算:式中 i chx …………………三相短路冲击电流,KA ;………………三相短路电流周期分量的峰值,KA ;…………三相短路电流非周期分量,KA ; …………三相短路电流冲击系数;………………三相短路电流非周期分量衰减系数;………………三相短路电流非周期分量衰减时间常数,S 。
)11(*322''------------------+=εεX R Up I Z )21(**2)1(2*2*2''01.0''01.0''''-----=+=+=--Z TaZ TaZ Z chx I Kch eI e I I i ''2ZI如果电路内只有电抗(R ε=0),则Ta=∝,Kch=2,即短路电流非周期分量不衰减。
⾼低压短路电流计算⽅法⾼压短路电流计算⽅法在供电系统中,出现次数较多的严重故障是短路。
所谓短路是指供电系统中不等电位的导体在电⽓上被短接,如相与相之间、相与地之间的短接等。
进⾏短路计算时,先要知道短路电路的电参数,如电路元件的阻抗、电路电压、电源容量等,然后通过⽹络变换求得电源到短路点之间的等值总阻抗,最后按照公式或运算曲线求出短路电流。
短路电路的电参数可以⽤有名单位制表⽰,也可以⽤标么制表⽰。
有名制⼀般⽤于1000V以下低压⽹络的短路电流计算,标么值则⼴乏⽤于⾼压⽹络。
短路电流计算的基本假设为了简化分析和计算,采取⼀此合理的假设以满⾜⼯程计算的要求,通常采取以下假设:1、忽略磁路的饱和与磁滞现象,即认为各元件的感抗为⼀常数。
2、忽略各元件的电阻。
⾼压电⽹的各种电⽓元件,其电阻⼀般1,略去电阻所求得⽐电抗⼩得多,在计算短路电流时,即使R=X3的短路电流仅增⼤5%,这在⼯程上是容许的。
但电缆线路或⼩截⾯1时,电阻不能忽略。
此外,在计算暂态过程的时架空线路当R>X3间常数时,电阻不能忽略。
3、忽略短路点的过渡电阻。
过渡电阻是指相与相之间短接所经过的电阻,如被外来物体短接时,外来物的电阻,接地短路的接地电阻,电弧短路的电弧电阻等。
⼀般情况下,都以⾦属性短路对待,只是在某此继电保护的计算中才考虑过渡电阻。
4、整个系统是三相对称的,仅不对称故障点是例外。
短路电流计算时的运⾏⽅式的考虑:最⼤运⾏⽅式,是系统在该⽅式下运⾏时,具有最⼩的短路阻抗值,发⽣短路后产⽣的短路电流最⼤的⼀种运⾏⽅式。
⼀般根据系统最⼤运⾏⽅式的短路电流值来校验所选⽤的开关电器的稳定性。
最⼩运⾏⽅式,是系统在该⽅式下运⾏时,具有最⼤的短路阻抗值,发⽣短路后产⽣的短路电流最⼩的⼀种运⾏⽅式。
⼀般根据系统最⼩运⾏⽅式的短路电流值来校验继电保护装置的灵敏度。
短路电流计算应计算出的数据:1、故障点的三相短路电流和两相短路电流。
2、短路电流冲击值,即短路电流最⼤可能的瞬时值。
低压系统短路电流的计算一、低压系统短路电流的定义低压系统短路电流是指在电力系统中出现短路故障时,电路中的电流急剧增大,达到最大值的电流。
通常情况下,短路电流可以分为对称电流和不对称电流。
对称电流是指短路电流的三个相位之间的电流幅值相等,相位角相差120度,是对称的。
而不对称电流是指短路电流的三个相位之间的电流幅值和相位角不相等,是不对称的。
二、低压系统短路电流的计算方法1.全电气法全电气法是通过全部的电气参数来计算短路电流的方法,可以精确计算短路电流的大小和波形。
其计算步骤如下:(1) 短路电流的基本公式为:Isc=U/Z,其中Isc为短路电流,U为电压,Z为总阻抗。
(2)计算电源电压:U=Un*1.05,其中Un为额定电压。
(3)计算负荷侧电压:Uf=Un*1.05*UF,其中Un为额定电压,UF为负荷变压器的变比。
(4)计算变压器阻抗:Zt=(Zp*左箭头Uf^2)/P,其中Zp为变压器的阻抗,左箭头表示反箭头。
(5)计算线路阻抗:Zl=Rl+左箭头Xl,其中Rl为线路的电阻,Xl为线路的电抗。
(6)计算电压降:∆U=左箭头Uf*Zt/(Zt+Zl),其中左箭头Uf为电压的发生器。
(7)计算短路电流:Isc=∆U/(Zt+Zl),其中∆U为电压降。
(8)计算短路电流的对称分量。
2.阻抗法阻抗法是通过系统的等值视为许多等效电阻串联来计算短路电流的方法,简化了计算过程。
其计算步骤如下:(1)确定总接线方式:单相式、三相四线式、三相三线式。
(2)计算设备的最小对称短路容量。
(3)计算电阻和电抗的等效值。
(4)确定短路发生位置,选择发生最大短路的点。
三、低压系统短路电流的影响因素1.电源容量:电源的容量越大,短路电流也越大。
2.发电机励磁特性:励磁特性的增加将使短路电流增大。
3.电源内阻:电源内阻越小,短路电流越大。
4.电源电压:电源电压的升高将使短路电流增大。
5.发电机的发电能力:发电机的发电能力和同步电机、逆功率保护的设备容量成正比,其短路电流也将增加。
低压系统短路电流计算与断路器选择低压系统短路电流计算是电气设计中的一项重要组成部分,计算数据量大,过程繁琐,设计人员大多以经验估算,常常影响设计质量,甚至埋下安全隐患。
本文拟在通过对低压短路电流的计算简述以与实例介绍,说明低压断路器的选择与校验方法。
在设计中,短路电流计算与断路器选择的步骤如下:①简单估算低压短路电流;②确定配电中心馈出电缆满足热稳定的最小截面;③选择合适的低压断路器;④合理选择整定值,校验灵敏度与选择性。
1.低压短路电流估算1.1短路电流的计算用途短路电流的计算用途主要有以下几点:①校验保护电器的整定值,如断路器、熔断器的分断能力应大于安装处最大预期短路电流。
②确定保护电器的整定值,使其在短路电流对开关电器与线路器材造成破坏之前切断故障电路。
③校验开关电器与线路器材的动热稳定是否满足规X和实际运行的要求。
1.2短路电流的计算特点短路电流计算的特点:①用户变压器容量远小于系统容量,短路电流周期分量不衰减。
②计入短路各元件有效电阻,但不计入元件与设备的接触电阻和电抗。
③因线路电阻较大,不考虑短路电流非周期分量的影响。
④变压器接线方式按D、yn11考虑。
1.3短路电流的计算方法短路电流计算的方法:式中 I k——三相短路电流或单相短路电流kA;Z k——短路回路总阻抗mΩ(包括系统阻抗、变压器阻抗、母线阻抗与电缆阻抗等,其中阻抗还包括电阻、电抗、相保电阻、相保电抗)U——电压V(用于三相短路电流时取230,用于单相短路电流时取220)1.4短路电流的计算示例下面通过X例来叙述低压短路电流的计算过程。
分析结论①系统容量一般为固定值,变压器出口短路电流取决于变压器容量与阻抗电压百分数。
变压器容量越大,短路电流也越大。
②设备端的短路电流取决于电缆的阻抗,即截面大小,截面越大,短路电流也越大。
2.配电中心馈出电缆的最小截面断路器应该在短路电流对电缆与元器件产生的热效应与机械力危害之前分断短路回路。
一、短路原因及危害短路是电力系统中常见的故障之一,它是指供配电系统中相导体之间或者相导体与大地之间不通过负载阻抗而直接电气连接所产生的。
产生短路电流的主要原因有绝缘老化或者机械损伤;雷击或高电位浸入;误操作;动、植物造成的短路等。
发生短路时会产生很大的短路电流,短路电流会产生很大的电动力和很高的温度,也就是短路的电动效应和热效应,可能会造成电路及电气装置的损坏;短路将系统电压骤减,越靠近短路点电压越低,严重影响设备正常运行;还有发生短路后保护装置动作,从而造成停电事故,越靠近电源造成停电范围越大;对于电子信息设备可能会造成电磁干扰。
短路电流可以分为:三相短路,两相短路,单相短路。
两相短路分为相间短路和两相接地短路。
单相短路可以分为相对地短路和相对中性线短路。
一般三相短路电流值最大,单相短路电流值最小。
二、计算短路电流的意义1 选择电器。
《低压配电设计规范》GB 50054—2011第3.1.1的5和6条关于选择低压电器需要考虑短路电流的有关规定如下:电器应满足短路条件下的动稳定与热稳定的要求;用于断开短路电流的电器应满足短路条件下的接通能力和分断能力。
2 选择导体。
《低压配电设计规范》GB 50054—2011第3.2.2的3条关于选择电缆需要考虑短路电流的有关规定如下:导体应满足动稳定与热稳定的要求;3 断路器灵敏度校验。
《低压配电设计规范》GB 50054—2011第6.2.4条关于低压断路器灵敏度校验有关规定如下:当短路保护电器为断路器时,被保护线路末端的短路电流不应小于断路器瞬时或短延时过电流脱扣器整定电流的1.3倍。
4 根据 IEC60364-434.2 和IEC60364-533.2 条文中的规定,必须计算在回路首端的预期最大短路电流和回路末端的预期最小短路电流。
5 预期最大短路电流用在:断路器的分断能力;电器的接通能力;电气线路和开关装置的热稳定性和动稳定性。
6 预期最小短路电流主要用在:断路器脱扣器和熔断器灵敏度校验。
短路电流计算计算条件1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多.具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗.2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻.3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流.简化“短路电流”计算法在简化计算法之前必须先了解一些基本概念.1.主要参数Sd三相短路容量(MV A)简称短路容量校核开关分断容量Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定x电抗(Ω)其中系统短路容量Sd和计算点电抗x 是关键.2.标么值计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(目的是要简化计算).(1)基准基准容量Sjz =100 MV A基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144(2)标么值计算容量标么值S* =S/SJZ.例如:当10KV母线上短路容量为200 MV A时,其标么值容量S* = 200/100=2.电压标么值U*= U/UJZ ; 电流标么值I* =I/IJZ3.无限大容量系统三相短路电流计算公式短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)冲击电流有效值: IC = Id *√1+2 (KC-1)2 (KA)其中KC冲击系数,取1.8所以IC =1.52Id冲击电流峰值: ic =1.41* Id*KC=2.55 Id (KA)当1000KV A及以下变压器二次侧短路时,冲击系数KC ,取 1.3这时:冲击电流有效值IC =1.09*Id(KA)冲击电流峰值: ic =1.84 Id(KA)掌握了以上知识,就能进行短路电流计算了.公式不多,又简单.但问题在于短路点的总电抗如何得到?例如:区域变电所变压器的电抗、输电线路的电抗、企业变电所变压器的电抗,等等. 一种方法是查有关设计手册,从中可以找到常用变压器、输电线路及电抗器的电抗标么值.求得总电抗后,再用以上公式计算短路电流; 设计手册中还有一些图表,可以直接查出短路电流. 下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.4.简化算法【1】系统电抗的计算系统电抗,百兆为一。
低压短路电流计算方法1.叠加法:叠加法是指根据电路的拓扑结构将电流按照一定规律分解为各个分支的电流,然后将分解得到的电流叠加起来得到总短路电流。
具体步骤如下:a.将电路进行拓扑分析,识别主要的电流路径和分支。
b.对于每个独立的电流路径,根据欧姆定律计算分支电流。
c.将所有的分支电流按照一定规律叠加起来得到总短路电流。
2.阶梯法:阶梯法是一种逐步逼近的计算方法,通过多次迭代计算来逐渐接近准确的短路电流值。
具体步骤如下:a.将电路按照一定的分段长度进行划分。
b.对于每个分段,根据该分段的阻抗和电压计算出该分段的短路电流。
c.将所有的分段电流按照一定规律相加得到总短路电流。
d.如果总短路电流与目标值相差较大,则根据目标值和当前计算出的电流值之间的比例关系,适当调整分段长度,重新计算得到更接近目标值的短路电流。
e.重复上述步骤,直到计算出的短路电流与目标值相差较小为止。
3.复杂阻抗法:复杂阻抗法是一种基于阻抗的计算方法。
在复杂阻抗法中,电路中的各个元件以及其连接方式都被看作是阻抗,根据电路中各个元件的阻抗和连接方式计算出整个电路的阻抗,然后通过欧姆定律计算出电流。
具体步骤如下:a.将电路的各个元件和连接方式视为阻抗。
b.根据不同的电源类型,将电源的阻抗和电动势视为已知量。
c.根据电路中各个元件的阻抗和连接方式计算出整个电路的复阻抗。
d.根据欧姆定律和基尔霍夫定律,利用复阻抗和电源的复电动势计算出电流。
以上就是低压短路电流计算的三种常用方法。
在实际应用中,根据电气系统的特点和计算要求,选择合适的方法进行电流计算,确保电气设备的稳定运行和系统的可靠性。
低压网络短路电流实用计算法示例摘要:列举低压网络短路电流计算中需确定的内容及其用途,以实际工程为例,利用实用短路电流计算法,举例说明低压网络的短路电流计算步骤。
关键词:低压;网络短路;电流实用计算法概述:目前国内短路电流计算方法有两种:一种方法,见GB/T15544《三相交流系统短路电流计算》;另一种为实用计算法,见DL/T5153-2014《火力发电厂厂用电设计规程》和DL/T5222-2005《导体和电器选择设计技术规程》。
本文利用“短路电流实用计算”(参照DL/T5222-2005《导体和电器选择设计技术规程》附录F),对实际工程的低压网络进行短路电流及其效应计算。
1 短路电流计算条件高压系统短路电流的计算条件同样适用于低压网路短路电流计算,但低压网路还有如下一些特点:1)一般用电单位的电源来自地区大中型电力系统,配电用的变压器的容量远小于系统的容量,因此短路电流可按远离发电机端,即无限大电源容量的网路短路进行计算,短路电流周期分量不衰减。
2)计入短路电路各元件的有效电阻,但短路点的电弧电阻、导线连接点、开关设备和电器的接触电阻可忽略不计。
3)当电阻较大,短路电流直流分量衰减较快,一般可不考虑直流分量。
只有在离配电变压器低压侧很近处,如低压侧20m以内大截面线路上或低压配电屏内部发生短路时,才需要计算直流分量。
4)单位长度有效电阻的计算温度不同,在计算三相最大短路电流时,导体计算温度取为20℃;在计算单相短路电流时,假设的计算温度升高,电阻值增大,其值一般为20℃时电阻的1.5倍。
5)计算工程采用有名单位制,电压用V,电流用kA,容量用kVA,电阻用mΩ。
6)计算220/380V网络三相短路电流时,计算电压取电压系数为1.05,计算单相接地故障电流时,取1,为系统标称电压(线电压)380V。
2短路电流计算内容低压网络短路电流计算中需确定的内容及其用途见表2-1。
3三相和两相短路电流的计算采用有名值法计算,计算步骤如下:1)计算低压短路回路各元件的(正序)阻抗值,公式见表3-1。
煤矿井下低压电网短路整定细则第一章一般规定第一节短路电流的计算方法第1条选择短路保护装置的整定电流时,需计算两相短路电流值,可按公式(1)计算:|d(2)=Ue/2 R 2 X 2R R 1/K b2+ R b+ R2X X i X+X l/K b2+ X b+ X2式中l d(2)――两相短路电流,A;XR、刀X―― 路回路内一相电阻、电抗值的总和,Q;Xx --- 根据三相短路容量计算的系统电抗值,Q;R1、X1 ――高压电缆的电阻、电抗值,Q;Kb——矿用变压器的变压比,若一次电压为6000V,二次电压为400、690、1200V 时,变比依次为15、8.7、5;当一次电压为3000V,二次电压为400V时,变压比为7.5;Rb、Xb——矿用变压器的电阻、电抗值,Q;R2、X2――低压电缆的电阻、电抗值,Q;U e――变压器二次侧的额定电压,对于380V网路,U e以400V计算;对于660V 网路,U e以1200V计算;对于127V网路,U e以133V计算。
利用公式(1)计算两相短路电流时,不考虑短路电流周期分量的衰减,短路回路的接触电阻和弧电阻也忽略不计。
若需计算三相短路电流值,可按公式(2)计算:Id(3)=1.15ld ⑵(2)式中Id⑶一一三相短路电流,A。
第2条两相短路电流还可以利用计算图(或表)查出。
此时可根据变压器的容量、短路点至变压器的电缆换算长度及系统电抗、高压电缆的折算长度,从图或表中查出。
电缆的换算长度可根据的电缆的截面、实际长度,从表中直接查到,也可以用公式(3)计算得出。
L H=K1L1+K2L2+……+K n L n+L x+K g L g (3)式中L H——电缆总的换算长度,m;心、K2……K n――换算系数,各种截面电缆的换算系数,可从表中查得;L1、L2 Ln ------- 各段电缆的实际长度,m ;Lx ――系统电抗的换算长度,m;Kg ―― 6KV电缆折算至低压侧的换算系数;Lg―― 6KV电缆的实际长度,m。
变压器额定电流和低压短路电流的估算仪征化纤股份有限公司设备动力部 孙金伯在进行开关等设备选型时,常常需要知道变压器的额定电流和短路电流,下面给出一种工程上常用的一种估算公式:一.变压器额定电流的估算变压器额定电流的计算公式:式中:S N 为变压器额定容量 U N 为变压器的额定电压1. 高压侧电流的估算对于高压侧为10KV 的变压器:将U N =10KV 代入上式得I N = 0.06S N对于高压侧为6KV 的变压器::将U N =6KV 代入上式得I N = 0.1S N2. 低压侧电流的估算将U N =400V 代入上式I N = 1.44 S N 。
为 了便于口算,实际工程计算中取1.5S N在实际工作中,当需要估算变压器高低侧的额定电流时,只要将变压器的额定容量乘上0.06即为10KV 侧的额定电流,将变压器的额定容量乘上0.1即为6KV 侧的额定电流,将变压器的额定容量乘上1.5即为400V 侧的额定电流。
以上计算都是近似估算,误差在实际工程中是允许的。
二. 变压器低压短路电流的估算在对变压器低压侧出线开关选型时,经常要估算变压器低压母线短路时的三相短路电流,以便确定变压器低压出口总开关的遮断容量。
设基准容量:S j =100MV A ,基准电压:U j =0.4kV ,变压器一次系统的短路阻抗为∝,则400V 侧的短路电流为:U d %----变压器的短路阻抗,%S-------变压器的额定容量,KVAU S I NNN 3=I U IdN d d S 23*4.0100000*1000%1==I2N……..变压器低压侧的额定电流根据上式,当已知变压器低压侧的额定电流和变压器的短路阻抗百分数时即可估算出变压器低压侧的短路电流。
现将常用的10/0.4KV变压器的出口三相短路电流计算附后:表一:10/0.4KV变压器出口三相短路电流。
低压短路电流计算和校验摘要:针对低压负荷供电距离多样,负荷性质复杂的特点,介绍了在低压配电中短路电流计算的假定条件,分析了短路电流计算时的影响因素,最后分析了在断路器保护定值选取时的注意事项,可用于低压设计过程中的计算参考。
关键词:低压;短路计算;断路器引言低压配电的主要任务是通过合理计算,在变压器低压侧至终端用电设备这一电气路径中选取相应的保护设备(断路器、熔断器)和低压电缆,保证供电及用电设备的正常运行。
用电设备功率、配电距离、敷设方式对于断路器主要参数的整定和电缆截面的选取都存在着不同的影响。
特别是在小负荷配电设计时,利用短路电流计算结果进行配电设备的合理性选择是十分重要的。
本文以采用了TN-S 系统的实际地铁项目为例,讨论了单相和三相短路电流的计算及校验,针对供电距离的不同时,分析了小负荷低压远端短路(短路交流分量不衰减)对断路器选取的影响。
1低压负荷三相短路电流计算以某地铁项目为例,35/0.4kV变电所中设置一台1000kVA的SCB-11干式变压器,D,yn11接线,Uk%=6,其中所供电的负荷功率为5kW(功率因数0.8)。
1.1负荷额定电流采用需要系数法计算,工作电流详见公式1-1(1-1)如果仅根据计算电流,可选取截面积为2.5mm2的电缆。
1.2短路电流计算与短路分段能力低压短路可近似为远端短路[1],按短路电流的周期分量不衰减进行考虑,故低压三相短路可按如下方法计算。
(1)系统高压侧折算到低压侧的短路阻抗在实际工程中,系统高压侧的短路容量需要由当地的电业部门提供,如果没有数据,可以进行合理推算。
假定配电变压器的短路容量S″=100MVA,变压器低压侧的高压系统阻抗为:(1-2)(1-3)(1-4)(2)变压器的阻抗根据相关厂商变压器参数样本可知,容量为1000kVA的SCB-11干式变压器的电阻=1.22m,电抗=9.52m。
(3)低压母线的短路电流根据选型项目参数,变压器容量1000kVA,低压侧允许最大计算电流为1519A,因此选择TMY(100mm×8mm)作为低压母排型号,其长度为8m,根据样本单位长度阻抗R'p=0.04m/m,X'p=0.182 m/m,则总阻抗为R p=0.32m,X p=1.448m。
高、低压开关整定计算方法:1、 1140V 供电分开关整定值=功率×0.67, 馈电总开关整定值为分开关整定值累加之和。
2、 660V 供电分开关整定值=功率×1.15,、馈电总开关整定值为分开关整定值累加之和。
3、 380V 供电分开关整定值=功率×2.00,、馈电总开关整定值为分开关整定值累加之和。
低压开关整定及短路电流计算公式1、馈电开关保护计算(1)、过载值计算:I Z =I e =1.15×∑P(2)、短路值整定计算:I d ≥I Qe +K X ∑I e(3)、效验:K=d d I I )2(≥1.5 式中:I Z ----过载电流整定值∑P---所有电动机额定功率之和I d ---短路保护的电流整定值I Qe ---容量最大的电动机额定启动电流(取额定电流的6倍)K X ---需用系数,取1.15∑I e ---其余电动机的额定电流之和P max ---------容量最大的电动机I (2)d ---被保护电缆干线或支线距变压器最远点的两相短路电流值例一、馈电开关整定:(1)型号:KBZ16-400,Ie=400A,Ue=660V,电源开关;负荷统计P max=55KW,启动电流I Qe=55×1.15×6=379.5A, ∑I e =74KW。
∑P=129KW(2)过载整定:根据公式:I Z=I e=1.15×∑P =129×1.15=148.35A取148A。
(3)短路整定:根据公式 I d≥I Qe+K X∑I e=379.5+1.15x74=464.6A取464A。
例二、开关整定:(1)、型号:QBZ-200,Ie=200A,Ue=660V,所带负荷:P=55KW。
(2)、过载整定:根据公式:I Z=I e=1.15×P=1.15×55=63.25A 取65A。
井下高压开关整定:式中:K Jx -------结线系数,取1K K -------可靠系数,通常取(1.15-1.25)取1.2K i-------电流互感器变比K f-------返回系数,取0.8Igdz-------所有负荷电流Idz---------负荷整定电流cos¢-----计算系数0.8----1P-----------所有负荷容量U----------电网电压√3--------1.732例1;高压开关屏整定:电流互感器为50/5=10、过流继电器为GL-12,Ie=5A.按变压器容量进行整定,变压器为KBSG-315/6.Igdz=P/√3*U*cos¢=315/1.732×6×0.92=32.9AIdz= Igdz×K Jx×K K /K i×K f=32.9×1×1.2/10×0.8=4.94A例2;(为BGP9L-6G高爆开关)整定:高压开关电流互感器为50/5按变压器容量为200KVA,额定电流为19.2A根据该配电装置微机高压综合保护器说明书要求:过载电流整定为20A,短路整定为180A(一般整定为额定电流的8-10倍)。
低压配电系统短路电流计算说明中冶京诚工程技术有限公司电气工程技术所2004年7月低压配电系统短路电流计算在设计低压配电系统时,需要进行短路电流计算,以选择低压电器、校验其稳定性及确定保护方案等。
目前,钢铁企业电力设计手册上虽有此内容,但不够详细,特别是单相短路计算,很不具体。
现从实用角度出发,编写此资料,目的是使设计者在具体工程中能很快地计算出各点的短路电流值。
假定三相电源和网络元件阻抗都是对称的,因此三相短路是对称的短路,元件的阻抗是指元件的相阻抗,即正序阻抗。
但是单相短路是不对称的短路,在TN系统中,发生单相接地短路时,短路电流从相线流出,经保护中性线(TN-C中的PEN线)或保护线(TN-S中的PE线)流回,遇到的是相线与保护线间的阻抗,这一阻抗过去叫相零阻抗,即从相线流出,零线流回,如今TN系统叫保护线,故引入了相保阻抗这一概念。
本资料中列出了高压系统、配电变压器、低压主母线,配电线路的相阻抗及相保阻抗。
相阻抗供计算三相短路电流用,相保阻抗供计算单相短路电流用。
应该说明,单相接地短路的短路电流除经由PE或PEN线流回外,尚有一部分经接地的其它金属构架回流,但后者难以计算,故本资料中全部按经由保护线流回计算。
关于相线与中性线(N线)的单相短路,在TN-C系统,与单相接地短路一样,因PE与N 是合一的,而在TN-S系统短路电流经中性线流回,阻抗应略有不同,在中性线与保护线截面相同的情况下,可仍用单相接地短路时的阻抗值,如中性线与保护线的截面不同,则仅更换其电阻值即可。
一般工程上只要计算单相接地短路(如碰壳故障)电流值,因这种故障和相线与中性线短路故障相比,其机率要高得多。
计算中遵循下列规定:1.计算三相短路电流时,计算相电压取230V,计算单相短路电流时,取220V。
2.计算三相短路电流时,导体计算温度取为+20℃,计算单相短路电流的相保电阻时,对电缆及导线来说,计算温度提高,相应电阻值加大,取+20℃时的1.5倍,母线则不需要提高计算温度,仍按+20℃考虑。
---------------------------------------------------------------最新资料推荐------------------------------------------------------低压短路电流计算第四章低压短路电流计算1/ 18一般规定●根据 IEC60364-434.2 和 IEC60364-533.2 条文中的规定,必须计算在回路首端的预期最大短路电流和回路末端的预期最小短路电流。
●预期最大短路电流确定:●断路器的分断能力, Ics(Icu) 应大于或等于预期最大短路电流Isc ●电器的接通能力Icm ●电气线路和开关装置的热稳定性和动稳定性●预期最小短路电流确定:●当下列情况时,选择脱扣器 (曲线) 和熔断器:●人身保护取决于所选的脱扣器和熔断器 (TN-IT 系统) ●电缆很长时●电源阻抗大(机组) 时●在所有情况下,保护装置应与电缆的热效应I2t ≤ K2S2 相适应Schneider Electric - LVFDI training –Chen Xiliang – 201503 2---------------------------------------------------------------最新资料推荐------------------------------------------------------ 分断能力校验●断路器分断能力应不小于预期最大短路电流 Ics (Icu)>IscmaxIcu-断路器极限短路分断能力Ics-断路器运行短路分断能力 Iscmax-安装点预期最大短路电流Schneider Electric - LVFDI training – Chen Xiliang – 201503 33/ 18电缆热稳定校验●当短路持续时间不大于5s时,绝缘导体的热稳定应按下式校验:S≥ Isc √t KS-绝缘导体的线芯截面 ( mm2)Isc -短路电流有效值 ( A )t -导体内短路电流持续作用的时间 ( s ) K-不同绝缘的计算系数Schneider Electric - LVFDI training –Chen Xiliang – 201503 4---------------------------------------------------------------最新资料推荐------------------------------------------------------ 电缆热稳定校验●绝缘材料的 K 值,供计算短路电流热效应用导体材质铜绝缘材料? pvc 聚氯乙烯 60?C 橡胶 85?C 橡胶 90?C 交联聚乙烯油浸纸矿物质-导体-中间接头盒及密封剂 pvc 聚氯乙烯 60?C 橡胶 85?C 橡胶 90?C 交联聚乙烯油浸纸限定起始温度 ?C 70 60 85 90 80 70 105 70 60 85 90 80 限定最终温度 ?C 160/140 200 220 250 160 160 250 160/140 200 220 250 160 K 115/103 141 134 143 108 115 135 76/68 93 89 94 71铝?注:表中对限定最终温度和 K 列出二个值,较低的值用于截面积大于 300mm2 的电缆。
Schneider Electric - LVFDI training –Chen Xiliang –201503 55/ 18短路电流计算步骤上方侧短路容量 Ssc高压/低压变压器额定值导体特性 ? 母线: ? 长度 ? 宽度 ? 厚度 ? 电缆: ? 绝缘材料 ? 单芯或多芯 ? 长度 ? 截面 ? 环境: ? 环境温度 ? 敷设方式 ? 并列敷设回路数Usc (%) 在变压器出线端 Isc 分断能力瞬时脱扣设定总配电柜引出线 Isc 分断能力瞬时脱扣设定二次配电柜的首端Isc 分断能力瞬时脱扣设定末端配电柜的首端 Isc 分断能力瞬时脱扣设定末端配电断路器二级配电断路器总配电柜出线断路器主断路器? 功率因数 ? 同时系数 ? 暂载率 ? 预见的增长系数-馈电线 -额定电流 -电压降负荷额定值Schneider Electric - LVFDI training –Chen Xiliang –201503最终引出线末端的 Isc6---------------------------------------------------------------最新资料推荐------------------------------------------------------短路电流的定义● 短路电流是由于在正常供电时有电位差的两点之间,发生一起阻抗极小的故障而引起的过电流Zt ? R ? X2Zt2U I sc ? ? ZtAU R2 ? X 2XUZIBSchneider Electric - LVFDI training – Chen Xiliang – 201503 77/ 18不同的短路电流●三相故障ZL ZscZL ZL~VU/ 3 I sc3=? Zsc●相间故障ZLZsc~ZLU ZscI Sc2= ?U 2×Zsc Schneider Electric - LVFDI training – Chen Xiliang – 201503 8---------------------------------------------------------------最新资料推荐------------------------------------------------------ 不同的短路电流(续)●相对中性线故障ZL ZLn ZSC~V ZLnU/ 3 Isc1=? Zsc + Z Ln●相对地故障ZL ZSC~Z(0)V Z(0)U/ 3 Isc (0)=? Zsc + Z (0)Schneider Electric - LVFDI training – Chen Xiliang –201503 99/ 18短路电流的计算方法●阻抗法:用于计算三相系统中任一点的短路电流,该方法具有高的计算精度 Isck = U203 Zk=U20 3Rk2 + Xk2U20: 变压器二次侧空载线电压 Zk : 故障点电源侧每相总阻抗Schneider Electric - LVFDI training – Chen Xiliang – 201503 10---------------------------------------------------------------最新资料推荐------------------------------------------------------ 阻抗法计算短路电流Schneider Electric - LVFDI training –Chen Xiliang – 201503 1111/ 18短路电流的计算方法(续)●合成法:当不掌握电源参数时,可以根据回路首端已知的短路电流,计算回路末端的短路电流U IscB = = IscA U/ IscA+ ZcIscA:上级短路电流 IscB: 线路末端短路电流 Zc: 回路阻抗 U: 系统标称相电压Schneider Electric - LVFDI training – Chen Xiliang – 201503U U + Zc IscA12---------------------------------------------------------------最新资料推荐------------------------------------------------------ 短路电流速查表Schneider Electric - LVFDI training – Chen Xiliang – 201503 1313/ 18短路电流的计算方法(续)●传统法:当不掌握给定回路电源侧的阻抗或短路电流时,可用这种方法计算线路末端的最小短路电流Iscmin或单相对地故障电流 Id 具体方法将在接地系统的故障分析中详细介绍。
Schneider Electric - LVFDI training –Chen Xiliang –201503 14---------------------------------------------------------------最新资料推荐------------------------------------------------------ 短路电流估算方法举例●方法一:公式法,适用于主配电柜Ie Isc ≈ ≈25Sn (kA) Uk Isc:变压器二次侧预期三相短路电流 Ie:变压器二次侧额定电流 Uk:变压器阻抗电压(%)信信举例:已知:三相电力变压器 S=2000KVA, 10/0.4KV, 变压器阻抗电压Uk=6%, 计算变压器二次侧预期三相短路电流。
Schneider Electric - LVFDI training –Chen Xiliang –201503 1515/ 18短路电流估算方法举例(续)●方法二:查表法,适用于分配电和末端A信50kA利用上级配电柜出线已知的三相短路电流,查找下级配电柜进线预期的三相短路电流B信Isc3≈?kA举例:已知:变电所母线预期三相短路电流为50kA,出线电缆为铜芯交联电缆,截面185mm2,长度50m,请估算下级配电柜预期三相短路电流值。
Schneider Electric - LVFDI training –Chen Xiliang –201503 16---------------------------------------------------------------最新资料推荐------------------------------------------------------ 短路电流速查表详见附录第67页Schneider Electric - LVFDI training – Chen Xiliang – 201503 1717/ 18两台变压器并联运行时的短路● 思考题:● 两台同容量变压器并联运行,变压器低压侧短路电流为25KA ● 确定进线及馈线断路器的分断能力D1D2D1D2D3D3D4Schneider Electric - LVFDI training – Chen Xiliang – 201503 18。